Mercurial > repos > shellac > guppy_basecaller
view env/lib/python3.7/site-packages/mypy_extensions.py @ 3:758bc20232e8 draft
"planemo upload commit 2a0fe2cc28b09e101d37293e53e82f61762262ec"
author | shellac |
---|---|
date | Thu, 14 May 2020 16:20:52 -0400 |
parents | 26e78fe6e8c4 |
children |
line wrap: on
line source
"""Defines experimental extensions to the standard "typing" module that are supported by the mypy typechecker. Example usage: from mypy_extensions import TypedDict """ from typing import Any # NOTE: This module must support Python 2.7 in addition to Python 3.x import sys # _type_check is NOT a part of public typing API, it is used here only to mimic # the (convenient) behavior of types provided by typing module. from typing import _type_check # type: ignore def _check_fails(cls, other): try: if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools', 'typing']: # Typed dicts are only for static structural subtyping. raise TypeError('TypedDict does not support instance and class checks') except (AttributeError, ValueError): pass return False def _dict_new(cls, *args, **kwargs): return dict(*args, **kwargs) def _typeddict_new(cls, _typename, _fields=None, **kwargs): total = kwargs.pop('total', True) if _fields is None: _fields = kwargs elif kwargs: raise TypeError("TypedDict takes either a dict or keyword arguments," " but not both") ns = {'__annotations__': dict(_fields), '__total__': total} try: # Setting correct module is necessary to make typed dict classes pickleable. ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass return _TypedDictMeta(_typename, (), ns) class _TypedDictMeta(type): def __new__(cls, name, bases, ns, total=True): # Create new typed dict class object. # This method is called directly when TypedDict is subclassed, # or via _typeddict_new when TypedDict is instantiated. This way # TypedDict supports all three syntaxes described in its docstring. # Subclasses and instances of TypedDict return actual dictionaries # via _dict_new. ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns) anns = ns.get('__annotations__', {}) msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type" anns = {n: _type_check(tp, msg) for n, tp in anns.items()} for base in bases: anns.update(base.__dict__.get('__annotations__', {})) tp_dict.__annotations__ = anns if not hasattr(tp_dict, '__total__'): tp_dict.__total__ = total return tp_dict __instancecheck__ = __subclasscheck__ = _check_fails TypedDict = _TypedDictMeta('TypedDict', (dict,), {}) TypedDict.__module__ = __name__ TypedDict.__doc__ = \ """A simple typed name space. At runtime it is equivalent to a plain dict. TypedDict creates a dictionary type that expects all of its instances to have a certain set of keys, with each key associated with a value of a consistent type. This expectation is not checked at runtime but is only enforced by typecheckers. Usage:: Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str}) a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first') The type info could be accessed via Point2D.__annotations__. TypedDict supports two additional equivalent forms:: Point2D = TypedDict('Point2D', x=int, y=int, label=str) class Point2D(TypedDict): x: int y: int label: str The latter syntax is only supported in Python 3.6+, while two other syntax forms work for Python 2.7 and 3.2+ """ # Argument constructors for making more-detailed Callables. These all just # return their type argument, to make them complete noops in terms of the # `typing` module. def Arg(type=Any, name=None): """A normal positional argument""" return type def DefaultArg(type=Any, name=None): """A positional argument with a default value""" return type def NamedArg(type=Any, name=None): """A keyword-only argument""" return type def DefaultNamedArg(type=Any, name=None): """A keyword-only argument with a default value""" return type def VarArg(type=Any): """A *args-style variadic positional argument""" return type def KwArg(type=Any): """A **kwargs-style variadic keyword argument""" return type # Return type that indicates a function does not return class NoReturn: pass def trait(cls): return cls def mypyc_attr(*attrs, **kwattrs): return lambda x: x # TODO: We may want to try to properly apply this to any type # variables left over... class _FlexibleAliasClsApplied: def __init__(self, val): self.val = val def __getitem__(self, args): return self.val class _FlexibleAliasCls: def __getitem__(self, args): return _FlexibleAliasClsApplied(args[-1]) FlexibleAlias = _FlexibleAliasCls()