Mercurial > repos > shians > voom_rnaseq
comparison diffexp.R @ 0:7a80e9ec63cb
- Initial commit
author | shian_su <registertonysu@gmail.com> |
---|---|
date | Tue, 16 Dec 2014 14:38:15 +1100 |
parents | |
children | b2fe55fd0651 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7a80e9ec63cb |
---|---|
1 # This tool takes in a matrix of feature counts as well as gene annotations and | |
2 # outputs a table of top expressions as well as various plots for differential | |
3 # expression analysis | |
4 # | |
5 # ARGS: 1.countPath -Path to RData input containing counts | |
6 # 2.annoPath -Path to RData input containing gene annotations | |
7 # 3.htmlPath -Path to html file linking to other outputs | |
8 # 4.outPath -Path to folder to write all output to | |
9 # 5.rdaOpt -String specifying if RData should be saved | |
10 # 6.normOpt -String specifying type of normalisation used | |
11 # 7.weightOpt -String specifying usage of weights | |
12 # 8.contrastData -String containing contrasts of interest | |
13 # 9.cpmReq -Float specifying cpm requirement | |
14 # 10.sampleReq -Integer specifying cpm requirement | |
15 # 11.pAdjOpt -String specifying the p-value adjustment method | |
16 # 12.pValReq -Float specifying the p-value requirement | |
17 # 13.lfcReq -Float specifying the log-fold-change requirement | |
18 # 14.factorData -String containing factor names and values | |
19 # | |
20 # OUT: Voom Plot | |
21 # BCV Plot | |
22 # MA Plot | |
23 # Top Expression Table | |
24 # HTML file linking to the ouputs | |
25 # | |
26 # Author: Shian Su - registertonysu@gmail.com - Jan 2014 | |
27 | |
28 # Record starting time | |
29 timeStart <- as.character(Sys.time()) | |
30 | |
31 # Load all required libraries | |
32 library(methods, quietly=TRUE, warn.conflicts=FALSE) | |
33 library(statmod, quietly=TRUE, warn.conflicts=FALSE) | |
34 library(splines, quietly=TRUE, warn.conflicts=FALSE) | |
35 library(edgeR, quietly=TRUE, warn.conflicts=FALSE) | |
36 library(limma, quietly=TRUE, warn.conflicts=FALSE) | |
37 library(scales, quietly=TRUE, warn.conflicts=FALSE) | |
38 | |
39 if (packageVersion("limma") < "3.20.1") { | |
40 stop("Please update 'limma' to version >= 3.20.1 to run this tool") | |
41 } | |
42 | |
43 ################################################################################ | |
44 ### Function Delcaration | |
45 ################################################################################ | |
46 # Function to sanitise contrast equations so there are no whitespaces | |
47 # surrounding the arithmetic operators, leading or trailing whitespace | |
48 sanitiseEquation <- function(equation) { | |
49 equation <- gsub(" *[+] *", "+", equation) | |
50 equation <- gsub(" *[-] *", "-", equation) | |
51 equation <- gsub(" *[/] *", "/", equation) | |
52 equation <- gsub(" *[*] *", "*", equation) | |
53 equation <- gsub("^\\s+|\\s+$", "", equation) | |
54 return(equation) | |
55 } | |
56 | |
57 # Function to sanitise group information | |
58 sanitiseGroups <- function(string) { | |
59 string <- gsub(" *[,] *", ",", string) | |
60 string <- gsub("^\\s+|\\s+$", "", string) | |
61 return(string) | |
62 } | |
63 | |
64 # Function to change periods to whitespace in a string | |
65 unmake.names <- function(string) { | |
66 string <- gsub(".", " ", string, fixed=TRUE) | |
67 return(string) | |
68 } | |
69 | |
70 # Generate output folder and paths | |
71 makeOut <- function(filename) { | |
72 return(paste0(outPath, "/", filename)) | |
73 } | |
74 | |
75 # Generating design information | |
76 pasteListName <- function(string) { | |
77 return(paste0("factors$", string)) | |
78 } | |
79 | |
80 # Create cata function: default path set, default seperator empty and appending | |
81 # true by default (Ripped straight from the cat function with altered argument | |
82 # defaults) | |
83 cata <- function(..., file = htmlPath, sep = "", fill = FALSE, labels = NULL, | |
84 append = TRUE) { | |
85 if (is.character(file)) | |
86 if (file == "") | |
87 file <- stdout() | |
88 else if (substring(file, 1L, 1L) == "|") { | |
89 file <- pipe(substring(file, 2L), "w") | |
90 on.exit(close(file)) | |
91 } | |
92 else { | |
93 file <- file(file, ifelse(append, "a", "w")) | |
94 on.exit(close(file)) | |
95 } | |
96 .Internal(cat(list(...), file, sep, fill, labels, append)) | |
97 } | |
98 | |
99 # Function to write code for html head and title | |
100 HtmlHead <- function(title) { | |
101 cata("<head>\n") | |
102 cata("<title>", title, "</title>\n") | |
103 cata("</head>\n") | |
104 } | |
105 | |
106 # Function to write code for html links | |
107 HtmlLink <- function(address, label=address) { | |
108 cata("<a href=\"", address, "\" target=\"_blank\">", label, "</a><br />\n") | |
109 } | |
110 | |
111 # Function to write code for html images | |
112 HtmlImage <- function(source, label=source, height=600, width=600) { | |
113 cata("<img src=\"", source, "\" alt=\"", label, "\" height=\"", height) | |
114 cata("\" width=\"", width, "\"/>\n") | |
115 } | |
116 | |
117 # Function to write code for html list items | |
118 ListItem <- function(...) { | |
119 cata("<li>", ..., "</li>\n") | |
120 } | |
121 | |
122 TableItem <- function(...) { | |
123 cata("<td>", ..., "</td>\n") | |
124 } | |
125 | |
126 TableHeadItem <- function(...) { | |
127 cata("<th>", ..., "</th>\n") | |
128 } | |
129 | |
130 ################################################################################ | |
131 ### Input Processing | |
132 ################################################################################ | |
133 | |
134 # Collects arguments from command line | |
135 argv <- commandArgs(TRUE) | |
136 | |
137 # Grab arguments | |
138 countPath <- as.character(argv[1]) | |
139 annoPath <- as.character(argv[2]) | |
140 htmlPath <- as.character(argv[3]) | |
141 outPath <- as.character(argv[4]) | |
142 rdaOpt <- as.character(argv[5]) | |
143 normOpt <- as.character(argv[6]) | |
144 weightOpt <- as.character(argv[7]) | |
145 contrastData <- as.character(argv[8]) | |
146 cpmReq <- as.numeric(argv[9]) | |
147 sampleReq <- as.numeric(argv[10]) | |
148 pAdjOpt <- as.character(argv[11]) | |
149 pValReq <- as.numeric(argv[12]) | |
150 lfcReq <- as.numeric(argv[13]) | |
151 factorData <- list() | |
152 for (i in 14:length(argv)) { | |
153 newFact <- unlist(strsplit(as.character(argv[i]), split="::")) | |
154 factorData <- rbind(factorData, newFact) | |
155 } # Factors have the form: FACT_NAME::LEVEL,LEVEL,LEVEL,LEVEL,... | |
156 | |
157 # Process arguments | |
158 if (weightOpt=="yes") { | |
159 wantWeight <- TRUE | |
160 } else { | |
161 wantWeight <- FALSE | |
162 } | |
163 | |
164 if (rdaOpt=="yes") { | |
165 wantRda <- TRUE | |
166 } else { | |
167 wantRda <- FALSE | |
168 } | |
169 | |
170 if (annoPath=="None") { | |
171 haveAnno <- FALSE | |
172 } else { | |
173 haveAnno <- TRUE | |
174 } | |
175 | |
176 # Set the row names to be the name of the factor and delete first row | |
177 row.names(factorData) <- factorData[, 1] | |
178 factorData <- factorData[, -1] | |
179 factorData <- sapply(factorData, sanitiseGroups) | |
180 factorData <- sapply(factorData, strsplit, split=",") | |
181 factorData <- sapply(factorData, make.names) | |
182 | |
183 # Transform factor data into data frame of R factor objects | |
184 factors <- data.frame(factorData) | |
185 | |
186 #Create output directory | |
187 dir.create(outPath, showWarnings=FALSE) | |
188 | |
189 # Split up contrasts seperated by comma into a vector then sanitise | |
190 contrastData <- unlist(strsplit(contrastData, split=",")) | |
191 contrastData <- sanitiseEquation(contrastData) | |
192 contrastData <- gsub(" ", ".", contrastData, fixed=TRUE) | |
193 | |
194 bcvOutPdf <- makeOut("bcvplot.pdf") | |
195 bcvOutPng <- makeOut("bcvplot.png") | |
196 mdsOutPdf <- makeOut("mdsplot.pdf") | |
197 mdsOutPng <- makeOut("mdsplot.png") | |
198 voomOutPdf <- makeOut("voomplot.pdf") | |
199 voomOutPng <- makeOut("voomplot.png") | |
200 maOutPdf <- character() # Initialise character vector | |
201 maOutPng <- character() | |
202 topOut <- character() | |
203 for (i in 1:length(contrastData)) { | |
204 maOutPdf[i] <- makeOut(paste0("maplot(", contrastData[i], ").pdf")) | |
205 maOutPng[i] <- makeOut(paste0("maplot(", contrastData[i], ").png")) | |
206 topOut[i] <- makeOut(paste0("toptab(", contrastData[i], ").tsv")) | |
207 } # Save output paths for each contrast as vectors | |
208 rdaOut <- makeOut("RData.rda") | |
209 sessionOut <- makeOut("session_info.txt") | |
210 | |
211 # Initialise data for html links and images, data frame with columns Label and | |
212 # Link | |
213 linkData <- data.frame(Label=character(), Link=character(), | |
214 stringsAsFactors=FALSE) | |
215 imageData <- data.frame(Label=character(), Link=character(), | |
216 stringsAsFactors=FALSE) | |
217 | |
218 # Initialise vectors for storage of up/down/neutral regulated counts | |
219 upCount <- numeric() | |
220 downCount <- numeric() | |
221 flatCount <- numeric() | |
222 | |
223 # Read in counts and geneanno data | |
224 counts <- read.table(countPath, header=TRUE, sep="\t") | |
225 row.names(counts) <- counts$GeneID | |
226 counts <- counts[ , !(colnames(counts)=="GeneID")] | |
227 countsRows <- nrow(counts) | |
228 if (haveAnno) { | |
229 geneanno <- read.table(annoPath, header=TRUE, sep="\t") | |
230 } | |
231 | |
232 ################################################################################ | |
233 ### Data Processing | |
234 ################################################################################ | |
235 | |
236 # Extract counts and annotation data | |
237 data <- list() | |
238 data$counts <- counts | |
239 if (haveAnno) { | |
240 data$genes <- geneanno | |
241 } else { | |
242 data$genes <- data.frame(GeneID=row.names(counts)) | |
243 } | |
244 | |
245 # Filter out genes that do not have a required cpm in a required number of | |
246 # samples | |
247 preFilterCount <- nrow(data$counts) | |
248 sel <- rowSums(cpm(data$counts) > cpmReq) >= sampleReq | |
249 data$counts <- data$counts[sel, ] | |
250 data$genes <- data$genes[sel, ] | |
251 postFilterCount <- nrow(data$counts) | |
252 filteredCount <- preFilterCount-postFilterCount | |
253 | |
254 # Creating naming data | |
255 samplenames <- colnames(data$counts) | |
256 sampleanno <- data.frame("sampleID"=samplenames, factors) | |
257 | |
258 # Generating the DGEList object "data" | |
259 data$samples <- sampleanno | |
260 data$samples$lib.size <- colSums(data$counts) | |
261 data$samples$norm.factors <- 1 | |
262 row.names(data$samples) <- colnames(data$counts) | |
263 data <- new("DGEList", data) | |
264 | |
265 factorList <- sapply(names(factors), pasteListName) | |
266 formula <- "~0" | |
267 for (i in 1:length(factorList)) { | |
268 formula <- paste(formula, factorList[i], sep="+") | |
269 } | |
270 formula <- formula(formula) | |
271 design <- model.matrix(formula) | |
272 for (i in 1:length(factorList)) { | |
273 colnames(design) <- gsub(factorList[i], "", colnames(design), fixed=TRUE) | |
274 } | |
275 | |
276 # Calculating normalising factor, estimating dispersion | |
277 data <- calcNormFactors(data, method=normOpt) | |
278 #data <- estimateDisp(data, design=design, robust=TRUE) | |
279 | |
280 # Generate contrasts information | |
281 contrasts <- makeContrasts(contrasts=contrastData, levels=design) | |
282 | |
283 # Name rows of factors according to their sample | |
284 row.names(factors) <- names(data$counts) | |
285 | |
286 ################################################################################ | |
287 ### Data Output | |
288 ################################################################################ | |
289 | |
290 # BCV Plot | |
291 #png(bcvOutPng, width=600, height=600) | |
292 #plotBCV(data, main="BCV Plot") | |
293 #imageData[1, ] <- c("BCV Plot", "bcvplot.png") | |
294 #invisible(dev.off()) | |
295 | |
296 #pdf(bcvOutPdf) | |
297 #plotBCV(data, main="BCV Plot") | |
298 #invisible(dev.off()) | |
299 | |
300 if (wantWeight) { | |
301 # Creating voom data object and plot | |
302 png(voomOutPng, width=1000, height=600) | |
303 vData <- voomWithQualityWeights(data, design=design, plot=TRUE) | |
304 imageData[1, ] <- c("Voom Plot", "voomplot.png") | |
305 invisible(dev.off()) | |
306 | |
307 pdf(voomOutPdf, width=14) | |
308 vData <- voomWithQualityWeights(data, design=design, plot=TRUE) | |
309 linkData[1, ] <- c("Voom Plot (.pdf)", "voomplot.pdf") | |
310 invisible(dev.off()) | |
311 | |
312 # Generating fit data and top table with weights | |
313 wts <- vData$weights | |
314 voomFit <- lmFit(vData, design, weights=wts) | |
315 | |
316 } else { | |
317 # Creating voom data object and plot | |
318 png(voomOutPng, width=600, height=600) | |
319 vData <- voom(data, design=design, plot=TRUE) | |
320 imageData[1, ] <- c("Voom Plot", "voomplot.png") | |
321 invisible(dev.off()) | |
322 | |
323 pdf(voomOutPdf) | |
324 vData <- voom(data, design=design, plot=TRUE) | |
325 linkData[1, ] <- c("Voom Plot (.pdf)", "voomplot.pdf") | |
326 invisible(dev.off()) | |
327 | |
328 # Generate voom fit | |
329 voomFit <- lmFit(vData, design) | |
330 | |
331 } | |
332 | |
333 # Fit linear model and estimate dispersion with eBayes | |
334 voomFit <- contrasts.fit(voomFit, contrasts) | |
335 voomFit <- eBayes(voomFit) | |
336 | |
337 # Plot MDS | |
338 labels <- names(counts) | |
339 png(mdsOutPng, width=600, height=600) | |
340 # Currently only using a single factor | |
341 plotMDS(vData, labels=labels, col=as.numeric(factors[, 1]), cex=0.8) | |
342 imgName <- "Voom Plot" | |
343 imgAddr <- "mdsplot.png" | |
344 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
345 invisible(dev.off()) | |
346 | |
347 pdf(mdsOutPdf) | |
348 plotMDS(vData, labels=labels, cex=0.5) | |
349 linkName <- paste0("MDS Plot (.pdf)") | |
350 linkAddr <- paste0("mdsplot.pdf") | |
351 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
352 invisible(dev.off()) | |
353 | |
354 | |
355 for (i in 1:length(contrastData)) { | |
356 | |
357 status = decideTests(voomFit[, i], adjust.method=pAdjOpt, p.value=pValReq, | |
358 lfc=lfcReq) | |
359 | |
360 sumStatus <- summary(status) | |
361 | |
362 # Collect counts for differential expression | |
363 upCount[i] <- sumStatus["1",] | |
364 downCount[i] <- sumStatus["-1",] | |
365 flatCount[i] <- sumStatus["0",] | |
366 | |
367 # Write top expressions table | |
368 top <- topTable(voomFit, coef=i, number=Inf, sort.by="P") | |
369 write.table(top, file=topOut[i], row.names=FALSE, sep="\t") | |
370 | |
371 linkName <- paste0("Top Differential Expressions(", contrastData[i], | |
372 ") (.tsv)") | |
373 linkAddr <- paste0("toptab(", contrastData[i], ").tsv") | |
374 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
375 | |
376 # Plot MA (log ratios vs mean average) using limma package on weighted data | |
377 pdf(maOutPdf[i]) | |
378 limma::plotMA(voomFit, status=status, coef=i, | |
379 main=paste("MA Plot:", unmake.names(contrastData[i])), | |
380 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | |
381 xlab="Average Expression", ylab="logFC") | |
382 | |
383 abline(h=0, col="grey", lty=2) | |
384 | |
385 linkName <- paste0("MA Plot(", contrastData[i], ")", " (.pdf)") | |
386 linkAddr <- paste0("maplot(", contrastData[i], ").pdf") | |
387 linkData <- rbind(linkData, c(linkName, linkAddr)) | |
388 invisible(dev.off()) | |
389 | |
390 png(maOutPng[i], height=600, width=600) | |
391 limma::plotMA(voomFit, status=status, coef=i, | |
392 main=paste("MA Plot:", unmake.names(contrastData[i])), | |
393 col=alpha(c("firebrick", "blue"), 0.4), values=c("1", "-1"), | |
394 xlab="Average Expression", ylab="logFC") | |
395 | |
396 abline(h=0, col="grey", lty=2) | |
397 | |
398 imgName <- paste0("MA Plot(", contrastData[i], ")") | |
399 imgAddr <- paste0("maplot(", contrastData[i], ").png") | |
400 imageData <- rbind(imageData, c(imgName, imgAddr)) | |
401 invisible(dev.off()) | |
402 } | |
403 sigDiff <- data.frame(Up=upCount, Flat=flatCount, Down=downCount) | |
404 row.names(sigDiff) <- contrastData | |
405 | |
406 # Save relevant items as rda object | |
407 if (wantRda) { | |
408 if (wantWeight) { | |
409 save(data, status, vData, labels, factors, wts, voomFit, top, contrasts, | |
410 design, | |
411 file=rdaOut, ascii=TRUE) | |
412 } else { | |
413 save(data, status, vData, labels, factors, voomFit, top, contrasts, design, | |
414 file=rdaOut, ascii=TRUE) | |
415 } | |
416 linkData <- rbind(linkData, c("RData (.rda)", "RData.rda")) | |
417 } | |
418 | |
419 # Record session info | |
420 writeLines(capture.output(sessionInfo()), sessionOut) | |
421 linkData <- rbind(linkData, c("Session Info", "session_info.txt")) | |
422 | |
423 # Record ending time and calculate total run time | |
424 timeEnd <- as.character(Sys.time()) | |
425 timeTaken <- capture.output(round(difftime(timeEnd,timeStart), digits=3)) | |
426 timeTaken <- gsub("Time difference of ", "", timeTaken, fixed=TRUE) | |
427 ################################################################################ | |
428 ### HTML Generation | |
429 ################################################################################ | |
430 | |
431 # Clear file | |
432 cat("", file=htmlPath) | |
433 | |
434 cata("<html>\n") | |
435 | |
436 cata("<body>\n") | |
437 cata("<h3>Limma Voom Analysis Output:</h3>\n") | |
438 cata("PDF copies of JPEGS available in 'Plots' section.<br />\n") | |
439 if (wantWeight) { | |
440 HtmlImage(imageData$Link[1], imageData$Label[1], width=1000) | |
441 } else { | |
442 HtmlImage(imageData$Link[1], imageData$Label[1]) | |
443 } | |
444 | |
445 for (i in 2:nrow(imageData)) { | |
446 HtmlImage(imageData$Link[i], imageData$Label[i]) | |
447 } | |
448 | |
449 cata("<h4>Differential Expression Counts:</h4>\n") | |
450 | |
451 cata("<table border=\"1\" cellpadding=\"4\">\n") | |
452 cata("<tr>\n") | |
453 TableItem() | |
454 for (i in colnames(sigDiff)) { | |
455 TableHeadItem(i) | |
456 } | |
457 cata("</tr>\n") | |
458 for (i in 1:nrow(sigDiff)) { | |
459 cata("<tr>\n") | |
460 TableHeadItem(unmake.names(row.names(sigDiff)[i])) | |
461 for (j in 1:ncol(sigDiff)) { | |
462 TableItem(as.character(sigDiff[i, j])) | |
463 } | |
464 cata("</tr>\n") | |
465 } | |
466 cata("</table>") | |
467 | |
468 cata("<h4>Plots:</h4>\n") | |
469 for (i in 1:nrow(linkData)) { | |
470 if (grepl(".pdf", linkData$Link[i])) { | |
471 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
472 } | |
473 } | |
474 | |
475 cata("<h4>Tables:</h4>\n") | |
476 for (i in 1:nrow(linkData)) { | |
477 if (grepl(".tsv", linkData$Link[i])) { | |
478 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
479 } | |
480 } | |
481 | |
482 if (wantRda) { | |
483 cata("<h4>R Data Object:</h4>\n") | |
484 for (i in 1:nrow(linkData)) { | |
485 if (grepl(".rda", linkData$Link[i])) { | |
486 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
487 } | |
488 } | |
489 } | |
490 | |
491 cata("<p>Alt-click links to download file.</p>\n") | |
492 cata("<p>Click floppy disc icon associated history item to download ") | |
493 cata("all files.</p>\n") | |
494 cata("<p>.tsv files can be viewed in Excel or any spreadsheet program.</p>\n") | |
495 | |
496 cata("<h4>Additional Information</h4>\n") | |
497 cata("<ul>\n") | |
498 if (cpmReq!=0 && sampleReq!=0) { | |
499 tempStr <- paste("Genes without more than", cpmReq, | |
500 "CPM in at least", sampleReq, "samples are insignificant", | |
501 "and filtered out.") | |
502 ListItem(tempStr) | |
503 filterProp <- round(filteredCount/preFilterCount*100, digits=2) | |
504 tempStr <- paste0(filteredCount, " of ", preFilterCount," (", filterProp, | |
505 "%) genes were filtered out for low expression.") | |
506 ListItem(tempStr) | |
507 } | |
508 ListItem(normOpt, " was the method used to normalise library sizes.") | |
509 if (wantWeight) { | |
510 ListItem("Weights were applied to samples.") | |
511 } else { | |
512 ListItem("Weights were not applied to samples.") | |
513 } | |
514 if (pAdjOpt!="none") { | |
515 if (pAdjOpt=="BH" || pAdjOpt=="BY") { | |
516 tempStr <- paste0("MA-Plot highlighted genes are significant at FDR ", | |
517 "of ", pValReq," and exhibit log2-fold-change of at ", | |
518 "least ", lfcReq, ".") | |
519 ListItem(tempStr) | |
520 } else if (pAdjOpt=="holm") { | |
521 tempStr <- paste0("MA-Plot highlighted genes are significant at adjusted ", | |
522 "p-value of ", pValReq," by the Holm(1979) ", | |
523 "method, and exhibit log2-fold-change of at least ", | |
524 lfcReq, ".") | |
525 ListItem(tempStr) | |
526 } | |
527 } else { | |
528 tempStr <- paste0("MA-Plot highlighted genes are significant at p-value ", | |
529 "of ", pValReq," and exhibit log2-fold-change of at ", | |
530 "least ", lfcReq, ".") | |
531 ListItem(tempStr) | |
532 } | |
533 cata("</ul>\n") | |
534 | |
535 cata("<h4>Summary of experimental data:</h4>\n") | |
536 | |
537 cata("<p>*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP*</p>\n") | |
538 | |
539 cata("<table border=\"1\" cellpadding=\"3\">\n") | |
540 cata("<tr>\n") | |
541 TableItem() | |
542 for (i in names(factors)) { | |
543 TableHeadItem(i) | |
544 } | |
545 cata("</tr>\n") | |
546 | |
547 for (i in 1:nrow(factors)) { | |
548 cata("<tr>\n") | |
549 TableHeadItem(row.names(factors)[i]) | |
550 for (j in ncol(factors)) { | |
551 TableItem(as.character(unmake.names(factors[i, j]))) | |
552 } | |
553 cata("</tr>\n") | |
554 } | |
555 cata("</table>") | |
556 | |
557 cit <- character() | |
558 link <- character() | |
559 link[1] <- paste0("<a href=\"", | |
560 "http://www.bioconductor.org/packages/release/bioc/", | |
561 "vignettes/limma/inst/doc/usersguide.pdf", | |
562 "\">", "limma User's Guide", "</a>.") | |
563 | |
564 link[2] <- paste0("<a href=\"", | |
565 "http://www.bioconductor.org/packages/release/bioc/", | |
566 "vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf", | |
567 "\">", "edgeR User's Guide", "</a>") | |
568 | |
569 cit[1] <- paste("Please cite the paper below for the limma software itself.", | |
570 "Please also try to cite the appropriate methodology articles", | |
571 "that describe the statistical methods implemented in limma,", | |
572 "depending on which limma functions you are using. The", | |
573 "methodology articles are listed in Section 2.1 of the", | |
574 link[1], | |
575 "Cite no. 3 only if sample weights were used.") | |
576 cit[2] <- paste("Smyth, GK (2005). Limma: linear models for microarray data.", | |
577 "In: 'Bioinformatics and Computational Biology Solutions using", | |
578 "R and Bioconductor'. R. Gentleman, V. Carey, S. doit,.", | |
579 "Irizarry, W. Huber (eds), Springer, New York, pages 397-420.") | |
580 cit[3] <- paste("Please cite the first paper for the software itself and the", | |
581 "other papers for the various original statistical methods", | |
582 "implemented in edgeR. See Section 1.2 in the", link[2], | |
583 "for more detail.") | |
584 cit[4] <- paste("Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a", | |
585 "Bioconductor package for differential expression analysis", | |
586 "of digital gene expression data. Bioinformatics 26, 139-140") | |
587 cit[5] <- paste("Robinson MD and Smyth GK (2007). Moderated statistical tests", | |
588 "for assessing differences in tag abundance. Bioinformatics", | |
589 "23, 2881-2887") | |
590 cit[6] <- paste("Robinson MD and Smyth GK (2008). Small-sample estimation of", | |
591 "negative binomial dispersion, with applications to SAGE data.", | |
592 "Biostatistics, 9, 321-332") | |
593 cit[7] <- paste("McCarthy DJ, Chen Y and Smyth GK (2012). Differential", | |
594 "expression analysis of multifactor RNA-Seq experiments with", | |
595 "respect to biological variation. Nucleic Acids Research 40,", | |
596 "4288-4297") | |
597 cit[8] <- paste("Law, CW, Chen, Y, Shi, W, and Smyth, GK (2014). Voom:", | |
598 "precision weights unlock linear model analysis tools for", | |
599 "RNA-seq read counts. Genome Biology 15, R29.") | |
600 cit[9] <- paste("Ritchie, M. E., Diyagama, D., Neilson, J., van Laar,", | |
601 "R., Dobrovic, A., Holloway, A., and Smyth, G. K. (2006).", | |
602 "Empirical array quality weights for microarray data.", | |
603 "BMC Bioinformatics 7, Article 261.") | |
604 cata("<h3>Citations</h3>\n") | |
605 | |
606 cata("<h4>limma</h4>\n") | |
607 cata(cit[1], "\n") | |
608 cata("<ol>\n") | |
609 ListItem(cit[2]) | |
610 ListItem(cit[8]) | |
611 ListItem(cit[9]) | |
612 cata("</ol>\n") | |
613 | |
614 cata("<h4>edgeR</h4>\n") | |
615 cata(cit[3], "\n") | |
616 cata("<ol>\n") | |
617 ListItem(cit[4]) | |
618 ListItem(cit[5]) | |
619 ListItem(cit[6]) | |
620 ListItem(cit[7]) | |
621 cata("</ol>\n") | |
622 | |
623 cata("<p>Report problems to: su.s@wehi.edu.au</p>\n") | |
624 | |
625 for (i in 1:nrow(linkData)) { | |
626 if (grepl("session_info", linkData$Link[i])) { | |
627 HtmlLink(linkData$Link[i], linkData$Label[i]) | |
628 } | |
629 } | |
630 | |
631 cata("<table border=\"0\">\n") | |
632 cata("<tr>\n") | |
633 TableItem("Task started at:"); TableItem(timeStart) | |
634 cata("</tr>\n") | |
635 cata("<tr>\n") | |
636 TableItem("Task ended at:"); TableItem(timeEnd) | |
637 cata("</tr>\n") | |
638 cata("<tr>\n") | |
639 TableItem("Task run time:"); TableItem(timeTaken) | |
640 cata("<tr>\n") | |
641 cata("</table>\n") | |
642 | |
643 cata("</body>\n") | |
644 cata("</html>") |