# HG changeset patch # User sigven # Date 1664292686 0 # Node ID 28d4e824d3d33902012a963f3e225d0879b3359b # Parent fb035154d720b5a719f1b2935fa2d565d7c9d809 Deleted selected files diff -r fb035154d720 -r 28d4e824d3d3 oncoenrichr_wrapper.xml --- a/oncoenrichr_wrapper.xml Thu Sep 22 11:35:13 2022 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,391 +0,0 @@ - - Cancer-dedicated gene set interpretation - - sigven/oncoenrichr:1.3.1 - - query_text.csv && - #set input_file = './query_text.csv' - #else if $query_set.query_choice.query_input == "file" - ln -s $query_set.query_choice.query_file "$query_set.query_choice.query_file.element_identifier" && - #set input_file = './' + str($query_set.query_choice.query_file.element_identifier) - #end if - - #set background_file = '' - #if $fun_enrich.custom_bgset.def_background - #if $fun_enrich.custom_bgset.bg_choice.bg_source == "text" - echo $fun_enrich.custom_bgset.bg_choice.bg_enrich_text | sed 's/__cn__/\n/g' > custom_bgset.csv && - #set background_file = './custom_bgset.csv' - #else if $fun_enrich.custom_bgset.bg_choice.bg_source == "file" and $fun_enrich.custom_bgset.bg_choice.bg_enrich_file - ln -s $fun_enrich.custom_bgset.bg_choice.bg_enrich_file background_text.csv && - #set background_file = './custom_bgset.csv' - #else - #set background_file = '' - #end if - #end if - - R -e 'suppressPackageStartupMessages(library(oncoEnrichR)); - suppressWarnings(load(system.file("internal_db", "oedb.rda", package = "oncoEnrichR"))); - gene_data <- read.csv("$input_file", stringsAsFactors = F, header = F); - oe_report <- oncoEnrichR::onco_enrich( - query = gene_data[[1]], - oeDB = oedb, - #if $query_set.query_id_type - query_id_type = "$query_set.query_id_type", - #end if - ignore_id_err = $query_set.ignore_id_err, - - #if $report_metadata.project_title - project_title = "$report_metadata.project_title", - #end if - #if $report_metadata.project_owner - project_owner = "$report_metadata.project_owner", - #end if - #if $report_metadata.project_description - project_description = "$report_metadata.project_description", - #end if - - show_enrichment = $modules.show_enrichment, - show_ppi = $modules.show_ppi, - show_disease = $modules.show_disease, - show_cancer_hallmarks = $modules.show_cancer_hallmarks, - show_drug = $modules.show_drug, - show_aberration = $modules.show_aberration, - show_coexpression = $modules.show_coexpression, - show_subcell_comp = $modules.show_subcell_comp, - show_complex = $modules.show_complex, - show_domain = $modules.show_domain, - show_fitness = $modules.show_fitness, - show_cell_tissue = $modules.show_cell_tissue, - show_ligand_receptor = $modules.show_ligand_receptor, - show_regulatory = $modules.show_regulatory, - show_prognostic = $modules.show_prognostic, - show_unknown_function = $modules.show_unknown_function, - show_synleth = $modules.show_synleth, - - #if $background_file - bgset = read.csv("$background_file", stringsAsFactors = F, header = F)[[1]], - #if $fun_enrich.custom_bgset.bg_enrich_id_type - bgset_id_type = "$fun_enrich.custom_bgset.bg_enrich_id_type", - #end if - #if $fun_enrich.custom_bgset.bg_enrich_description - bgset_description = "$fun_enrich.custom_bgset.bg_enrich_description", - #end if - #else - bgset = NULL, - #end if - - #if $fun_enrich.p_value_cutoff_enrichment - p_value_cutoff_enrichment = $fun_enrich.p_value_cutoff_enrichment, - #end if - #if $fun_enrich.p_value_adjustment_method - p_value_adjustment_method = "$fun_enrich.p_value_adjustment_method", - #end if - #if $fun_enrich.q_value_cutoff_enrichment - q_value_cutoff_enrichment = $fun_enrich.q_value_cutoff_enrichment, - #end if - #if $fun_enrich.min_geneset_size - min_geneset_size = $fun_enrich.min_geneset_size, - #end if - #if $fun_enrich.max_geneset_size - max_geneset_size = $fun_enrich.max_geneset_size, - #end if - - #if $protein_interactions.ppi_add_nodes - ppi_add_nodes = $protein_interactions.ppi_add_nodes, - #end if - #if $protein_interactions.ppi_score_threshold - ppi_score_threshold = $protein_interactions.ppi_score_threshold, - #end if - show_drugs_in_ppi = $protein_interactions.show_drugs_in_ppi, - ppi_node_shadow = $protein_interactions.ppi_node_shadow, - - #if $subcellular_compartments.min_subcellcomp_confidence - min_subcellcomp_confidence = $subcellular_compartments.min_subcellcomp_confidence, - #end if - #if $fitness.max_fitness_score - max_fitness_score = $fitness.max_fitness_score, - #end if - subcellcomp_show_cytosol = $subcellular_compartments.show_cytosol, - #if $disease.show_top_diseases_only - show_top_diseases_only = $disease.show_top_diseases_only, - #end if - - min_confidence_reg_interaction = "$regulatory.min_confidence_reg_interaction", - num_terms_enrichment_plot = $fun_enrich.num_terms_enrichment_plot, - simplify_go = $fun_enrich.simplify_go, - html_floating_toc = $report_metadata.html_floating_toc, - html_report_theme = "$report_metadata.html_report_theme", - galaxy = TRUE - ); - - oncoEnrichR::write(report = oe_report, oeDB = oedb, file = "$report1", format = "html", selfcontained_html = F, extra_files_path = "$report1.extra_files_path", overwrite = T, ignore_file_extension = T); - oncoEnrichR::write(report = oe_report, oeDB = oedb, file = "$report2", format = "excel", overwrite = T, ignore_file_extension = T)' 2>&1 - - ]]> - -
-
- - - - - - - - - - - - - - - - - - - - - - - -
- -
-
- - - - - - - - - - - - - - - - - - -
- -
-
- - - - - - - - - - - - - - - - - -
- -
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
-
- -
-
-
- - - - -
-
-
- - - - - - -
-
- -
- - -
-
- -
- -
- - - - - - - - - `_ - disease associations, drug-target associations, cancer hallmarks, and druggability/tractability rankings - -- `The Cancer Genome Atlas `_ - gene aberration frequencies and co-expression patterns in approximately 10,000 primary tumor samples - -- `The Human Protein Atlas `_ - expression data for healthy human tissues (`GTex `_)/cell types, and prognostic gene expression associations in cancer (`The Pathology Atlas `_) - -- `Molecular Signatures Database (MSigDB) `_ - collection of annotated (e.g. towards pathways) gene sets for enrichment/overrepresentation analysis. This includes gene sets from `Gene Ontology `_, `Reactome `_, `KEGG `_, `WikiPathways `_, `BIOCARTA `_, as well as curated `immunologic `_ and `cancer-specific `_ signatures. - -- `NetPath `_ - manually curated resource of signal transduction pathways in humans - -- `STRING `_ - protein-protein interaction database - -- `CellChatDB `_ - database on ligand-receptor interactions - -- `DoRothEA `_ - gene set resource containing signed transcription factor (TF) - target interactions - -- `CORUM `_ - protein complex database - -- `Compleat `_ - protein complex resource - -- `ComplexPortal `_ - manually curated, encyclopaedic resource of macromolecular complexes - -- `hu.MAP2 `_ - human protein complex map - -- `ComPPI `_ - subcellular compartment database - -- `CancerMine `_ - literature-mined resource on cancer drivers, oncogenes and tumor suppressor genes - -- `Network of Cancer Genes `_ - manually curated collection of cancer genes, healthy drivers and their properties - -- `Project Score `_ - database on the effects on cancer cell line viability elicited by CRISPR-Cas9 mediated gene activation - -- `Genetic determinants of survival in cancer `_ - resource on the prognostic impact of genetic aberrations (methylation, CNA, mutation, expression) in human cancers (TCGA) - -- `Predicted synthetic lethality interactions `_ - comprehensive prediction of synthetic lethality interactions in human cancer cell lines - -The contents of the gene set analysis report attempt to answer the following questions related to the query set: - -- Which diseases/tumor types are known to be associated with genes in the query set, and to what extent? Which genes are a classified as proto-oncogenes, tumor suppressors or cancer driver genes? - -- Which query genes have been linked (through literature) to the various hallmarks of cancer? - -- Which genes in the query set are poorly characterized or have an unknown function? - -- Which proteins in the query set can be targeted by inhibitors for diffferent cancer conditions (early and late clinical development phases)? What is the tractability/druggability status for other targets in the query set? - -- Which cancer-relevant protein complexes are involved for proteins in the query set? - -- Are there known cancer-relevant regulatory interactions (transcription factor (TF) - target) found in the query set? - -- Are there known ligand-receptor interactions in the query set? - -- Which subcellular compartments (nucleus, cytosol, plasma membrane etc.) are dominant localizations for members of the query set? - -- Are specific tissues or cell types enriched in the query set, considering healthy tissue/cell-type specific expression patterns (GTex/Human Protein Atlas) of query genes? - -- Which protein-protein interactions are known within the query set? Are there interactions between members of the query set and other cancer-relevant proteins (e.g. proto-oncogenes, tumor-suppressors or predicted cancer drivers)? Which proteins constitute hubs in the protein-protein interaction network? - -- Are there specific pathways, biological processes or molecular functions that are enriched within the query set, as compared to a reference/background set? - -- Which members of the query set are frequently mutated in tumor sample cohorts (TCGA - SNVs/InDels / homozygous deletions / copy number amplifications)? What are the most frequent recurrent somatic variants (SNVs/InDels) in the query set genes? - -- Which members of the query set are co-expressed (strong negative or positive correlations) with cancer-relevant genes (i.e. proto-oncogenes or tumor suppressors) in tumor sample cohorts (TCGA)? - -- Which members of the query set are associated with better/worse survival in different cancers, considering mutation, expression, methylation or copy number levels in tumors? - -- Which members of the query set are predicted as partners of synthetic lethality interactions? - -- Which members of the query set are associated with cellular loss-of-fitness in CRISPR/Cas9 whole-genome drop out screens of cancer cell lines (i.e. reduction of cell viability elicited by a gene inactivation)? Which genes should be prioritized considering genomic biomarkers and fitness scores in combination? - - -]]> - - - - - 10.48550/arXiv.2107.13247 - - -