Mercurial > repos > siyuan > prada
comparison pyPRADA_1.2/tools/samtools-0.1.16/bcftools/prob1.c @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:acc2ca1a3ba4 |
---|---|
1 #include <math.h> | |
2 #include <stdlib.h> | |
3 #include <string.h> | |
4 #include <stdio.h> | |
5 #include <errno.h> | |
6 #include <assert.h> | |
7 #include "prob1.h" | |
8 | |
9 #include "kseq.h" | |
10 KSTREAM_INIT(gzFile, gzread, 16384) | |
11 | |
12 #define MC_MAX_EM_ITER 16 | |
13 #define MC_EM_EPS 1e-5 | |
14 #define MC_DEF_INDEL 0.15 | |
15 | |
16 unsigned char seq_nt4_table[256] = { | |
17 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
18 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
19 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 /*'-'*/, 4, 4, | |
20 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
21 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, | |
22 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
23 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, | |
24 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
25 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
26 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
27 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
28 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
29 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
30 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
31 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
32 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 | |
33 }; | |
34 | |
35 struct __bcf_p1aux_t { | |
36 int n, M, n1, is_indel; | |
37 uint8_t *ploidy; // haploid or diploid ONLY | |
38 double *q2p, *pdg; // pdg -> P(D|g) | |
39 double *phi, *phi_indel; | |
40 double *z, *zswap; // aux for afs | |
41 double *z1, *z2, *phi1, *phi2; // only calculated when n1 is set | |
42 double **hg; // hypergeometric distribution | |
43 double *lf; // log factorial | |
44 double t, t1, t2; | |
45 double *afs, *afs1; // afs: accumulative AFS; afs1: site posterior distribution | |
46 const uint8_t *PL; // point to PL | |
47 int PL_len; | |
48 }; | |
49 | |
50 void bcf_p1_indel_prior(bcf_p1aux_t *ma, double x) | |
51 { | |
52 int i; | |
53 for (i = 0; i < ma->M; ++i) | |
54 ma->phi_indel[i] = ma->phi[i] * x; | |
55 ma->phi_indel[ma->M] = 1. - ma->phi[ma->M] * x; | |
56 } | |
57 | |
58 static void init_prior(int type, double theta, int M, double *phi) | |
59 { | |
60 int i; | |
61 if (type == MC_PTYPE_COND2) { | |
62 for (i = 0; i <= M; ++i) | |
63 phi[i] = 2. * (i + 1) / (M + 1) / (M + 2); | |
64 } else if (type == MC_PTYPE_FLAT) { | |
65 for (i = 0; i <= M; ++i) | |
66 phi[i] = 1. / (M + 1); | |
67 } else { | |
68 double sum; | |
69 for (i = 0, sum = 0.; i < M; ++i) | |
70 sum += (phi[i] = theta / (M - i)); | |
71 phi[M] = 1. - sum; | |
72 } | |
73 } | |
74 | |
75 void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta) | |
76 { | |
77 init_prior(type, theta, ma->M, ma->phi); | |
78 bcf_p1_indel_prior(ma, MC_DEF_INDEL); | |
79 } | |
80 | |
81 void bcf_p1_init_subprior(bcf_p1aux_t *ma, int type, double theta) | |
82 { | |
83 if (ma->n1 <= 0 || ma->n1 >= ma->M) return; | |
84 init_prior(type, theta, 2*ma->n1, ma->phi1); | |
85 init_prior(type, theta, 2*(ma->n - ma->n1), ma->phi2); | |
86 } | |
87 | |
88 int bcf_p1_read_prior(bcf_p1aux_t *ma, const char *fn) | |
89 { | |
90 gzFile fp; | |
91 kstring_t s; | |
92 kstream_t *ks; | |
93 long double sum; | |
94 int dret, k; | |
95 memset(&s, 0, sizeof(kstring_t)); | |
96 fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r"); | |
97 ks = ks_init(fp); | |
98 memset(ma->phi, 0, sizeof(double) * (ma->M + 1)); | |
99 while (ks_getuntil(ks, '\n', &s, &dret) >= 0) { | |
100 if (strstr(s.s, "[afs] ") == s.s) { | |
101 char *p = s.s + 6; | |
102 for (k = 0; k <= ma->M; ++k) { | |
103 int x; | |
104 double y; | |
105 x = strtol(p, &p, 10); | |
106 if (x != k && (errno == EINVAL || errno == ERANGE)) return -1; | |
107 ++p; | |
108 y = strtod(p, &p); | |
109 if (y == 0. && (errno == EINVAL || errno == ERANGE)) return -1; | |
110 ma->phi[ma->M - k] += y; | |
111 } | |
112 } | |
113 } | |
114 ks_destroy(ks); | |
115 gzclose(fp); | |
116 free(s.s); | |
117 for (sum = 0., k = 0; k <= ma->M; ++k) sum += ma->phi[k]; | |
118 fprintf(stderr, "[prior]"); | |
119 for (k = 0; k <= ma->M; ++k) ma->phi[k] /= sum; | |
120 for (k = 0; k <= ma->M; ++k) fprintf(stderr, " %d:%.3lg", k, ma->phi[ma->M - k]); | |
121 fputc('\n', stderr); | |
122 for (sum = 0., k = 1; k < ma->M; ++k) sum += ma->phi[ma->M - k] * (2.* k * (ma->M - k) / ma->M / (ma->M - 1)); | |
123 fprintf(stderr, "[%s] heterozygosity=%lf, ", __func__, (double)sum); | |
124 for (sum = 0., k = 1; k <= ma->M; ++k) sum += k * ma->phi[ma->M - k] / ma->M; | |
125 fprintf(stderr, "theta=%lf\n", (double)sum); | |
126 bcf_p1_indel_prior(ma, MC_DEF_INDEL); | |
127 return 0; | |
128 } | |
129 | |
130 bcf_p1aux_t *bcf_p1_init(int n, uint8_t *ploidy) | |
131 { | |
132 bcf_p1aux_t *ma; | |
133 int i; | |
134 ma = calloc(1, sizeof(bcf_p1aux_t)); | |
135 ma->n1 = -1; | |
136 ma->n = n; ma->M = 2 * n; | |
137 if (ploidy) { | |
138 ma->ploidy = malloc(n); | |
139 memcpy(ma->ploidy, ploidy, n); | |
140 for (i = 0, ma->M = 0; i < n; ++i) ma->M += ploidy[i]; | |
141 if (ma->M == 2 * n) { | |
142 free(ma->ploidy); | |
143 ma->ploidy = 0; | |
144 } | |
145 } | |
146 ma->q2p = calloc(256, sizeof(double)); | |
147 ma->pdg = calloc(3 * ma->n, sizeof(double)); | |
148 ma->phi = calloc(ma->M + 1, sizeof(double)); | |
149 ma->phi_indel = calloc(ma->M + 1, sizeof(double)); | |
150 ma->phi1 = calloc(ma->M + 1, sizeof(double)); | |
151 ma->phi2 = calloc(ma->M + 1, sizeof(double)); | |
152 ma->z = calloc(ma->M + 1, sizeof(double)); | |
153 ma->zswap = calloc(ma->M + 1, sizeof(double)); | |
154 ma->z1 = calloc(ma->M + 1, sizeof(double)); // actually we do not need this large | |
155 ma->z2 = calloc(ma->M + 1, sizeof(double)); | |
156 ma->afs = calloc(ma->M + 1, sizeof(double)); | |
157 ma->afs1 = calloc(ma->M + 1, sizeof(double)); | |
158 ma->lf = calloc(ma->M + 1, sizeof(double)); | |
159 for (i = 0; i < 256; ++i) | |
160 ma->q2p[i] = pow(10., -i / 10.); | |
161 for (i = 0; i <= ma->M; ++i) ma->lf[i] = lgamma(i + 1); | |
162 bcf_p1_init_prior(ma, MC_PTYPE_FULL, 1e-3); // the simplest prior | |
163 return ma; | |
164 } | |
165 | |
166 int bcf_p1_set_n1(bcf_p1aux_t *b, int n1) | |
167 { | |
168 if (n1 == 0 || n1 >= b->n) return -1; | |
169 if (b->M != b->n * 2) { | |
170 fprintf(stderr, "[%s] unable to set `n1' when there are haploid samples.\n", __func__); | |
171 return -1; | |
172 } | |
173 b->n1 = n1; | |
174 return 0; | |
175 } | |
176 | |
177 void bcf_p1_destroy(bcf_p1aux_t *ma) | |
178 { | |
179 if (ma) { | |
180 int k; | |
181 free(ma->lf); | |
182 if (ma->hg && ma->n1 > 0) { | |
183 for (k = 0; k <= 2*ma->n1; ++k) free(ma->hg[k]); | |
184 free(ma->hg); | |
185 } | |
186 free(ma->ploidy); free(ma->q2p); free(ma->pdg); | |
187 free(ma->phi); free(ma->phi_indel); free(ma->phi1); free(ma->phi2); | |
188 free(ma->z); free(ma->zswap); free(ma->z1); free(ma->z2); | |
189 free(ma->afs); free(ma->afs1); | |
190 free(ma); | |
191 } | |
192 } | |
193 | |
194 static int cal_pdg(const bcf1_t *b, bcf_p1aux_t *ma) | |
195 { | |
196 int i, j; | |
197 long *p, tmp; | |
198 p = alloca(b->n_alleles * sizeof(long)); | |
199 memset(p, 0, sizeof(long) * b->n_alleles); | |
200 for (j = 0; j < ma->n; ++j) { | |
201 const uint8_t *pi = ma->PL + j * ma->PL_len; | |
202 double *pdg = ma->pdg + j * 3; | |
203 pdg[0] = ma->q2p[pi[2]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]]; | |
204 for (i = 0; i < b->n_alleles; ++i) | |
205 p[i] += (int)pi[(i+1)*(i+2)/2-1]; | |
206 } | |
207 for (i = 0; i < b->n_alleles; ++i) p[i] = p[i]<<4 | i; | |
208 for (i = 1; i < b->n_alleles; ++i) // insertion sort | |
209 for (j = i; j > 0 && p[j] < p[j-1]; --j) | |
210 tmp = p[j], p[j] = p[j-1], p[j-1] = tmp; | |
211 for (i = b->n_alleles - 1; i >= 0; --i) | |
212 if ((p[i]&0xf) == 0) break; | |
213 return i; | |
214 } | |
215 | |
216 int bcf_p1_call_gt(const bcf_p1aux_t *ma, double f0, int k) | |
217 { | |
218 double sum, g[3]; | |
219 double max, f3[3], *pdg = ma->pdg + k * 3; | |
220 int q, i, max_i, ploidy; | |
221 ploidy = ma->ploidy? ma->ploidy[k] : 2; | |
222 if (ploidy == 2) { | |
223 f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0; | |
224 } else { | |
225 f3[0] = 1. - f0; f3[1] = 0; f3[2] = f0; | |
226 } | |
227 for (i = 0, sum = 0.; i < 3; ++i) | |
228 sum += (g[i] = pdg[i] * f3[i]); | |
229 for (i = 0, max = -1., max_i = 0; i < 3; ++i) { | |
230 g[i] /= sum; | |
231 if (g[i] > max) max = g[i], max_i = i; | |
232 } | |
233 max = 1. - max; | |
234 if (max < 1e-308) max = 1e-308; | |
235 q = (int)(-4.343 * log(max) + .499); | |
236 if (q > 99) q = 99; | |
237 return q<<2|max_i; | |
238 } | |
239 | |
240 #define TINY 1e-20 | |
241 | |
242 static void mc_cal_y_core(bcf_p1aux_t *ma, int beg) | |
243 { | |
244 double *z[2], *tmp, *pdg; | |
245 int _j, last_min, last_max; | |
246 assert(beg == 0 || ma->M == ma->n*2); | |
247 z[0] = ma->z; | |
248 z[1] = ma->zswap; | |
249 pdg = ma->pdg; | |
250 memset(z[0], 0, sizeof(double) * (ma->M + 1)); | |
251 memset(z[1], 0, sizeof(double) * (ma->M + 1)); | |
252 z[0][0] = 1.; | |
253 last_min = last_max = 0; | |
254 ma->t = 0.; | |
255 if (ma->M == ma->n * 2) { | |
256 int M = 0; | |
257 for (_j = beg; _j < ma->n; ++_j) { | |
258 int k, j = _j - beg, _min = last_min, _max = last_max, M0; | |
259 double p[3], sum; | |
260 M0 = M; M += 2; | |
261 pdg = ma->pdg + _j * 3; | |
262 p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2]; | |
263 for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; | |
264 for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; | |
265 _max += 2; | |
266 if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k]; | |
267 if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1]; | |
268 for (k = _min < 2? 2 : _min; k <= _max; ++k) | |
269 z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2]; | |
270 for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; | |
271 ma->t += log(sum / (M * (M - 1.))); | |
272 for (k = _min; k <= _max; ++k) z[1][k] /= sum; | |
273 if (_min >= 1) z[1][_min-1] = 0.; | |
274 if (_min >= 2) z[1][_min-2] = 0.; | |
275 if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; | |
276 if (_j == ma->n1 - 1) { // set pop1; ma->n1==-1 when unset | |
277 ma->t1 = ma->t; | |
278 memcpy(ma->z1, z[1], sizeof(double) * (ma->n1 * 2 + 1)); | |
279 } | |
280 tmp = z[0]; z[0] = z[1]; z[1] = tmp; | |
281 last_min = _min; last_max = _max; | |
282 } | |
283 //for (_j = 0; _j < last_min; ++_j) z[0][_j] = 0.; // TODO: are these necessary? | |
284 //for (_j = last_max + 1; _j < ma->M; ++_j) z[0][_j] = 0.; | |
285 } else { // this block is very similar to the block above; these two might be merged in future | |
286 int j, M = 0; | |
287 for (j = 0; j < ma->n; ++j) { | |
288 int k, M0, _min = last_min, _max = last_max; | |
289 double p[3], sum; | |
290 pdg = ma->pdg + j * 3; | |
291 for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; | |
292 for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; | |
293 M0 = M; | |
294 M += ma->ploidy[j]; | |
295 if (ma->ploidy[j] == 1) { | |
296 p[0] = pdg[0]; p[1] = pdg[2]; | |
297 _max++; | |
298 if (_min == 0) k = 0, z[1][k] = (M0+1-k) * p[0] * z[0][k]; | |
299 for (k = _min < 1? 1 : _min; k <= _max; ++k) | |
300 z[1][k] = (M0+1-k) * p[0] * z[0][k] + k * p[1] * z[0][k-1]; | |
301 for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; | |
302 ma->t += log(sum / M); | |
303 for (k = _min; k <= _max; ++k) z[1][k] /= sum; | |
304 if (_min >= 1) z[1][_min-1] = 0.; | |
305 if (j < ma->n - 1) z[1][_max+1] = 0.; | |
306 } else if (ma->ploidy[j] == 2) { | |
307 p[0] = pdg[0]; p[1] = 2 * pdg[1]; p[2] = pdg[2]; | |
308 _max += 2; | |
309 if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k]; | |
310 if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1]; | |
311 for (k = _min < 2? 2 : _min; k <= _max; ++k) | |
312 z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2]; | |
313 for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; | |
314 ma->t += log(sum / (M * (M - 1.))); | |
315 for (k = _min; k <= _max; ++k) z[1][k] /= sum; | |
316 if (_min >= 1) z[1][_min-1] = 0.; | |
317 if (_min >= 2) z[1][_min-2] = 0.; | |
318 if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; | |
319 } | |
320 tmp = z[0]; z[0] = z[1]; z[1] = tmp; | |
321 last_min = _min; last_max = _max; | |
322 } | |
323 } | |
324 if (z[0] != ma->z) memcpy(ma->z, z[0], sizeof(double) * (ma->M + 1)); | |
325 } | |
326 | |
327 static void mc_cal_y(bcf_p1aux_t *ma) | |
328 { | |
329 if (ma->n1 > 0 && ma->n1 < ma->n && ma->M == ma->n * 2) { // NB: ma->n1 is ineffective when there are haploid samples | |
330 int k; | |
331 long double x; | |
332 memset(ma->z1, 0, sizeof(double) * (2 * ma->n1 + 1)); | |
333 memset(ma->z2, 0, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); | |
334 ma->t1 = ma->t2 = 0.; | |
335 mc_cal_y_core(ma, ma->n1); | |
336 ma->t2 = ma->t; | |
337 memcpy(ma->z2, ma->z, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); | |
338 mc_cal_y_core(ma, 0); | |
339 // rescale z | |
340 x = expl(ma->t - (ma->t1 + ma->t2)); | |
341 for (k = 0; k <= ma->M; ++k) ma->z[k] *= x; | |
342 } else mc_cal_y_core(ma, 0); | |
343 } | |
344 | |
345 #define CONTRAST_TINY 1e-30 | |
346 | |
347 extern double kf_gammaq(double s, double z); // incomplete gamma function for chi^2 test | |
348 | |
349 static inline double chi2_test(int a, int b, int c, int d) | |
350 { | |
351 double x, z; | |
352 x = (double)(a+b) * (c+d) * (b+d) * (a+c); | |
353 if (x == 0.) return 1; | |
354 z = a * d - b * c; | |
355 return kf_gammaq(.5, .5 * z * z * (a+b+c+d) / x); | |
356 } | |
357 | |
358 // chi2=(a+b+c+d)(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)] | |
359 static inline double contrast2_aux(const bcf_p1aux_t *p1, double sum, int k1, int k2, double x[3]) | |
360 { | |
361 double p = p1->phi[k1+k2] * p1->z1[k1] * p1->z2[k2] / sum * p1->hg[k1][k2]; | |
362 int n1 = p1->n1, n2 = p1->n - p1->n1; | |
363 if (p < CONTRAST_TINY) return -1; | |
364 if (.5*k1/n1 < .5*k2/n2) x[1] += p; | |
365 else if (.5*k1/n1 > .5*k2/n2) x[2] += p; | |
366 else x[0] += p; | |
367 return p * chi2_test(k1, k2, (n1<<1) - k1, (n2<<1) - k2); | |
368 } | |
369 | |
370 static double contrast2(bcf_p1aux_t *p1, double ret[3]) | |
371 { | |
372 int k, k1, k2, k10, k20, n1, n2; | |
373 double sum; | |
374 // get n1 and n2 | |
375 n1 = p1->n1; n2 = p1->n - p1->n1; | |
376 if (n1 <= 0 || n2 <= 0) return 0.; | |
377 if (p1->hg == 0) { // initialize the hypergeometric distribution | |
378 /* NB: the hg matrix may take a lot of memory when there are many samples. There is a way | |
379 to avoid precomputing this matrix, but it is slower and quite intricate. The following | |
380 computation in this block can be accelerated with a similar strategy, but perhaps this | |
381 is not a serious concern for now. */ | |
382 double tmp = lgamma(2*(n1+n2)+1) - (lgamma(2*n1+1) + lgamma(2*n2+1)); | |
383 p1->hg = calloc(2*n1+1, sizeof(void*)); | |
384 for (k1 = 0; k1 <= 2*n1; ++k1) { | |
385 p1->hg[k1] = calloc(2*n2+1, sizeof(double)); | |
386 for (k2 = 0; k2 <= 2*n2; ++k2) | |
387 p1->hg[k1][k2] = exp(lgamma(k1+k2+1) + lgamma(p1->M-k1-k2+1) - (lgamma(k1+1) + lgamma(k2+1) + lgamma(2*n1-k1+1) + lgamma(2*n2-k2+1) + tmp)); | |
388 } | |
389 } | |
390 { // compute | |
391 long double suml = 0; | |
392 for (k = 0; k <= p1->M; ++k) suml += p1->phi[k] * p1->z[k]; | |
393 sum = suml; | |
394 } | |
395 { // get the max k1 and k2 | |
396 double max; | |
397 int max_k; | |
398 for (k = 0, max = 0, max_k = -1; k <= 2*n1; ++k) { | |
399 double x = p1->phi1[k] * p1->z1[k]; | |
400 if (x > max) max = x, max_k = k; | |
401 } | |
402 k10 = max_k; | |
403 for (k = 0, max = 0, max_k = -1; k <= 2*n2; ++k) { | |
404 double x = p1->phi2[k] * p1->z2[k]; | |
405 if (x > max) max = x, max_k = k; | |
406 } | |
407 k20 = max_k; | |
408 } | |
409 { // We can do the following with one nested loop, but that is an O(N^2) thing. The following code block is much faster for large N. | |
410 double x[3], y; | |
411 long double z = 0., L[2]; | |
412 x[0] = x[1] = x[2] = 0; L[0] = L[1] = 0; | |
413 for (k1 = k10; k1 >= 0; --k1) { | |
414 for (k2 = k20; k2 >= 0; --k2) { | |
415 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
416 else z += y; | |
417 } | |
418 for (k2 = k20 + 1; k2 <= 2*n2; ++k2) { | |
419 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
420 else z += y; | |
421 } | |
422 } | |
423 ret[0] = x[0]; ret[1] = x[1]; ret[2] = x[2]; | |
424 x[0] = x[1] = x[2] = 0; | |
425 for (k1 = k10 + 1; k1 <= 2*n1; ++k1) { | |
426 for (k2 = k20; k2 >= 0; --k2) { | |
427 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
428 else z += y; | |
429 } | |
430 for (k2 = k20 + 1; k2 <= 2*n2; ++k2) { | |
431 if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; | |
432 else z += y; | |
433 } | |
434 } | |
435 ret[0] += x[0]; ret[1] += x[1]; ret[2] += x[2]; | |
436 if (ret[0] + ret[1] + ret[2] < 0.95) { // in case of bad things happened | |
437 ret[0] = ret[1] = ret[2] = 0; L[0] = L[1] = 0; | |
438 for (k1 = 0, z = 0.; k1 <= 2*n1; ++k1) | |
439 for (k2 = 0; k2 <= 2*n2; ++k2) | |
440 if ((y = contrast2_aux(p1, sum, k1, k2, ret)) >= 0) z += y; | |
441 if (ret[0] + ret[1] + ret[2] < 0.95) // It seems that this may be caused by floating point errors. I do not really understand why... | |
442 z = 1.0, ret[0] = ret[1] = ret[2] = 1./3; | |
443 } | |
444 return (double)z; | |
445 } | |
446 } | |
447 | |
448 static double mc_cal_afs(bcf_p1aux_t *ma, double *p_ref_folded, double *p_var_folded) | |
449 { | |
450 int k; | |
451 long double sum = 0., sum2; | |
452 double *phi = ma->is_indel? ma->phi_indel : ma->phi; | |
453 memset(ma->afs1, 0, sizeof(double) * (ma->M + 1)); | |
454 mc_cal_y(ma); | |
455 // compute AFS | |
456 for (k = 0, sum = 0.; k <= ma->M; ++k) | |
457 sum += (long double)phi[k] * ma->z[k]; | |
458 for (k = 0; k <= ma->M; ++k) { | |
459 ma->afs1[k] = phi[k] * ma->z[k] / sum; | |
460 if (isnan(ma->afs1[k]) || isinf(ma->afs1[k])) return -1.; | |
461 } | |
462 // compute folded variant probability | |
463 for (k = 0, sum = 0.; k <= ma->M; ++k) | |
464 sum += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; | |
465 for (k = 1, sum2 = 0.; k < ma->M; ++k) | |
466 sum2 += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; | |
467 *p_var_folded = sum2 / sum; | |
468 *p_ref_folded = (phi[k] + phi[ma->M - k]) / 2. * (ma->z[ma->M] + ma->z[0]) / sum; | |
469 // the expected frequency | |
470 for (k = 0, sum = 0.; k <= ma->M; ++k) { | |
471 ma->afs[k] += ma->afs1[k]; | |
472 sum += k * ma->afs1[k]; | |
473 } | |
474 return sum / ma->M; | |
475 } | |
476 | |
477 int bcf_p1_cal(const bcf1_t *b, int do_contrast, bcf_p1aux_t *ma, bcf_p1rst_t *rst) | |
478 { | |
479 int i, k; | |
480 long double sum = 0.; | |
481 ma->is_indel = bcf_is_indel(b); | |
482 rst->perm_rank = -1; | |
483 // set PL and PL_len | |
484 for (i = 0; i < b->n_gi; ++i) { | |
485 if (b->gi[i].fmt == bcf_str2int("PL", 2)) { | |
486 ma->PL = (uint8_t*)b->gi[i].data; | |
487 ma->PL_len = b->gi[i].len; | |
488 break; | |
489 } | |
490 } | |
491 if (i == b->n_gi) return -1; // no PL | |
492 if (b->n_alleles < 2) return -1; // FIXME: find a better solution | |
493 // | |
494 rst->rank0 = cal_pdg(b, ma); | |
495 rst->f_exp = mc_cal_afs(ma, &rst->p_ref_folded, &rst->p_var_folded); | |
496 rst->p_ref = ma->afs1[ma->M]; | |
497 for (k = 0, sum = 0.; k < ma->M; ++k) | |
498 sum += ma->afs1[k]; | |
499 rst->p_var = (double)sum; | |
500 // calculate f_flat and f_em | |
501 for (k = 0, sum = 0.; k <= ma->M; ++k) | |
502 sum += (long double)ma->z[k]; | |
503 rst->f_flat = 0.; | |
504 for (k = 0; k <= ma->M; ++k) { | |
505 double p = ma->z[k] / sum; | |
506 rst->f_flat += k * p; | |
507 } | |
508 rst->f_flat /= ma->M; | |
509 { // estimate equal-tail credible interval (95% level) | |
510 int l, h; | |
511 double p; | |
512 for (i = 0, p = 0.; i < ma->M; ++i) | |
513 if (p + ma->afs1[i] > 0.025) break; | |
514 else p += ma->afs1[i]; | |
515 l = i; | |
516 for (i = ma->M-1, p = 0.; i >= 0; --i) | |
517 if (p + ma->afs1[i] > 0.025) break; | |
518 else p += ma->afs1[i]; | |
519 h = i; | |
520 rst->cil = (double)(ma->M - h) / ma->M; rst->cih = (double)(ma->M - l) / ma->M; | |
521 } | |
522 rst->cmp[0] = rst->cmp[1] = rst->cmp[2] = rst->p_chi2 = -1.0; | |
523 if (do_contrast && rst->p_var > 0.5) // skip contrast2() if the locus is a strong non-variant | |
524 rst->p_chi2 = contrast2(ma, rst->cmp); | |
525 return 0; | |
526 } | |
527 | |
528 void bcf_p1_dump_afs(bcf_p1aux_t *ma) | |
529 { | |
530 int k; | |
531 fprintf(stderr, "[afs]"); | |
532 for (k = 0; k <= ma->M; ++k) | |
533 fprintf(stderr, " %d:%.3lf", k, ma->afs[ma->M - k]); | |
534 fprintf(stderr, "\n"); | |
535 memset(ma->afs, 0, sizeof(double) * (ma->M + 1)); | |
536 } |