comparison pyPRADA_1.2/make_intragenic_junctions.pl @ 0:acc2ca1a3ba4

Uploaded
author siyuan
date Thu, 20 Feb 2014 00:44:58 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:acc2ca1a3ba4
1 #!/usr/bin/perl
2 use strict;
3 use warnings;
4
5 ##################################
6 # make_intragenic_junctions.pl
7 #
8 # This is an extension of MFB's perl code make_exon_junctions.pl
9 # Generates "abnormal" junctions between exons of a gene
10 # In the code GeneA, GeneB should be input as same gene
11 #
12 # RV last modified 4/9/2013
13 ##################################
14
15 if ($#ARGV!=5) {die "usage is 'perl make_exon_junctions.pl GeneA GeneB ref.annotation ref.map ref.fasta junL > output'\n";}
16 my $geneA = shift;
17 my $geneB = shift;
18 my $annotations = shift;
19 my $map = shift;
20 my $fasta = shift;
21 my $overlap = shift;
22
23 # Get transcript Ensembl IDs and orientations for GeneA and GeneB
24
25 my @ensembA;
26 my @ensembB;
27 my @orientationA;
28 my @orientationB;
29 my @seqidA;
30 my @seqidB;
31
32 my $testerA=0; my $testerB=0;
33 open (ANN, "<$annotations") or die "can't open Ensembl annotations\n";
34 while (my $text = <ANN>) {
35 chomp $text;
36 my @line = split " ", $text;
37 if ($line[3] eq $geneA) {push @ensembA, $line[1]; push @orientationA, $line[4]; push @seqidA, $line[0]; $testerA++;}
38 if ($line[3] eq $geneB) {push @ensembB, $line[1]; push @orientationB, $line[4]; push @seqidB, $line[0]; $testerB++;}
39 }
40 close (ANN);
41 if ($testerA==0 || $testerB==0) {die "couldn't find one of the genes\n";}
42
43 # Get exon lengths for each transcript for GeneA and GeneB
44
45 my @exon_length_A;
46 my @exon_length_B;
47
48 my $chr_A;
49 my $chr_B;
50
51 my @exon_end_A;
52 my @exon_start_B;
53
54 open (MAP, "<$map") or die "can't open Ensembl map\n";
55 while (my $text = <MAP>) {
56 chomp $text;
57 my @line = split " ", $text;
58 my $ensID = pop (@line);
59 pop @line;
60 for (my $i=0; $i<=$#ensembA; $i++) {
61 if ($ensembA[$i] eq $ensID) {
62 $chr_A = $line[0];
63 my $num_exons = ($#line+1)/3;
64 for (my $exonA=0; $exonA<$num_exons; $exonA++) {
65 my $length = $line[3*$exonA + 2] - $line[3*$exonA + 1] + 1;
66 if ($orientationA[$i] == 1) {
67 push @{$exon_length_A[$i]}, $length;
68 push @{$exon_end_A[$i]}, $line[3*$exonA + 2];
69 }
70 else {
71 unshift @{$exon_length_A[$i]}, $length;
72 unshift @{$exon_end_A[$i]}, $line[3*$exonA + 1];
73 }
74 }
75 }
76 }
77 for (my $i=0; $i<=$#ensembB; $i++) {
78 if ($ensembB[$i] eq $ensID) {
79 $chr_B = $line[0];
80 my $num_exons = ($#line+1)/3;
81 for (my $exonB=0; $exonB<$num_exons; $exonB++) {
82 my $length = $line[3*$exonB + 2] - $line[3*$exonB + 1] + 1;
83 if ($orientationB[$i] == 1) {
84 push @{$exon_length_B[$i]}, $length;
85 push @{$exon_start_B[$i]}, $line[3*$exonB + 1];
86 }
87 else {
88 unshift @{$exon_length_B[$i]}, $length;
89 unshift @{$exon_start_B[$i]}, $line[3*$exonB + 2];
90 }
91 }
92 }
93 }
94 }
95 close (MAP);
96
97 # Get sequence for each transcript (take reverse complement when necessary)
98
99 my @sequenceA;
100 my @sequenceB;
101
102 open (FHSEQ, "<$fasta") or die "can't open Ensembl map\n";
103 my $top = <FHSEQ>;
104 my $readID = 0;
105 while (my $text = <FHSEQ>) {
106 chomp $text;
107 if ($text =~ ">") { #WTG changed to update for specific ENST ID number which might not be in the same order in the fasta as in the annotation
108 $text=~ s/>//;
109 $readID=$text;
110 }
111 else {
112 for (my $i=0; $i<=$#seqidA; $i++) {
113 if ($seqidA[$i] == $readID) {
114 if ($sequenceA[$i]) {
115 $sequenceA[$i] = $sequenceA[$i].$text;
116 }
117 else {$sequenceA[$i] = $text;}
118 }
119 }
120 for (my $i=0; $i<=$#seqidB; $i++) {
121 if ($seqidB[$i] == $readID) {
122 if ($sequenceB[$i]) {
123 $sequenceB[$i] = $sequenceB[$i].$text;
124 }
125 else {$sequenceB[$i] = $text;}
126 }
127 }
128 }
129 }
130 close (FHSEQ);
131
132 for (my $txtA=0; $txtA<=$#sequenceA; $txtA++) {
133 if ($orientationA[$txtA]==-1) {
134 $sequenceA[$txtA] = rc($sequenceA[$txtA]);
135 }
136 }
137 for (my $txtB=0; $txtB<=$#sequenceB; $txtB++) {
138 if ($orientationB[$txtB]==-1) {
139 $sequenceB[$txtB] = rc($sequenceB[$txtB]);
140 }
141 }
142
143
144 # Print sequences for each hypothetical exon junction (for each pair of transcripts)
145 my %junctions;
146 my %junctions_known;
147 for (my $txtA=0; $txtA<=$#sequenceA; $txtA++) {
148 for (my $txtB=0; $txtB<=$#sequenceB; $txtB++) {
149
150 my $num_exon_A = $#{$exon_length_A[$txtA]}+1;
151 my $num_exon_B = $#{$exon_length_B[$txtB]}+1;
152
153 my $running_pos_A=0;
154 for (my $exonA=0; $exonA<$num_exon_A; $exonA++) {
155 $running_pos_A += $exon_length_A[$txtA][$exonA];
156 my $junction_start = $exon_end_A[$txtA][$exonA];
157 my $start = $running_pos_A - $overlap;
158 my $seqA;
159 if ($start >= 0) {
160 $seqA = substr($sequenceA[$txtA], $start, $overlap);
161 }
162 else {
163 $start=0;
164 my $tmp_length = $running_pos_A;
165 $seqA = substr($sequenceA[$txtA], $start, $tmp_length);
166 }
167 my $running_pos_B=0;
168 for (my $exonB=0; $exonB<$num_exon_B; $exonB++) {
169 my $junction_end = $exon_start_B[$txtB][$exonB];
170 my $start = $running_pos_B;
171 my $seqB = substr($sequenceB[$txtB], $start, $overlap);
172 $running_pos_B += $exon_length_B[$txtB][$exonB];
173 my $key= ">chr$chr_A\.$junction_start\.chr$chr_B\.$junction_end\n";
174 my $junction = $seqA.$seqB;
175 #print ">chr$chr_A\.$junction_start\.chr$chr_B\.$junction_end\n";
176 #print "$junction\n";
177 $junctions{$key}=$junction;
178 }
179 }
180 }
181
182 }
183
184 for (my $txtA=0; $txtA<=$#sequenceA; $txtA++) {
185 my $num_exon_A = $#{$exon_length_A[$txtA]};
186
187 my $running_pos_A=0;
188 for (my $exonA=0; $exonA<$num_exon_A; $exonA++) {
189 $running_pos_A += $exon_length_A[$txtA][$exonA];
190 my $junction_start = $exon_end_A[$txtA][$exonA];
191 my $start = $running_pos_A - $overlap;
192 my $seqA;
193 if ($start >= 0) {
194 $seqA = substr($sequenceA[$txtA], $start, $overlap);
195 }
196 else {
197 $start=0;
198 my $tmp_length = $running_pos_A;
199 $seqA = substr($sequenceA[$txtA], $start, $tmp_length);
200 }
201 my $running_pos_B=0;
202 my $junction_end = $exon_start_B[$txtA][$exonA+1];
203 my $start1 = $running_pos_B;
204 my $seqB = substr($sequenceA[$txtA], $start1, $overlap);
205 #$running_pos_B += $exon_length_A[$txtA][$exonA+1];
206 my $key= ">chr$chr_A\.$junction_start\.chr$chr_A\.$junction_end\n";
207 my $junction = $seqA.$seqB;
208 #print "$junction\n";
209 $junctions_known{$key}=$junction;
210
211 }
212 }
213
214 my @disc;
215 my %count = ();
216 foreach my $element (keys (%junctions_known), keys (%junctions)) { $count{$element}++ }
217 foreach my $element (keys %count) {
218 if($count{$element} == 1){
219 #print $element;
220 push @disc , $element;
221 }
222 }
223
224 foreach my $junc(@disc){
225 if($junctions_known{$junc}){print $junc,$junctions_known{$junc},"\n";
226 }
227 else {print $junc,$junctions{$junc},"\n";
228 }
229
230 }
231
232
233 ##################
234 ##################
235 ### SUBROUTINES
236 ##################
237 ##################
238
239 sub rc{
240 my $dna = shift;
241 my $revcom = reverse($dna);
242 $revcom =~ tr/ACGTacgt/TGCAtgca/;
243 return $revcom;
244 }