Mercurial > repos > siyuan > prada
diff pyPRADA_1.2/tools/samtools-0.1.16/bcftools/prob1.c @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pyPRADA_1.2/tools/samtools-0.1.16/bcftools/prob1.c Thu Feb 20 00:44:58 2014 -0500 @@ -0,0 +1,536 @@ +#include <math.h> +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <errno.h> +#include <assert.h> +#include "prob1.h" + +#include "kseq.h" +KSTREAM_INIT(gzFile, gzread, 16384) + +#define MC_MAX_EM_ITER 16 +#define MC_EM_EPS 1e-5 +#define MC_DEF_INDEL 0.15 + +unsigned char seq_nt4_table[256] = { + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 /*'-'*/, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 +}; + +struct __bcf_p1aux_t { + int n, M, n1, is_indel; + uint8_t *ploidy; // haploid or diploid ONLY + double *q2p, *pdg; // pdg -> P(D|g) + double *phi, *phi_indel; + double *z, *zswap; // aux for afs + double *z1, *z2, *phi1, *phi2; // only calculated when n1 is set + double **hg; // hypergeometric distribution + double *lf; // log factorial + double t, t1, t2; + double *afs, *afs1; // afs: accumulative AFS; afs1: site posterior distribution + const uint8_t *PL; // point to PL + int PL_len; +}; + +void bcf_p1_indel_prior(bcf_p1aux_t *ma, double x) +{ + int i; + for (i = 0; i < ma->M; ++i) + ma->phi_indel[i] = ma->phi[i] * x; + ma->phi_indel[ma->M] = 1. - ma->phi[ma->M] * x; +} + +static void init_prior(int type, double theta, int M, double *phi) +{ + int i; + if (type == MC_PTYPE_COND2) { + for (i = 0; i <= M; ++i) + phi[i] = 2. * (i + 1) / (M + 1) / (M + 2); + } else if (type == MC_PTYPE_FLAT) { + for (i = 0; i <= M; ++i) + phi[i] = 1. / (M + 1); + } else { + double sum; + for (i = 0, sum = 0.; i < M; ++i) + sum += (phi[i] = theta / (M - i)); + phi[M] = 1. - sum; + } +} + +void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta) +{ + init_prior(type, theta, ma->M, ma->phi); + bcf_p1_indel_prior(ma, MC_DEF_INDEL); +} + +void bcf_p1_init_subprior(bcf_p1aux_t *ma, int type, double theta) +{ + if (ma->n1 <= 0 || ma->n1 >= ma->M) return; + init_prior(type, theta, 2*ma->n1, ma->phi1); + init_prior(type, theta, 2*(ma->n - ma->n1), ma->phi2); +} + +int bcf_p1_read_prior(bcf_p1aux_t *ma, const char *fn) +{ + gzFile fp; + kstring_t s; + kstream_t *ks; + long double sum; + int dret, k; + memset(&s, 0, sizeof(kstring_t)); + fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r"); + ks = ks_init(fp); + memset(ma->phi, 0, sizeof(double) * (ma->M + 1)); + while (ks_getuntil(ks, '\n', &s, &dret) >= 0) { + if (strstr(s.s, "[afs] ") == s.s) { + char *p = s.s + 6; + for (k = 0; k <= ma->M; ++k) { + int x; + double y; + x = strtol(p, &p, 10); + if (x != k && (errno == EINVAL || errno == ERANGE)) return -1; + ++p; + y = strtod(p, &p); + if (y == 0. && (errno == EINVAL || errno == ERANGE)) return -1; + ma->phi[ma->M - k] += y; + } + } + } + ks_destroy(ks); + gzclose(fp); + free(s.s); + for (sum = 0., k = 0; k <= ma->M; ++k) sum += ma->phi[k]; + fprintf(stderr, "[prior]"); + for (k = 0; k <= ma->M; ++k) ma->phi[k] /= sum; + for (k = 0; k <= ma->M; ++k) fprintf(stderr, " %d:%.3lg", k, ma->phi[ma->M - k]); + fputc('\n', stderr); + for (sum = 0., k = 1; k < ma->M; ++k) sum += ma->phi[ma->M - k] * (2.* k * (ma->M - k) / ma->M / (ma->M - 1)); + fprintf(stderr, "[%s] heterozygosity=%lf, ", __func__, (double)sum); + for (sum = 0., k = 1; k <= ma->M; ++k) sum += k * ma->phi[ma->M - k] / ma->M; + fprintf(stderr, "theta=%lf\n", (double)sum); + bcf_p1_indel_prior(ma, MC_DEF_INDEL); + return 0; +} + +bcf_p1aux_t *bcf_p1_init(int n, uint8_t *ploidy) +{ + bcf_p1aux_t *ma; + int i; + ma = calloc(1, sizeof(bcf_p1aux_t)); + ma->n1 = -1; + ma->n = n; ma->M = 2 * n; + if (ploidy) { + ma->ploidy = malloc(n); + memcpy(ma->ploidy, ploidy, n); + for (i = 0, ma->M = 0; i < n; ++i) ma->M += ploidy[i]; + if (ma->M == 2 * n) { + free(ma->ploidy); + ma->ploidy = 0; + } + } + ma->q2p = calloc(256, sizeof(double)); + ma->pdg = calloc(3 * ma->n, sizeof(double)); + ma->phi = calloc(ma->M + 1, sizeof(double)); + ma->phi_indel = calloc(ma->M + 1, sizeof(double)); + ma->phi1 = calloc(ma->M + 1, sizeof(double)); + ma->phi2 = calloc(ma->M + 1, sizeof(double)); + ma->z = calloc(ma->M + 1, sizeof(double)); + ma->zswap = calloc(ma->M + 1, sizeof(double)); + ma->z1 = calloc(ma->M + 1, sizeof(double)); // actually we do not need this large + ma->z2 = calloc(ma->M + 1, sizeof(double)); + ma->afs = calloc(ma->M + 1, sizeof(double)); + ma->afs1 = calloc(ma->M + 1, sizeof(double)); + ma->lf = calloc(ma->M + 1, sizeof(double)); + for (i = 0; i < 256; ++i) + ma->q2p[i] = pow(10., -i / 10.); + for (i = 0; i <= ma->M; ++i) ma->lf[i] = lgamma(i + 1); + bcf_p1_init_prior(ma, MC_PTYPE_FULL, 1e-3); // the simplest prior + return ma; +} + +int bcf_p1_set_n1(bcf_p1aux_t *b, int n1) +{ + if (n1 == 0 || n1 >= b->n) return -1; + if (b->M != b->n * 2) { + fprintf(stderr, "[%s] unable to set `n1' when there are haploid samples.\n", __func__); + return -1; + } + b->n1 = n1; + return 0; +} + +void bcf_p1_destroy(bcf_p1aux_t *ma) +{ + if (ma) { + int k; + free(ma->lf); + if (ma->hg && ma->n1 > 0) { + for (k = 0; k <= 2*ma->n1; ++k) free(ma->hg[k]); + free(ma->hg); + } + free(ma->ploidy); free(ma->q2p); free(ma->pdg); + free(ma->phi); free(ma->phi_indel); free(ma->phi1); free(ma->phi2); + free(ma->z); free(ma->zswap); free(ma->z1); free(ma->z2); + free(ma->afs); free(ma->afs1); + free(ma); + } +} + +static int cal_pdg(const bcf1_t *b, bcf_p1aux_t *ma) +{ + int i, j; + long *p, tmp; + p = alloca(b->n_alleles * sizeof(long)); + memset(p, 0, sizeof(long) * b->n_alleles); + for (j = 0; j < ma->n; ++j) { + const uint8_t *pi = ma->PL + j * ma->PL_len; + double *pdg = ma->pdg + j * 3; + pdg[0] = ma->q2p[pi[2]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]]; + for (i = 0; i < b->n_alleles; ++i) + p[i] += (int)pi[(i+1)*(i+2)/2-1]; + } + for (i = 0; i < b->n_alleles; ++i) p[i] = p[i]<<4 | i; + for (i = 1; i < b->n_alleles; ++i) // insertion sort + for (j = i; j > 0 && p[j] < p[j-1]; --j) + tmp = p[j], p[j] = p[j-1], p[j-1] = tmp; + for (i = b->n_alleles - 1; i >= 0; --i) + if ((p[i]&0xf) == 0) break; + return i; +} + +int bcf_p1_call_gt(const bcf_p1aux_t *ma, double f0, int k) +{ + double sum, g[3]; + double max, f3[3], *pdg = ma->pdg + k * 3; + int q, i, max_i, ploidy; + ploidy = ma->ploidy? ma->ploidy[k] : 2; + if (ploidy == 2) { + f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0; + } else { + f3[0] = 1. - f0; f3[1] = 0; f3[2] = f0; + } + for (i = 0, sum = 0.; i < 3; ++i) + sum += (g[i] = pdg[i] * f3[i]); + for (i = 0, max = -1., max_i = 0; i < 3; ++i) { + g[i] /= sum; + if (g[i] > max) max = g[i], max_i = i; + } + max = 1. - max; + if (max < 1e-308) max = 1e-308; + q = (int)(-4.343 * log(max) + .499); + if (q > 99) q = 99; + return q<<2|max_i; +} + +#define TINY 1e-20 + +static void mc_cal_y_core(bcf_p1aux_t *ma, int beg) +{ + double *z[2], *tmp, *pdg; + int _j, last_min, last_max; + assert(beg == 0 || ma->M == ma->n*2); + z[0] = ma->z; + z[1] = ma->zswap; + pdg = ma->pdg; + memset(z[0], 0, sizeof(double) * (ma->M + 1)); + memset(z[1], 0, sizeof(double) * (ma->M + 1)); + z[0][0] = 1.; + last_min = last_max = 0; + ma->t = 0.; + if (ma->M == ma->n * 2) { + int M = 0; + for (_j = beg; _j < ma->n; ++_j) { + int k, j = _j - beg, _min = last_min, _max = last_max, M0; + double p[3], sum; + M0 = M; M += 2; + pdg = ma->pdg + _j * 3; + p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2]; + for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; + for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; + _max += 2; + if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k]; + if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1]; + for (k = _min < 2? 2 : _min; k <= _max; ++k) + z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2]; + for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; + ma->t += log(sum / (M * (M - 1.))); + for (k = _min; k <= _max; ++k) z[1][k] /= sum; + if (_min >= 1) z[1][_min-1] = 0.; + if (_min >= 2) z[1][_min-2] = 0.; + if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; + if (_j == ma->n1 - 1) { // set pop1; ma->n1==-1 when unset + ma->t1 = ma->t; + memcpy(ma->z1, z[1], sizeof(double) * (ma->n1 * 2 + 1)); + } + tmp = z[0]; z[0] = z[1]; z[1] = tmp; + last_min = _min; last_max = _max; + } + //for (_j = 0; _j < last_min; ++_j) z[0][_j] = 0.; // TODO: are these necessary? + //for (_j = last_max + 1; _j < ma->M; ++_j) z[0][_j] = 0.; + } else { // this block is very similar to the block above; these two might be merged in future + int j, M = 0; + for (j = 0; j < ma->n; ++j) { + int k, M0, _min = last_min, _max = last_max; + double p[3], sum; + pdg = ma->pdg + j * 3; + for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.; + for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.; + M0 = M; + M += ma->ploidy[j]; + if (ma->ploidy[j] == 1) { + p[0] = pdg[0]; p[1] = pdg[2]; + _max++; + if (_min == 0) k = 0, z[1][k] = (M0+1-k) * p[0] * z[0][k]; + for (k = _min < 1? 1 : _min; k <= _max; ++k) + z[1][k] = (M0+1-k) * p[0] * z[0][k] + k * p[1] * z[0][k-1]; + for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; + ma->t += log(sum / M); + for (k = _min; k <= _max; ++k) z[1][k] /= sum; + if (_min >= 1) z[1][_min-1] = 0.; + if (j < ma->n - 1) z[1][_max+1] = 0.; + } else if (ma->ploidy[j] == 2) { + p[0] = pdg[0]; p[1] = 2 * pdg[1]; p[2] = pdg[2]; + _max += 2; + if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k]; + if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1]; + for (k = _min < 2? 2 : _min; k <= _max; ++k) + z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2]; + for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k]; + ma->t += log(sum / (M * (M - 1.))); + for (k = _min; k <= _max; ++k) z[1][k] /= sum; + if (_min >= 1) z[1][_min-1] = 0.; + if (_min >= 2) z[1][_min-2] = 0.; + if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.; + } + tmp = z[0]; z[0] = z[1]; z[1] = tmp; + last_min = _min; last_max = _max; + } + } + if (z[0] != ma->z) memcpy(ma->z, z[0], sizeof(double) * (ma->M + 1)); +} + +static void mc_cal_y(bcf_p1aux_t *ma) +{ + if (ma->n1 > 0 && ma->n1 < ma->n && ma->M == ma->n * 2) { // NB: ma->n1 is ineffective when there are haploid samples + int k; + long double x; + memset(ma->z1, 0, sizeof(double) * (2 * ma->n1 + 1)); + memset(ma->z2, 0, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); + ma->t1 = ma->t2 = 0.; + mc_cal_y_core(ma, ma->n1); + ma->t2 = ma->t; + memcpy(ma->z2, ma->z, sizeof(double) * (2 * (ma->n - ma->n1) + 1)); + mc_cal_y_core(ma, 0); + // rescale z + x = expl(ma->t - (ma->t1 + ma->t2)); + for (k = 0; k <= ma->M; ++k) ma->z[k] *= x; + } else mc_cal_y_core(ma, 0); +} + +#define CONTRAST_TINY 1e-30 + +extern double kf_gammaq(double s, double z); // incomplete gamma function for chi^2 test + +static inline double chi2_test(int a, int b, int c, int d) +{ + double x, z; + x = (double)(a+b) * (c+d) * (b+d) * (a+c); + if (x == 0.) return 1; + z = a * d - b * c; + return kf_gammaq(.5, .5 * z * z * (a+b+c+d) / x); +} + +// chi2=(a+b+c+d)(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)] +static inline double contrast2_aux(const bcf_p1aux_t *p1, double sum, int k1, int k2, double x[3]) +{ + double p = p1->phi[k1+k2] * p1->z1[k1] * p1->z2[k2] / sum * p1->hg[k1][k2]; + int n1 = p1->n1, n2 = p1->n - p1->n1; + if (p < CONTRAST_TINY) return -1; + if (.5*k1/n1 < .5*k2/n2) x[1] += p; + else if (.5*k1/n1 > .5*k2/n2) x[2] += p; + else x[0] += p; + return p * chi2_test(k1, k2, (n1<<1) - k1, (n2<<1) - k2); +} + +static double contrast2(bcf_p1aux_t *p1, double ret[3]) +{ + int k, k1, k2, k10, k20, n1, n2; + double sum; + // get n1 and n2 + n1 = p1->n1; n2 = p1->n - p1->n1; + if (n1 <= 0 || n2 <= 0) return 0.; + if (p1->hg == 0) { // initialize the hypergeometric distribution + /* NB: the hg matrix may take a lot of memory when there are many samples. There is a way + to avoid precomputing this matrix, but it is slower and quite intricate. The following + computation in this block can be accelerated with a similar strategy, but perhaps this + is not a serious concern for now. */ + double tmp = lgamma(2*(n1+n2)+1) - (lgamma(2*n1+1) + lgamma(2*n2+1)); + p1->hg = calloc(2*n1+1, sizeof(void*)); + for (k1 = 0; k1 <= 2*n1; ++k1) { + p1->hg[k1] = calloc(2*n2+1, sizeof(double)); + for (k2 = 0; k2 <= 2*n2; ++k2) + p1->hg[k1][k2] = exp(lgamma(k1+k2+1) + lgamma(p1->M-k1-k2+1) - (lgamma(k1+1) + lgamma(k2+1) + lgamma(2*n1-k1+1) + lgamma(2*n2-k2+1) + tmp)); + } + } + { // compute + long double suml = 0; + for (k = 0; k <= p1->M; ++k) suml += p1->phi[k] * p1->z[k]; + sum = suml; + } + { // get the max k1 and k2 + double max; + int max_k; + for (k = 0, max = 0, max_k = -1; k <= 2*n1; ++k) { + double x = p1->phi1[k] * p1->z1[k]; + if (x > max) max = x, max_k = k; + } + k10 = max_k; + for (k = 0, max = 0, max_k = -1; k <= 2*n2; ++k) { + double x = p1->phi2[k] * p1->z2[k]; + if (x > max) max = x, max_k = k; + } + k20 = max_k; + } + { // We can do the following with one nested loop, but that is an O(N^2) thing. The following code block is much faster for large N. + double x[3], y; + long double z = 0., L[2]; + x[0] = x[1] = x[2] = 0; L[0] = L[1] = 0; + for (k1 = k10; k1 >= 0; --k1) { + for (k2 = k20; k2 >= 0; --k2) { + if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; + else z += y; + } + for (k2 = k20 + 1; k2 <= 2*n2; ++k2) { + if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; + else z += y; + } + } + ret[0] = x[0]; ret[1] = x[1]; ret[2] = x[2]; + x[0] = x[1] = x[2] = 0; + for (k1 = k10 + 1; k1 <= 2*n1; ++k1) { + for (k2 = k20; k2 >= 0; --k2) { + if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; + else z += y; + } + for (k2 = k20 + 1; k2 <= 2*n2; ++k2) { + if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break; + else z += y; + } + } + ret[0] += x[0]; ret[1] += x[1]; ret[2] += x[2]; + if (ret[0] + ret[1] + ret[2] < 0.95) { // in case of bad things happened + ret[0] = ret[1] = ret[2] = 0; L[0] = L[1] = 0; + for (k1 = 0, z = 0.; k1 <= 2*n1; ++k1) + for (k2 = 0; k2 <= 2*n2; ++k2) + if ((y = contrast2_aux(p1, sum, k1, k2, ret)) >= 0) z += y; + if (ret[0] + ret[1] + ret[2] < 0.95) // It seems that this may be caused by floating point errors. I do not really understand why... + z = 1.0, ret[0] = ret[1] = ret[2] = 1./3; + } + return (double)z; + } +} + +static double mc_cal_afs(bcf_p1aux_t *ma, double *p_ref_folded, double *p_var_folded) +{ + int k; + long double sum = 0., sum2; + double *phi = ma->is_indel? ma->phi_indel : ma->phi; + memset(ma->afs1, 0, sizeof(double) * (ma->M + 1)); + mc_cal_y(ma); + // compute AFS + for (k = 0, sum = 0.; k <= ma->M; ++k) + sum += (long double)phi[k] * ma->z[k]; + for (k = 0; k <= ma->M; ++k) { + ma->afs1[k] = phi[k] * ma->z[k] / sum; + if (isnan(ma->afs1[k]) || isinf(ma->afs1[k])) return -1.; + } + // compute folded variant probability + for (k = 0, sum = 0.; k <= ma->M; ++k) + sum += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; + for (k = 1, sum2 = 0.; k < ma->M; ++k) + sum2 += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k]; + *p_var_folded = sum2 / sum; + *p_ref_folded = (phi[k] + phi[ma->M - k]) / 2. * (ma->z[ma->M] + ma->z[0]) / sum; + // the expected frequency + for (k = 0, sum = 0.; k <= ma->M; ++k) { + ma->afs[k] += ma->afs1[k]; + sum += k * ma->afs1[k]; + } + return sum / ma->M; +} + +int bcf_p1_cal(const bcf1_t *b, int do_contrast, bcf_p1aux_t *ma, bcf_p1rst_t *rst) +{ + int i, k; + long double sum = 0.; + ma->is_indel = bcf_is_indel(b); + rst->perm_rank = -1; + // set PL and PL_len + for (i = 0; i < b->n_gi; ++i) { + if (b->gi[i].fmt == bcf_str2int("PL", 2)) { + ma->PL = (uint8_t*)b->gi[i].data; + ma->PL_len = b->gi[i].len; + break; + } + } + if (i == b->n_gi) return -1; // no PL + if (b->n_alleles < 2) return -1; // FIXME: find a better solution + // + rst->rank0 = cal_pdg(b, ma); + rst->f_exp = mc_cal_afs(ma, &rst->p_ref_folded, &rst->p_var_folded); + rst->p_ref = ma->afs1[ma->M]; + for (k = 0, sum = 0.; k < ma->M; ++k) + sum += ma->afs1[k]; + rst->p_var = (double)sum; + // calculate f_flat and f_em + for (k = 0, sum = 0.; k <= ma->M; ++k) + sum += (long double)ma->z[k]; + rst->f_flat = 0.; + for (k = 0; k <= ma->M; ++k) { + double p = ma->z[k] / sum; + rst->f_flat += k * p; + } + rst->f_flat /= ma->M; + { // estimate equal-tail credible interval (95% level) + int l, h; + double p; + for (i = 0, p = 0.; i < ma->M; ++i) + if (p + ma->afs1[i] > 0.025) break; + else p += ma->afs1[i]; + l = i; + for (i = ma->M-1, p = 0.; i >= 0; --i) + if (p + ma->afs1[i] > 0.025) break; + else p += ma->afs1[i]; + h = i; + rst->cil = (double)(ma->M - h) / ma->M; rst->cih = (double)(ma->M - l) / ma->M; + } + rst->cmp[0] = rst->cmp[1] = rst->cmp[2] = rst->p_chi2 = -1.0; + if (do_contrast && rst->p_var > 0.5) // skip contrast2() if the locus is a strong non-variant + rst->p_chi2 = contrast2(ma, rst->cmp); + return 0; +} + +void bcf_p1_dump_afs(bcf_p1aux_t *ma) +{ + int k; + fprintf(stderr, "[afs]"); + for (k = 0; k <= ma->M; ++k) + fprintf(stderr, " %d:%.3lf", k, ma->afs[ma->M - k]); + fprintf(stderr, "\n"); + memset(ma->afs, 0, sizeof(double) * (ma->M + 1)); +}