Mercurial > repos > shellac > guppy_basecaller
diff env/lib/python3.7/site-packages/networkx/classes/multidigraph.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
author | shellac |
---|---|
date | Sat, 02 May 2020 07:14:21 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/env/lib/python3.7/site-packages/networkx/classes/multidigraph.py Sat May 02 07:14:21 2020 -0400 @@ -0,0 +1,871 @@ +# Copyright (C) 2004-2019 by +# Aric Hagberg <hagberg@lanl.gov> +# Dan Schult <dschult@colgate.edu> +# Pieter Swart <swart@lanl.gov> +# All rights reserved. +# BSD license. +# +# Authors: Aric Hagberg <hagberg@lanl.gov> +# Dan Schult <dschult@colgate.edu> +# Pieter Swart <swart@lanl.gov> +"""Base class for MultiDiGraph.""" +from copy import deepcopy + +import networkx as nx +from networkx.classes.graph import Graph # for doctests +from networkx.classes.digraph import DiGraph +from networkx.classes.multigraph import MultiGraph +from networkx.classes.coreviews import MultiAdjacencyView +from networkx.classes.reportviews import OutMultiEdgeView, InMultiEdgeView, \ + DiMultiDegreeView, OutMultiDegreeView, InMultiDegreeView +from networkx.exception import NetworkXError + + +class MultiDiGraph(MultiGraph, DiGraph): + """A directed graph class that can store multiedges. + + Multiedges are multiple edges between two nodes. Each edge + can hold optional data or attributes. + + A MultiDiGraph holds directed edges. Self loops are allowed. + + Nodes can be arbitrary (hashable) Python objects with optional + key/value attributes. By convention `None` is not used as a node. + + Edges are represented as links between nodes with optional + key/value attributes. + + Parameters + ---------- + incoming_graph_data : input graph (optional, default: None) + Data to initialize graph. If None (default) an empty + graph is created. The data can be any format that is supported + by the to_networkx_graph() function, currently including edge list, + dict of dicts, dict of lists, NetworkX graph, NumPy matrix + or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + Graph + DiGraph + MultiGraph + OrderedMultiDiGraph + + Examples + -------- + Create an empty graph structure (a "null graph") with no nodes and + no edges. + + >>> G = nx.MultiDiGraph() + + G can be grown in several ways. + + **Nodes:** + + Add one node at a time: + + >>> G.add_node(1) + + Add the nodes from any container (a list, dict, set or + even the lines from a file or the nodes from another graph). + + >>> G.add_nodes_from([2, 3]) + >>> G.add_nodes_from(range(100, 110)) + >>> H = nx.path_graph(10) + >>> G.add_nodes_from(H) + + In addition to strings and integers any hashable Python object + (except None) can represent a node, e.g. a customized node object, + or even another Graph. + + >>> G.add_node(H) + + **Edges:** + + G can also be grown by adding edges. + + Add one edge, + + >>> key = G.add_edge(1, 2) + + a list of edges, + + >>> keys = G.add_edges_from([(1, 2), (1, 3)]) + + or a collection of edges, + + >>> keys = G.add_edges_from(H.edges) + + If some edges connect nodes not yet in the graph, the nodes + are added automatically. If an edge already exists, an additional + edge is created and stored using a key to identify the edge. + By default the key is the lowest unused integer. + + >>> keys = G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))]) + >>> G[4] + AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}) + + **Attributes:** + + Each graph, node, and edge can hold key/value attribute pairs + in an associated attribute dictionary (the keys must be hashable). + By default these are empty, but can be added or changed using + add_edge, add_node or direct manipulation of the attribute + dictionaries named graph, node and edge respectively. + + >>> G = nx.MultiDiGraph(day="Friday") + >>> G.graph + {'day': 'Friday'} + + Add node attributes using add_node(), add_nodes_from() or G.nodes + + >>> G.add_node(1, time='5pm') + >>> G.add_nodes_from([3], time='2pm') + >>> G.nodes[1] + {'time': '5pm'} + >>> G.nodes[1]['room'] = 714 + >>> del G.nodes[1]['room'] # remove attribute + >>> list(G.nodes(data=True)) + [(1, {'time': '5pm'}), (3, {'time': '2pm'})] + + Add edge attributes using add_edge(), add_edges_from(), subscript + notation, or G.edges. + + >>> key = G.add_edge(1, 2, weight=4.7 ) + >>> keys = G.add_edges_from([(3, 4), (4, 5)], color='red') + >>> keys = G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) + >>> G[1][2][0]['weight'] = 4.7 + >>> G.edges[1, 2, 0]['weight'] = 4 + + Warning: we protect the graph data structure by making `G.edges[1, 2]` a + read-only dict-like structure. However, you can assign to attributes + in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change + data attributes: `G.edges[1, 2]['weight'] = 4` + (For multigraphs: `MG.edges[u, v, key][name] = value`). + + **Shortcuts:** + + Many common graph features allow python syntax to speed reporting. + + >>> 1 in G # check if node in graph + True + >>> [n for n in G if n<3] # iterate through nodes + [1, 2] + >>> len(G) # number of nodes in graph + 5 + >>> G[1] # adjacency dict-like view keyed by neighbor to edge attributes + AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}}) + + Often the best way to traverse all edges of a graph is via the neighbors. + The neighbors are available as an adjacency-view `G.adj` object or via + the method `G.adjacency()`. + + >>> for n, nbrsdict in G.adjacency(): + ... for nbr, keydict in nbrsdict.items(): + ... for key, eattr in keydict.items(): + ... if 'weight' in eattr: + ... # Do something useful with the edges + ... pass + + But the edges() method is often more convenient: + + >>> for u, v, keys, weight in G.edges(data='weight', keys=True): + ... if weight is not None: + ... # Do something useful with the edges + ... pass + + **Reporting:** + + Simple graph information is obtained using methods and object-attributes. + Reporting usually provides views instead of containers to reduce memory + usage. The views update as the graph is updated similarly to dict-views. + The objects `nodes, `edges` and `adj` provide access to data attributes + via lookup (e.g. `nodes[n], `edges[u, v]`, `adj[u][v]`) and iteration + (e.g. `nodes.items()`, `nodes.data('color')`, + `nodes.data('color', default='blue')` and similarly for `edges`) + Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. + + For details on these and other miscellaneous methods, see below. + + **Subclasses (Advanced):** + + The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure. + The outer dict (node_dict) holds adjacency information keyed by node. + The next dict (adjlist_dict) represents the adjacency information and holds + edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr + dict keyed by edge key. The inner dict (edge_attr_dict) represents + the edge data and holds edge attribute values keyed by attribute names. + + Each of these four dicts in the dict-of-dict-of-dict-of-dict + structure can be replaced by a user defined dict-like object. + In general, the dict-like features should be maintained but + extra features can be added. To replace one of the dicts create + a new graph class by changing the class(!) variable holding the + factory for that dict-like structure. The variable names are + node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, + adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory + and graph_attr_dict_factory. + + node_dict_factory : function, (default: dict) + Factory function to be used to create the dict containing node + attributes, keyed by node id. + It should require no arguments and return a dict-like object + + node_attr_dict_factory: function, (default: dict) + Factory function to be used to create the node attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object + + adjlist_outer_dict_factory : function, (default: dict) + Factory function to be used to create the outer-most dict + in the data structure that holds adjacency info keyed by node. + It should require no arguments and return a dict-like object. + + adjlist_inner_dict_factory : function, (default: dict) + Factory function to be used to create the adjacency list + dict which holds multiedge key dicts keyed by neighbor. + It should require no arguments and return a dict-like object. + + edge_key_dict_factory : function, (default: dict) + Factory function to be used to create the edge key dict + which holds edge data keyed by edge key. + It should require no arguments and return a dict-like object. + + edge_attr_dict_factory : function, (default: dict) + Factory function to be used to create the edge attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + graph_attr_dict_factory : function, (default: dict) + Factory function to be used to create the graph attribute + dict which holds attribute values keyed by attribute name. + It should require no arguments and return a dict-like object. + + Typically, if your extension doesn't impact the data structure all + methods will inherited without issue except: `to_directed/to_undirected`. + By default these methods create a DiGraph/Graph class and you probably + want them to create your extension of a DiGraph/Graph. To facilitate + this we define two class variables that you can set in your subclass. + + to_directed_class : callable, (default: DiGraph or MultiDiGraph) + Class to create a new graph structure in the `to_directed` method. + If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. + + to_undirected_class : callable, (default: Graph or MultiGraph) + Class to create a new graph structure in the `to_undirected` method. + If `None`, a NetworkX class (Graph or MultiGraph) is used. + + Examples + -------- + + Please see :mod:`~networkx.classes.ordered` for examples of + creating graph subclasses by overwriting the base class `dict` with + a dictionary-like object. + """ + # node_dict_factory = dict # already assigned in Graph + # adjlist_outer_dict_factory = dict + # adjlist_inner_dict_factory = dict + edge_key_dict_factory = dict + # edge_attr_dict_factory = dict + + def __init__(self, incoming_graph_data=None, **attr): + """Initialize a graph with edges, name, or graph attributes. + + Parameters + ---------- + incoming_graph_data : input graph + Data to initialize graph. If incoming_graph_data=None (default) + an empty graph is created. The data can be an edge list, or any + NetworkX graph object. If the corresponding optional Python + packages are installed the data can also be a NumPy matrix + or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. + + attr : keyword arguments, optional (default= no attributes) + Attributes to add to graph as key=value pairs. + + See Also + -------- + convert + + Examples + -------- + >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc + >>> G = nx.Graph(name='my graph') + >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges + >>> G = nx.Graph(e) + + Arbitrary graph attribute pairs (key=value) may be assigned + + >>> G = nx.Graph(e, day="Friday") + >>> G.graph + {'day': 'Friday'} + + """ + self.edge_key_dict_factory = self.edge_key_dict_factory + DiGraph.__init__(self, incoming_graph_data, **attr) + + @property + def adj(self): + """Graph adjacency object holding the neighbors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets + the color of the edge `(3, 2, 0)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.adj` holds outgoing (successor) info. + """ + return MultiAdjacencyView(self._succ) + + @property + def succ(self): + """Graph adjacency object holding the successors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets + the color of the edge `(3, 2, 0)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + + The neighbor information is also provided by subscripting the graph. + So `for nbr, foovalue in G[node].data('foo', default=1):` works. + + For directed graphs, `G.succ` is identical to `G.adj`. + """ + return MultiAdjacencyView(self._succ) + + @property + def pred(self): + """Graph adjacency object holding the predecessors of each node. + + This object is a read-only dict-like structure with node keys + and neighbor-dict values. The neighbor-dict is keyed by neighbor + to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets + the color of the edge `(3, 2, 0)` to `"blue"`. + + Iterating over G.adj behaves like a dict. Useful idioms include + `for nbr, datadict in G.adj[n].items():`. + """ + return MultiAdjacencyView(self._pred) + + def add_edge(self, u_for_edge, v_for_edge, key=None, **attr): + """Add an edge between u and v. + + The nodes u and v will be automatically added if they are + not already in the graph. + + Edge attributes can be specified with keywords or by directly + accessing the edge's attribute dictionary. See examples below. + + Parameters + ---------- + u_for_edge, v_for_edge : nodes + Nodes can be, for example, strings or numbers. + Nodes must be hashable (and not None) Python objects. + key : hashable identifier, optional (default=lowest unused integer) + Used to distinguish multiedges between a pair of nodes. + attr_dict : dictionary, optional (default= no attributes) + Dictionary of edge attributes. Key/value pairs will + update existing data associated with the edge. + attr : keyword arguments, optional + Edge data (or labels or objects) can be assigned using + keyword arguments. + + Returns + ------- + The edge key assigned to the edge. + + See Also + -------- + add_edges_from : add a collection of edges + + Notes + ----- + To replace/update edge data, use the optional key argument + to identify a unique edge. Otherwise a new edge will be created. + + NetworkX algorithms designed for weighted graphs cannot use + multigraphs directly because it is not clear how to handle + multiedge weights. Convert to Graph using edge attribute + 'weight' to enable weighted graph algorithms. + + Default keys are generated using the method `new_edge_key()`. + This method can be overridden by subclassing the base class and + providing a custom `new_edge_key()` method. + + Examples + -------- + The following all add the edge e=(1, 2) to graph G: + + >>> G = nx.MultiDiGraph() + >>> e = (1, 2) + >>> key = G.add_edge(1, 2) # explicit two-node form + >>> G.add_edge(*e) # single edge as tuple of two nodes + 1 + >>> G.add_edges_from( [(1, 2)] ) # add edges from iterable container + [2] + + Associate data to edges using keywords: + + >>> key = G.add_edge(1, 2, weight=3) + >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 + >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7) + + For non-string attribute keys, use subscript notation. + + >>> ekey = G.add_edge(1, 2) + >>> G[1][2][0].update({0: 5}) + >>> G.edges[1, 2, 0].update({0: 5}) + """ + u, v = u_for_edge, v_for_edge + # add nodes + if u not in self._succ: + self._succ[u] = self.adjlist_inner_dict_factory() + self._pred[u] = self.adjlist_inner_dict_factory() + self._node[u] = self.node_attr_dict_factory() + if v not in self._succ: + self._succ[v] = self.adjlist_inner_dict_factory() + self._pred[v] = self.adjlist_inner_dict_factory() + self._node[v] = self.node_attr_dict_factory() + if key is None: + key = self.new_edge_key(u, v) + if v in self._succ[u]: + keydict = self._adj[u][v] + datadict = keydict.get(key, self.edge_key_dict_factory()) + datadict.update(attr) + keydict[key] = datadict + else: + # selfloops work this way without special treatment + datadict = self.edge_attr_dict_factory() + datadict.update(attr) + keydict = self.edge_key_dict_factory() + keydict[key] = datadict + self._succ[u][v] = keydict + self._pred[v][u] = keydict + return key + + def remove_edge(self, u, v, key=None): + """Remove an edge between u and v. + + Parameters + ---------- + u, v : nodes + Remove an edge between nodes u and v. + key : hashable identifier, optional (default=None) + Used to distinguish multiple edges between a pair of nodes. + If None remove a single (arbitrary) edge between u and v. + + Raises + ------ + NetworkXError + If there is not an edge between u and v, or + if there is no edge with the specified key. + + See Also + -------- + remove_edges_from : remove a collection of edges + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.remove_edge(0, 1) + >>> e = (1, 2) + >>> G.remove_edge(*e) # unpacks e from an edge tuple + + For multiple edges + + >>> G = nx.MultiDiGraph() + >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned + [0, 1, 2] + >>> G.remove_edge(1, 2) # remove a single (arbitrary) edge + + For edges with keys + + >>> G = nx.MultiDiGraph() + >>> G.add_edge(1, 2, key='first') + 'first' + >>> G.add_edge(1, 2, key='second') + 'second' + >>> G.remove_edge(1, 2, key='second') + + """ + try: + d = self._adj[u][v] + except KeyError: + raise NetworkXError( + "The edge %s-%s is not in the graph." % (u, v)) + # remove the edge with specified data + if key is None: + d.popitem() + else: + try: + del d[key] + except KeyError: + msg = "The edge %s-%s with key %s is not in the graph." + raise NetworkXError(msg % (u, v, key)) + if len(d) == 0: + # remove the key entries if last edge + del self._succ[u][v] + del self._pred[v][u] + + @property + def edges(self): + """An OutMultiEdgeView of the Graph as G.edges or G.edges(). + + edges(self, nbunch=None, data=False, keys=False, default=None) + + The OutMultiEdgeView provides set-like operations on the edge-tuples + as well as edge attribute lookup. When called, it also provides + an EdgeDataView object which allows control of access to edge + attributes (but does not provide set-like operations). + Hence, `G.edges[u, v]['color']` provides the value of the color + attribute for edge `(u, v)` while + `for (u, v, c) in G.edges(data='color', default='red'):` + iterates through all the edges yielding the color attribute + with default `'red'` if no color attribute exists. + + Edges are returned as tuples with optional data and keys + in the order (node, neighbor, key, data). + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + keys : bool, optional (default=False) + If True, return edge keys with each edge. + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + edges : EdgeView + A view of edge attributes, usually it iterates over (u, v) + (u, v, k) or (u, v, k, d) tuples of edges, but can also be + used for attribute lookup as `edges[u, v, k]['foo']`. + + Notes + ----- + Nodes in nbunch that are not in the graph will be (quietly) ignored. + For directed graphs this returns the out-edges. + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2]) + >>> key = G.add_edge(2, 3, weight=5) + >>> [e for e in G.edges()] + [(0, 1), (1, 2), (2, 3)] + >>> list(G.edges(data=True)) # default data is {} (empty dict) + [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] + >>> list(G.edges(data='weight', default=1)) + [(0, 1, 1), (1, 2, 1), (2, 3, 5)] + >>> list(G.edges(keys=True)) # default keys are integers + [(0, 1, 0), (1, 2, 0), (2, 3, 0)] + >>> list(G.edges(data=True, keys=True)) + [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})] + >>> list(G.edges(data='weight', default=1, keys=True)) + [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)] + >>> list(G.edges([0, 2])) + [(0, 1), (2, 3)] + >>> list(G.edges(0)) + [(0, 1)] + + See Also + -------- + in_edges, out_edges + """ + return OutMultiEdgeView(self) + + # alias out_edges to edges + out_edges = edges + + @property + def in_edges(self): + """An InMultiEdgeView of the Graph as G.in_edges or G.in_edges(). + + in_edges(self, nbunch=None, data=False, keys=False, default=None) + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + data : string or bool, optional (default=False) + The edge attribute returned in 3-tuple (u, v, ddict[data]). + If True, return edge attribute dict in 3-tuple (u, v, ddict). + If False, return 2-tuple (u, v). + keys : bool, optional (default=False) + If True, return edge keys with each edge. + default : value, optional (default=None) + Value used for edges that don't have the requested attribute. + Only relevant if data is not True or False. + + Returns + ------- + in_edges : InMultiEdgeView + A view of edge attributes, usually it iterates over (u, v) + or (u, v, k) or (u, v, k, d) tuples of edges, but can also be + used for attribute lookup as `edges[u, v, k]['foo']`. + + See Also + -------- + edges + """ + return InMultiEdgeView(self) + + @property + def degree(self): + """A DegreeView for the Graph as G.degree or G.degree(). + + The node degree is the number of edges adjacent to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single nodes is requested + deg : int + Degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, degree). + + See Also + -------- + out_degree, in_degree + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.degree(0) # node 0 with degree 1 + 1 + >>> list(G.degree([0, 1, 2])) + [(0, 1), (1, 2), (2, 2)] + + """ + return DiMultiDegreeView(self) + + @property + def in_degree(self): + """A DegreeView for (node, in_degree) or in_degree for single node. + + The node in-degree is the number of edges pointing in to the node. + The weighted node degree is the sum of the edge weights for + edges incident to that node. + + This object provides an iterator for (node, degree) as well as + lookup for the degree for a single node. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + If a single node is requested + deg : int + Degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, in-degree). + + See Also + -------- + degree, out_degree + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.in_degree(0) # node 0 with degree 0 + 0 + >>> list(G.in_degree([0, 1, 2])) + [(0, 0), (1, 1), (2, 1)] + + """ + return InMultiDegreeView(self) + + @property + def out_degree(self): + """Returns an iterator for (node, out-degree) or out-degree for single node. + + out_degree(self, nbunch=None, weight=None) + + The node out-degree is the number of edges pointing out of the node. + This function returns the out-degree for a single node or an iterator + for a bunch of nodes or if nothing is passed as argument. + + Parameters + ---------- + nbunch : single node, container, or all nodes (default= all nodes) + The view will only report edges incident to these nodes. + + weight : string or None, optional (default=None) + The edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights. + + Returns + ------- + If a single node is requested + deg : int + Degree of the node + + OR if multiple nodes are requested + nd_iter : iterator + The iterator returns two-tuples of (node, out-degree). + + See Also + -------- + degree, in_degree + + Examples + -------- + >>> G = nx.MultiDiGraph() + >>> nx.add_path(G, [0, 1, 2, 3]) + >>> G.out_degree(0) # node 0 with degree 1 + 1 + >>> list(G.out_degree([0, 1, 2])) + [(0, 1), (1, 1), (2, 1)] + + """ + return OutMultiDegreeView(self) + + def is_multigraph(self): + """Returns True if graph is a multigraph, False otherwise.""" + return True + + def is_directed(self): + """Returns True if graph is directed, False otherwise.""" + return True + + def to_undirected(self, reciprocal=False, as_view=False): + """Returns an undirected representation of the digraph. + + Parameters + ---------- + reciprocal : bool (optional) + If True only keep edges that appear in both directions + in the original digraph. + as_view : bool (optional, default=False) + If True return an undirected view of the original directed graph. + + Returns + ------- + G : MultiGraph + An undirected graph with the same name and nodes and + with edge (u, v, data) if either (u, v, data) or (v, u, data) + is in the digraph. If both edges exist in digraph and + their edge data is different, only one edge is created + with an arbitrary choice of which edge data to use. + You must check and correct for this manually if desired. + + See Also + -------- + MultiGraph, copy, add_edge, add_edges_from + + Notes + ----- + This returns a "deepcopy" of the edge, node, and + graph attributes which attempts to completely copy + all of the data and references. + + This is in contrast to the similar D=MultiiGraph(G) which + returns a shallow copy of the data. + + See the Python copy module for more information on shallow + and deep copies, https://docs.python.org/2/library/copy.html. + + Warning: If you have subclassed MultiDiGraph to use dict-like + objects in the data structure, those changes do not transfer + to the MultiGraph created by this method. + + Examples + -------- + >>> G = nx.path_graph(2) # or MultiGraph, etc + >>> H = G.to_directed() + >>> list(H.edges) + [(0, 1), (1, 0)] + >>> G2 = H.to_undirected() + >>> list(G2.edges) + [(0, 1)] + """ + graph_class = self.to_undirected_class() + if as_view is True: + return nx.graphviews.generic_graph_view(self, graph_class) + # deepcopy when not a view + G = graph_class() + G.graph.update(deepcopy(self.graph)) + G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + if reciprocal is True: + G.add_edges_from((u, v, key, deepcopy(data)) + for u, nbrs in self._adj.items() + for v, keydict in nbrs.items() + for key, data in keydict.items() + if v in self._pred[u] and key in self._pred[u][v]) + else: + G.add_edges_from((u, v, key, deepcopy(data)) + for u, nbrs in self._adj.items() + for v, keydict in nbrs.items() + for key, data in keydict.items()) + return G + + def reverse(self, copy=True): + """Returns the reverse of the graph. + + The reverse is a graph with the same nodes and edges + but with the directions of the edges reversed. + + Parameters + ---------- + copy : bool optional (default=True) + If True, return a new DiGraph holding the reversed edges. + If False, the reverse graph is created using a view of + the original graph. + """ + if copy: + H = self.__class__() + H.graph.update(deepcopy(self.graph)) + H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) + H.add_edges_from((v, u, k, deepcopy(d)) for u, v, k, d + in self.edges(keys=True, data=True)) + return H + return nx.graphviews.reverse_view(self)