Mercurial > repos > shians > voom_rnaseq
diff diffexp.xml @ 0:7a80e9ec63cb
- Initial commit
author | shian_su <registertonysu@gmail.com> |
---|---|
date | Tue, 16 Dec 2014 14:38:15 +1100 |
parents | |
children | b2fe55fd0651 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/diffexp.xml Tue Dec 16 14:38:15 2014 +1100 @@ -0,0 +1,372 @@ +<tool id="diffexp" name="Voom Rnaseq" version="1.1.0"> + <description> + Perform differential expression analysis using pipeline based on the voom + function of the limma bioconductor package. This tool takes a count matrix + (tab separated) as input and produces a HTML report as output. + </description> + + <requirements> + <requirement type="R-module" version="3.5.27">edgeR</requirement> + <requirement type="R-module" version="3.18.13">limma</requirement> + </requirements> + + <stdio> + <exit_code range="1:" level="fatal" description="Tool exception" /> + </stdio> + + <command interpreter="Rscript"> + diffexp.R $counts + + #if $anno.annoOpt=="yes": + $geneanno + #else: + None + #end if + + $outFile + $outFile.files_path + "no" <!-- Disabled Rda option --> + $normalisationOption + $weightCond.weightOption + "$contrast" + + #if $filterCPM.filterLowCPM=="yes": + $filterCPM.cpmReq + $filterCPM.sampleReq + #else: + 0 + 0 + #end if + + #if $testOpt.wantOpt=="yes": + "$testOpt.pAdjust" + $testOpt.pVal + $testOpt.lfc + #else: + "BH" + 0.05 + 0 + #end if + + <!--*Code commented until solution for multiple factors is found* + #for $i, $fct in enumerate($factors): + $fct.factName::$fct.factLevel + #end for + --> + "$factName::$factLevel" + + </command> + + <inputs> + <param name="counts" type="data" format="tabular" label="Counts Data"/> + + <conditional name="anno"> + <param name="annoOpt" type="select" label="Use Gene Annotations?" + help="Annotations will be added to table of top differential + expressions to provide descriptions for each gene."> + <option value="no">No</option> + <option value="yes">Yes</option> + </param> + + <when value="yes"> + <param name="geneanno" type="data" format="tabular" + label="Gene Annotations"/> + </when> + </conditional> + + <!--*Code commented until solution for multiple factors is found* + <repeat name="factors" title="Factors" min="1" max="5" default="1"> + <param name="factName" type="text" label="Factor Name (No spaces)" + help="Eg. Genotype"/> + <param name="factLevel" type="text" size="100" + label="Factor Levels (No spaces)" + help="Eg. WT,WT,Mut,Mut,WT"/> + </repeat> + --> + + <param name="factName" type="text" label="Factor Name" + help="Eg. Genotype."/> + <param name="factLevel" type="text" size="100" + label="Factor Values" + help="Eg. WT,WT,Mut,Mut,WT... NOTE: Please ensure that the same + levels are typed identically when repeated, with all cases + matching."/> + + <param name="contrast" type="text" size="30" + label="Contrasts of interest" + help="Eg. Mut-WT,KD-Control."/> + + <conditional name="filterCPM"> + <param name="filterLowCPM" type="select" label="Filter Low CPM?" + help="Treat genes with very low expression as unexpressed and + filter out to speed up computation."> + <option value="yes" selected="True">Yes</option> + <option value="no">No</option> + </param> + + <when value="yes"> + <param name="cpmReq" type="float" value="0.5" min="0" + label="Minimum CPM"/> + + <param name="sampleReq" type="integer" value="1" min="0" + label="Minimum Samples" + help="Filter out all the genes that do not meet the minimum + CPM in at least this many samples."/> + </when> + + <when value="no"/> + + </conditional> + + <conditional name="weightCond"> + <param name="weightOption" type="select" label="Apply sample weights?" + display="radio" help="Apply weights if outliers are present."> + + <option value="no">No</option> + <option value="yes">Yes</option> + + </param> + </conditional> + + <param name="normalisationOption" type="select" + label="Normalisation Method"> + + <option value="TMM">TMM</option> + <option value="RLE">RLE</option> + <option value="upperquartile">Upperquartile</option> + <option value="none">None (Don't normalise)</option> + + </param> + + <conditional name="testOpt"> + <param name="wantOpt" type="select" label="Use Advanced Testing Options?" + help="Enable choices for p-value adjustment method, p-value threshold + and log2-fold-change threshold."> + <option value="no" selected="True">No</option> + <option value="yes">Yes</option> + </param> + + <when value="yes"> + <param name="pAdjust" type="select" label="P-Value Adjustment Method."> + <option value="BH">Benjamini and Hochberg (1995)</option> + <option value="BY">Benjamini and Yekutieli (2001)</option> + <option value="holm">Holm (1979)</option> + <option value="none">None</option> + </param> + + <param name="pVal" type="float" value="0.05" min="0" max="1" + label="Adjusted Threshold" + help="Genes below this threshold are considered significant and + highlighted in the MA plot. If either BH(1995) or + BY(2001) were selected then this value is a + false-discovery-rate control. If Holm(1979) was selected + then this is an adjusted p-value for family-wise error + rate."/> + + <param name="lfc" type="float" value="0" min="0" + label="Minimum log2-fold-change Required" + help="Genes above this threshold and below the p-value + threshold are considered significant and highlighted + in the MA plot."/> + </when> + + <when value="no"/> + + </conditional> + + <!-- <conditional name="wantRda"> + <param name="rdaOption" type="select" label="Output RData?" + display="radio" + help="Output all the data R used to construct the plots, + can be loaded into R."> + + <option value="no">No</option> + <option value="yes">Yes</option> + + </param> + </conditional> --> + </inputs> + + <outputs> + <data format="html" name="outFile" label="Voom Output"/> + </outputs> + + +<help> +.. class:: infomark + +**What it does** + +Given a matrix of counts and optional information about the genes, this tool +produces plots and tables useful in the analysis of differential gene +expression. + +.. class:: warningmark + +This tool is dependent on the R packages limma_ and edgeR_ as a part of the +bioconductor project. Please ensure that these packages are installed on the +server running this tool. + +----- + +**Counts Data:** +A matrix of expression level with rows corresponding to particular genes +and columns corresponding to the feature count in particular samples. +Values must be tab separated and there must be a row for the sample/column +labels and a column for the row/gene labels. + +Example:: + + "GeneID" "Smpl1" "Smpl2" "Smpl3" "Smpl4" "Smpl5" + "27395" 1699 1528 1463 1441 1495 + "18777" 1905 1744 1345 1291 1346 + "15037" 6 8 4 5 5 + "21399" 2099 1974 1574 1519 1654 + "58175" 356 312 347 361 346 + "10866" 2528 2438 1762 1942 2027 + "12421" 2182 2005 1786 1799 1858 + "24069" 3 4 2 3 3 + "31926" 1337 1380 1004 1102 1000 + "71096" 0 0 2 1 6 + "59014" 1466 1426 1296 1097 1175 + ... + +**Gene Annotations:** +Optional input for gene annotations, this can contain more +information about the genes than just an ID number. The annotations will +be avaiable in the top differential expression table. + +Example:: + + "GeneID" "Length" "EntrezID" "Symbols" "GeneName" "Chr" + "11287" "11287" 4681 "11287" "Pzp" "pregnancy zone protein" "6" + "11298" "11298" 1455 "11298" "Aanat" "arylalkylamine N-acetyltransferase" "11" + "11302" "11302" 5743 "11302" "Aatk" "apoptosis-associated tyrosine kinase" "11" + "11303" "11303" 10260 "11303" "Abca1" "ATP-binding cassette, sub-family A (ABC1), member 1" "4" + "11304" "11304" 7248 "11304" "Abca4" "ATP-binding cassette, sub-family A (ABC1), member 4" "3" + "11305" "11305" 8061 "11305" "Abca2" "ATP-binding cassette, sub-family A (ABC1), member 2" "2" + ... + +**Factor Name:** +The name of the factor being investigated. This tool currently assumes +that only one factor is of interest. + +**Factor Levels:** +The levels of the factor of interest, this must be entered in the same +order as the samples to which the levels correspond as listed in the +columns of the counts matrix. + +The values should be seperated by commas, and spaces must not be used. + +**Contrasts of Interest:** +The contrasts you wish to make between levels. + +Common contrasts would be a simple difference between two levels: "Mut-WT" +represents the difference between the mutant and wild type genotypes. + +The values should be seperated by commas and spaces must not be used. + +**Filter Low CPM:** +Option to ignore the genes that do not show significant levels of +expression, this filtering is dependent on two criteria: + + * **Minimum CPM:** This is the counts per million that a gene must have in at + least some specified number of samples. + + * **Minumum Samples:** This is the number of samples in which the CPM + requirement must be met in order for that gene to be acknowledged. + +Only genes that exhibit a CPM greater than the required amount in at least the +number of samples specified will be used for analysis. Care should be taken to +ensure that the sample requirement is appropriate. In the case of an experiment +with two experimental groups each with two members, if there is a change from +insignificant cpm to significant cpm but the sample requirement is set to 3, +then this will cause that gene to fail the criteria. When in doubt simply do not +filter. + + +**Normalisation Method:** +Option for using different methods to rescale the raw library +size. For more information, see calcNormFactor section in the edgeR_ user's +manual. + +**Apply Sample Weights:** +Option to downweight outlier samples such that their information is still +used in the statistical analysis but their impact is reduced. Use this +whenever significant outliers are present. The MDS plotting tool in this package +is useful for identifying outliers + +**Use Advanced Testing Options?:** +By default error rate for multiple testing is controlled using Benjamini and +Hochberg's false discovery rate control at a threshold value of 0.05. However +there are options to change this to custom values. + + * **P-Value Adjustment Method:** + Change the multiple testing control method, the options are BH(1995) and + BY(2001) which are both false discovery rate controls. There is also + Holm(1979) which is a method for family-wise error rate control. + + * **Adjusted Threshold:** + Set the threshold for the resulting value of the multiple testing control + method. Only observations whose statistic falls below this value is + considered significant, thus highlighted in the MA plot. + + * **Minimum log2-fold-change Required:** + In addition to meeting the requirement for the adjusted statistic for + multiple testing, the observation must have an absolute log2-fold-change + greater than this threshold to be considered significant, thus highlighted + in the MA plot. + +----- + +**Citations:** + +.. class:: infomark + +limma + +Please cite the paper below for the limma software itself. Please also try +to cite the appropriate methodology articles that describe the statistical +methods implemented in limma, depending on which limma functions you are +using. The methodology articles are listed in Section 2.1 of the limma +User's Guide. + + * Smyth, GK (2005). Limma: linear models for microarray data. In: + 'Bioinformatics and Computational Biology Solutions using R and + Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, + W. Huber (eds), Springer, New York, pages 397-420. + + * Law, CW, Chen, Y, Shi, W, and Smyth, GK (2014). Voom: + precision weights unlock linear model analysis tools for + RNA-seq read counts. Genome Biology 15, R29. + +.. class:: infomark + +edgeR + +Please cite the first paper for the software itself and the other papers for +the various original statistical methods implemented in edgeR. See +Section 1.2 in the User's Guide for more detail. + + * Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor + package for differential expression analysis of digital gene expression + data. Bioinformatics 26, 139-140 + + * Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing + differences in tag abundance. Bioinformatics 23, 2881-2887 + + * Robinson MD and Smyth GK (2008). Small-sample estimation of negative + binomial dispersion, with applications to SAGE data. + Biostatistics, 9, 321-332 + + * McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis + of multifactor RNA-Seq experiments with respect to biological variation. + Nucleic Acids Research 40, 4288-4297 + +Report problems to: su.s@wehi.edu.au + +.. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html +.. _limma: http://www.bioconductor.org/packages/release/bioc/html/limma.html + +</help> +</tool>