Mercurial > repos > siyuan > prada
view pyPRADA_1.2/prada-fusion @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children | f17965495ec9 |
line wrap: on
line source
#!/usr/bin/env python #PRADA: Pipeline for RnAseq Data Analysis #Fusion detection module, algorithm published by Michael Berger et al (Genome Res, 2010) at Broad Institute. #Implemented by Siyuan Zheng, Wandaliz Torres-Garcia and Rahul Vegesna. #Copy Right: The Univ of Texas MD Anderson Cancer Center, Department of Bioinformatics and Computational Biology #Contact: Roel Verhaak (rverhaak@mdanderson.org) #Citation: to be added #Tested with Python v2.6 and v2.7 #The program requires NM tag and high quality mapping reads with mapping score more than -minmapq. #Last modified: 04/11/2013 ###################################################################################### import sys import time import os import os.path import subprocess import operator import pysam import bioclass import gfclass import ioprada import privutils from Bio import SeqIO,Seq ###################################################################################### args=sys.argv help_menu='''\nPipeline for RNAseq Data Analaysis - fusion detection (PRADA). **Command**: prada-fusion -bam XX.bam -conf xx.txt -tag XX -mm 1 -junL XX -minmapq 30 -outdir ./ **Parameters**: -h print help message -bam input BAM file, must has a .bam suffix. BAM is the output from PRADA preprocess module. -conf config file for references and parameters. Use conf.txt in py-PRADA installation folder if none specified. -tag a tag to describe the sample, used to name output files. Default is ''. -mm number of mismatches allowed in discordant pairs and fusion spanning reads.Default is 1. -junL length of sequences taken from EACH side of exons when making hypothetical junctions. No default. -minmapq minimum read mapping quality to be considered as fusion evidences. Default is 30. -outdir output directory. -v print version ''' if '-h' in args or '-help' in args or len(args)==1: print help_menu sys.exit(0) if '-v' in args: import version print version.version sys.exit(0) if '-bam' not in args: sys.exit('ERROR: BAM file needed') i=args.index('-bam') bampath=args[i+1] bampath=os.path.abspath(bampath) bam=os.path.basename(bampath) if bam[-4:] != '.bam': sys.exit('ERROR: BAM file must have suffix .bam') #Mismatch allowed. This filter is applied at the very end of the pipeline. #I strongly suggest 1. We also record how many junction spanning reads (JSRs) are perfect matched. if '-mm' not in args: mm=1 else: i=args.index('-mm') mm=int(args[i+1]) #junL should be less than the read length in the dataset. I suggest it to be read_length*0.8 if '-junL' not in args: sys.exit('ERROR: junL must be specified') i=args.index('-junL') overlap=int(args[i+1]) #minimum mapping quality for reads as fusion evidences if '-minmapq' not in args: minmapq=30 else: i=args.index('-minmapq') minmapq=int(args[i+1]) if '-outdir' not in args: outpath=os.path.abspath('./') else: i=args.index('-outdir') outpath=os.path.abspath(args[i+1]) if os.path.exists(outpath): print 'WARNING: outdir %s exists'%outpath else: os.mkdir(outpath) if '-tag' not in args: docstring='prada' else: i=args.index('-tag') docstring=args[i+1] #by default, search conf.txt in the prada folder prada_path=os.path.dirname(os.path.abspath(__file__)) #path to find libraries and executives. ref_search_path=[prada_path,os.getcwd()] #search path for conf file if not specified in command line if '-conf' in args: i=args.index('-ref') reffile=args[i+1] if os.path.exists(reffile): pass else: for pth in ref_search_path: new_reffile='%s/%s'%(pth, os.path.basename(reffile)) if os.path.exists(new_reffile): reffile=new_reffile break else: sys.exit('ERROR: conf file %s not found'%reffile) else: reffile='%s/conf.txt'%prada_path if not os.path.exists(reffile): sys.exit('ERROR: No default conf.txt found and none specified') #Now print all input parameters print 'CMD: %s'%('\t'.join(args)) #reference files pointing to the annotation files. refdict=ioprada.read_conf(reffile) featurefile=refdict['--REF--']['feature_file'] txseqfile=refdict['--REF--']['tx_seq_file'] txcatfile=refdict['--REF--']['txcat_file'] cdsfile=refdict['--REF--']['cds_file'] #underlying utilities, automatically detected #these are customized tools. update is needed. samtools='%s/tools/samtools-0.1.16/samtools'%prada_path bwa='%s/tools/bwa-0.5.7-mh/bwa'%prada_path blastn='%s/tools/blastn'%prada_path ###################################################################################### print 'step 0: loading gene annotations @ %s'%time.ctime() #call functions in ioprada module // txdb,genedb=ioprada.read_feature(featurefile,verbose=True) tx_primary=ioprada.read_tx_cat(txcatfile) tx_cds=ioprada.read_cds(cdsfile) ###################################################################################### print 'step 1: finding discordant pairs @ %s'%time.ctime() #We sift through all exons of protein coding genes and get the mapping reads. #Within, we exclude low mapping quality reads and PCR duplicates. For pairs that the two ends #map to different genes, we all it a discordant pair. #This is a step for finding all possible candidate fusions. samfile=pysam.Samfile(bampath,'rb') read1_ab={} read2_ab={} db1={} db2={} i,N=0,len(genedb) for gene in genedb: i+=1 if i%200==0: print '%d/%d genes processed for discordant pairs'%(i,N) g=genedb[gene] exons=g.get_exons() for e in exons.values(): for rd in samfile.fetch(e.chr,e.start-1,e.end): if rd.mapq < minmapq: continue if rd.is_duplicate: continue if rd.mate_is_unmapped: #at this point, only consider pairs continue if rd.rnext == rd.tid and rd.mpos <= g.end and rd.mpos >= g.start-1: #remove reads that fall into the same gene range continue if rd.is_read1: if read1_ab.has_key(rd.qname): read1_ab[rd.qname].add(gene) else: read1_ab[rd.qname]=set([gene]) db1[rd.qname]=rd if rd.is_read2: if read2_ab.has_key(rd.qname): read2_ab[rd.qname].add(gene) else: read2_ab[rd.qname]=set([gene]) db2[rd.qname]=rd ##output the discordant pairs and determine the orientation of candidate fusions discordant={} #catalogue all discordant pairs, using gene pairs as keys outfile=open('%s/%s.discordant.txt'%(outpath,docstring),'w') title=['read','gene1','gene1_chr','read1_pos','read1_mm','read1_strand','read1_orient','gene2',\ 'gene2_chr','read2_pos','read2_mm','read2_strand','read2_orient'] outfile.write('%s\n'%('\t'.join(title))) i=0 for rdid in read1_ab: i+=1 if i%10000==0: print '%d discordant pairs processed'%i if not read2_ab.has_key(rdid): #skip if not all ends are catalogued continue g1set=read1_ab[rdid] #consider all combinations if a read maps to multiple genes g2set=read2_ab[rdid] #consider all combinations if a read maps to multiple genes r1,r2=db1[rdid],db2[rdid] read1strd='-1' if r1.is_reverse else '1' read2strd='-1' if r2.is_reverse else '1' for g1 in g1set: for g2 in g2set: if g1==g2: #for some uncasual cases continue g1obj,g2obj=genedb[g1],genedb[g2] read1orient='F' if read1strd == g1obj.strand else 'R' #read1 --> gene1 read2orient='F' if read2strd == g2obj.strand else 'R' #read2 --> gene2 fkey='' if read1orient=='F' and read2orient=='R': ##scenario I, gene1-gene2 fkey=g1+'_'+g2 if read1orient=='R' and read2orient=='F': ##scenario II, gene2-gene1 fkey=g2+'_'+g1 if fkey: if discordant.has_key(fkey): discordant[fkey].update({rdid:'%s:%s'%(read1orient,read2orient)}) else: discordant[fkey]={rdid:'%s:%s'%(read1orient,read2orient)} ##output nm1=str([x[1] for x in r1.tags if x[0]=='NM'][0]) #output mismatch, but does not consider it at this point nm2=str([x[1] for x in r2.tags if x[0]=='NM'][0]) uvec=[rdid,g1,g1obj.chr,str(r1.pos+1),nm1,read1strd,read1orient,g2,g2obj.chr,str(r2.pos+1),nm2,read2strd,read2orient] outfile.write('%s\n'%('\t'.join(uvec))) outfile.close() ########################################################################## print 'step 2: finding recurrent pairs (candidates) @ %s'%time.ctime() #step 2 finds all candidates that have at least 2 discordant pairs. Meanwhile, filter out potential #read through events. read through is defined as reads with mapping position less than 1M, while meeting #the strand expectation. guess=[] outfile=open('%s/%s.recurrent.txt'%(outpath,docstring),'w') title=['geneA','geneA_chr','geneB','geneB_chr','num_pairs','IDs'] outfile.write('%s\n'%('\t'.join(title))) for pp in discordant: if len(discordant[pp]) < 2: #consider only "recurrent" (more than 1 pair support) cases continue gene1,gene2=pp.split('_') g1obj,g2obj=genedb[gene1],genedb[gene2] rdset=discordant[pp].keys() #filter read-through #readthrough is defined at read level, regardless of mapping genes for rd in rdset: r1,r2=db1[rd],db2[rd] read1strd='-1' if r1.is_reverse else '1' read2strd='-1' if r2.is_reverse else '1' readthrough=False if db1[rd].tid == db2[rd].tid and abs(db1[rd].pos - db2[rd].pos) <= 1000000: if discordant[pp][rd]=='F:R': if read1strd=='1' and read2strd=='-1' and db1[rd].pos < db2[rd].pos: readthrough=True if read1strd=='-1' and read2strd=='1' and db1[rd].pos > db2[rd].pos: readthrough=True if discordant[pp][rd]=='R:F': if read2strd=='1' and read1strd=='-1' and db2[rd].pos < db1[rd].pos: readthrough=True if read2strd=='-1' and read1strd=='1' and db2[rd].pos > db1[rd].pos: readthrough=True if readthrough: del discordant[pp][rd] #in-place deletion!!!! Change the discordant variable in place! if len(discordant[pp]) < 2: #skip all that have less than 2 supporting discordant read pairs after readthrough filter continue guess.append(pp) #output uvec2=[gene1,g1obj.chr,gene2,g2obj.chr,str(len(discordant[pp])),'|'.join(discordant[pp])] outfile.write('%s\n'%('\t'.join(uvec2))) outfile.close() ########################################################################## print 'step 3: finding potential junction spanning reads @ %s'%time.ctime() #For all candidates, find potential junction spanning reads (JSRs). A JSR is defined as a unmapped read but with the mate mapping #to either F or R partner, with high mapping quality. Since the JSR is unmapped, it is not practical to consider PCR duplicate #because they are not properly marked. Fpartners=set() Rpartners=set() for pp in guess: gs=pp.split('_') Fpartners.add(gs[0]) Rpartners.add(gs[1]) AllPartners=Fpartners|Rpartners samfile.reset() posjun={} ##catalogue all JSRs, with track of the mate mapping genes and orientation. i,N=0,len(AllPartners) for gene in AllPartners: i+=1 if i%200==0: print '%d/%d genes processed for potential junc reads'%(i,N) g=genedb[gene] exons=g.get_exons().values() for e in exons: for rd in samfile.fetch(e.chr,e.start-1,e.end): if rd.mapq < minmapq: continue if not rd.mate_is_unmapped: continue readstrd='-1' if rd.is_reverse else '1' orient='F' if readstrd == g.strand else 'R' #mapping info of mate read. JSR per se is unmapped in BAM posjun[rd.qname]={'gene':gene,'orient':orient} samfile.reset() outfile=open('%s/%s.pos_junc_unmapped.fastq'%(outpath,docstring),'w') i,N=0,len(posjun) for rd in samfile: if rd.mate_is_unmapped: #since the read is potential jun spanning read, all mate map to A or B continue if rd.is_unmapped: if posjun.has_key(rd.qname): i+=1 if i%10000==0: print 'extracted %d/%d potential junc reads'%(i,N) rdname='%s_prada_%s_prada_%s'%(rd.qname,posjun[rd.qname]['gene'],posjun[rd.qname]['orient']) #_prada_ as split outfile.write('@%s\n'%rdname) outfile.write('%s\n'%rd.seq) outfile.write('+\n') outfile.write('%s\n'%rd.qual) outfile.close() ###################################################################################### print 'step 4: building junction database @ %s'%time.ctime() #Make hypothetical junctions between candidate fusion partners. To improve speed, we make a big junction database comprising #exons of all candidates, instead of by candidate individually. This also gives the possibility to assess the JSR mapping ambiguity #across many junctions. It turned out very useful in filtering out false positives. #Note that in PRADA transcript sequence file, all sequences are + strand sequences. For - strand transcript, one need to #reverse complement the sequence to get the real transcript sequences. seqdb={} for record in SeqIO.parse(txseqfile,'fasta'): seqdb[record.name]=record outfile=open('%s/%s.junction.fasta'%(outpath,docstring),'w') i,N=0,len(guess) for pp in guess: i+=1 if i%100==0: print 'building junction for %d/%d pairs'%(i,N) gene1,gene2=pp.split('_') g1obj,g2obj=genedb[gene1],genedb[gene2] eset1=g1obj.get_exons() #unique exons in gene 1 eset2=g2obj.get_exons() #unique exons in gene 2 #collect unique junctions juncseqdict={} #save junction sequences for e1 in eset1.values(): for e2 in eset2.values(): e1_jun_name='%s:%s:%s'%(gene1,e1.chr,e1.end) if e1.strand=='1' else '%s:%s:%s'%(gene1,e1.chr,e1.start) e2_jun_name='%s:%s:%s'%(gene2,e2.chr,e2.start) if e2.strand=='1' else '%s:%s:%s'%(gene2,e2.chr,e2.end) jun_name=e1_jun_name+'_'+e2_jun_name tx1,tx2=txdb[e1.transcript],txdb[e2.transcript] max_a=tx1.exon_relative_pos()[e1.name][1] min_a=0 if max_a - overlap < 0 else max_a - overlap min_b=tx2.exon_relative_pos()[e2.name][0]-1 max_b=tx2.length if min_b + overlap > tx2.length else min_b + overlap #reverse complementary when necessary try: tx1seq=seqdb[tx1.name].seq.tostring() if tx1.strand=='1' else seqdb[tx1.name].reverse_complement().seq.tostring() tx2seq=seqdb[tx2.name].seq.tostring() if tx2.strand=='1' else seqdb[tx2.name].reverse_complement().seq.tostring() except KeyError: #in case transcript not found in sequence file continue jun_seq=tx1seq[min_a:max_a]+tx2seq[min_b:max_b] juncseqdict[jun_name]=jun_seq for junc in juncseqdict: outfile.write('>%s\n'%junc) outfile.write('%s\n'%juncseqdict[junc]) outfile.close() samfile.close() #for memory efficiecy, del seqdb del seqdb ######################################################################################## print 'step 5: aligning potential junction reads to junction database @ %s'%time.ctime() #Mapping potential JSRs to hypothetical junction database. #Allow 4 mismatches at the beginning. idx_cmd='%s index %s/%s.junction.fasta'%(bwa,outpath,docstring) os.system(idx_cmd) aln_cmd='%s aln -n 4 -R 100 %s/%s.junction.fasta %s/%s.pos_junc_unmapped.fastq > %s/%s.juncmap.sai'%(bwa,outpath,docstring,outpath,docstring,outpath,docstring) os.system(aln_cmd) samse_cmd='%s samse -n 1000 -s %s/%s.junction.fasta %s/%s.juncmap.sai %s/%s.pos_junc_unmapped.fastq > %s/%s.juncmap.sam'%(bwa,outpath,docstring,outpath,docstring,outpath,docstring,outpath,docstring) os.system(samse_cmd) sam2bam_cmd='%s view -bS %s/%s.juncmap.sam -o %s/%s.juncmap.bam'%(samtools,outpath,docstring,outpath,docstring) os.system(sam2bam_cmd) jsam=pysam.Samfile('%s/%s.juncmap.bam'%(outpath,docstring),'rb') #get the junction name directory junctions=jsam.references junname=dict(zip(range(0,len(junctions)),junctions)) #this is essential for quick speed. junc_align={} #go through the BAM file for meaningful (meeting fusion orientation etc) reads strd_right_reads={} rdb={} #collect all junction spanning reads i=0 for rd in jsam: i+=1 if i%100000==0: print '%d junction alignments parsed'%i if rd.is_unmapped: continue read,mate_gene,mate_orient=rd.qname.split('_prada_') junc=junname[rd.tid] tmp=junc.split('_') gene1,gene2=[x.split(':')[0] for x in tmp] if gene1==mate_gene: if mate_orient=='F': if rd.is_reverse: if strd_right_reads.has_key(rd.qname): strd_right_reads[rd.qname]+=1 #count how many times the read maps else: strd_right_reads[rd.qname]=1 rdb[rd.qname]={'read':rd,'gene1':gene1,'gene2':gene2,'junc':junc} #will overwrite, but it is OK since we only look at unique ones elif gene2==mate_gene: if mate_orient == 'R': if not rd.is_reverse: if strd_right_reads.has_key(rd.qname): strd_right_reads[rd.qname]+=1 else: strd_right_reads[rd.qname]=1 rdb[rd.qname]={'read':rd,'gene1':gene1,'gene2':gene2,'junc':junc} #will overwrite, but it is OK since we only look at unique ones #find uniquely mapped reads and their gene pairs junc_map={} #a dictionary from junction to mapping reads for rdname in strd_right_reads: if strd_right_reads[rdname] > 1: #remove non-unique junction spanning reads continue infodict=rdb[rdname] pp=infodict['gene1']+'_'+infodict['gene2'] if junc_map.has_key(pp): junc_map[pp].add(rdname) else: junc_map[pp]=set([rdname]) ######################################################################################## print 'step 6: summarizing fusion evidences @ %s'%time.ctime() #Now, time to apply mismatch filter and summarize the results #Candidate fusions --> guess #Discordant pairs --> discordant, db1, db2 #Junction reads --> junc_map, rdb #Gene info --> genedb outfile_s=open('%s/%s.fus.candidates.txt'%(outpath,docstring),'w') outfile_d=open('%s/%s.fus.evidences.txt'%(outpath,docstring),'w') title=['Gene_A','Gene_B','A_chr','B_chr','A_strand','B_strand','Discordant_n','JSR_n','perfectJSR_n','Junc_n','Position_Consist','Junction'] outfile_s.write('%s\n'%('\t'.join(title))) for pp in junc_map: #all pairs with junc reads gene1,gene2=pp.split('_') g1obj,g2obj=genedb[gene1],genedb[gene2] fus_disc=[] #collecting discordant pairs for rdname in discordant[pp]: #arrange read1/read2 into F/R so it will be easier for GeneFusion obj to handle r1,r2=db1[rdname],db2[rdname] orient=discordant[pp][rdname] if orient=='F:R': fus_disc.append((r1,r2)) elif orient=='R:F': fus_disc.append((r2,r1)) fus_jsr=[] if junc_map.has_key(pp): for rdname in junc_map[pp]: r=rdb[rdname]['read'] junc=rdb[rdname]['junc'] jsr=gfclass.JSR(r,junc) fus_jsr.append(jsr) gf=gfclass.GeneFusion(gene1,gene2,fus_disc,fus_jsr) gf_new=gf.update(mm=mm) ##apply the mismatch parameter, default is 1 #output the results disc_n=str(len(gf_new.discordantpairs)) junctions=sorted(gf_new.get_junction_freq(),key=operator.itemgetter(1),reverse=True) #sort junc by # of JSRs junc_n=str(len(junctions)) junc_str='|'.join([','.join([x[0],str(x[1])]) for x in junctions]) jsr_n=str(len(gf_new.fusionreads)) pjsr_n=str(len(gf_new.get_perfect_JSR())) pos_consist=gf_new.positioncheck() svec=[gene1,gene2,g1obj.chr,g2obj.chr,g1obj.strand,g2obj.strand,disc_n,jsr_n,pjsr_n,junc_n,pos_consist,junc_str] outfile_s.write('%s\n'%('\t'.join(svec))) outfile_d.write('@@\t%s,%s,%s\t%s,%s,%s\n'%(gene1,g1obj.chr,g1obj.strand,gene2,g2obj.chr,g2obj.strand)) outfile_d.write('\n') outfile_d.write('>discordant\n') for rp in gf_new.discordantpairs: rf,rr=rp nm1=[x[1] for x in rf.tags if x[0]=='NM'][0] nm2=[x[1] for x in rr.tags if x[0]=='NM'][0] outfile_d.write('%s\tF\t%s.%s.mm%d\n'%(rf.qname,gene1,rf.pos+1,nm1)) ##0-based coordinates outfile_d.write('%s\tR\t%s.%s.mm%d\n'%(rr.qname,gene2,rr.pos+1,nm2)) ##0-based coordinates outfile_d.write('\n') outfile_d.write('>spanning\n') for jsr in gf_new.fusionreads: r=jsr.read nm=[x[1] for x in r.tags if x[0]=='NM'][0] outfile_d.write('%s\t%s.mm%d\n'%(r.qname,jsr.junction,nm)) outfile_d.write('\n') outfile_d.write('>junction\n') for junc_info in junctions: outfile_d.write('%s\t%d\n'%(junc_info[0],junc_info[1])) outfile_d.write('\n') outfile_d.write('>summary\n') outfile_d.write('Number of Discordant Pairs = %s\n'%disc_n) outfile_d.write('Number of Fusion Reads = %s\n'%jsr_n) outfile_d.write('Number of Perfect Fusion Reads = %s\n'%pjsr_n) outfile_d.write('Number of Distinct Junctions = %s\n'%junc_n) outfile_d.write('Position Consistency = %s\n'%pos_consist) outfile_d.write('\n') outfile_s.close() outfile_d.close() ######################################################################################## print 'step 7: generating fusion lists @ %s'%time.ctime() #For convenience, filter the lists to candidates with # 1) at least 2 discordant pairs # 2) at least 1 perfect JSR #meanwhile, calculate sequence similarity for each pair #user may need to manually filter the lists per this measure. #The following code is a copy of prada-homology outfile_o=open('%s/%s.fus.summary.txt'%(outpath,docstring),'w') ifname='%s/%s.fus.candidates.txt'%(outpath,docstring) if not os.path.exists(ifname): sys.exit('ERROR: %s was not found'%ifname) blastseq_tmp_dir='%s/blast_tmp/'%outpath if not os.path.exists(blastseq_tmp_dir): os.mkdir(blastseq_tmp_dir) flists=[] infile=open(ifname) iN=0 for line in open(ifname): info=line.strip().split('\t') if iN==0: iN+=1 #skip title flists.append(info) continue else: if int(info[6])>=2 and int(info[8])>=1 and info[10] in ['PARTIALLY','YES']: flists.append(info) infile.close() if len(flists)==1: #if no candidate passes the filters outfile_o.write('%s\n'%'\t'.join(flists[0])) outfile_o.close() print 'step done @ %s'%time.ctime() sys.exit(0) candidates={} for line in flists[1:]: geneA,geneB=line[0],line[1] key='%s_%s'%(geneA,geneB) candidates[key]='' selecttranscript={} for gene in genedb: txs=genedb[gene].transcript stx=txs[0] initlen=stx.length for tx in txs: if tx.length >= initlen: stx=tx initlen=stx.length selecttranscript[gene]=stx.name allpartners=set() for item in candidates: sset=set(item.split('_')) allpartners=allpartners.union(sset) presenttxs=[] #tx that is present in our annotation absent=[] #tx that is not in our annotation for gene in allpartners: if selecttranscript.has_key(gene): presenttxs.append(selecttranscript[gene]) else: absent.append(gene) for seq_record in SeqIO.parse(txseqfile,'fasta'): sid=seq_record.id seq=seq_record.seq if sid in presenttxs: g=txdb[sid].gene fastafile=open('%s/%s.fasta'%(blastseq_tmp_dir,g),'w') SeqIO.write(seq_record,fastafile,'fasta') fastafile.close() for gp in candidates: geneA,geneB=gp.split('_') if geneA in absent or geneB in absent: candidates[gp]=['NA']*4 else: gaseq='%s/%s.fasta'%(blastseq_tmp_dir,geneA) gaobj=SeqIO.parse(gaseq,'fasta').next() gbseq='%s/%s.fasta'%(blastseq_tmp_dir,geneB) gbobj=SeqIO.parse(gbseq,'fasta').next() ga_len,gb_len=str(len(gaobj.seq)),str(len(gbobj.seq)) a=privutils.seqblast(gaseq,gbseq,blastn) if a==None: candidates[gp]=['NA','NA','100','0'] else: candidates[gp]=a header=flists[0][:] header.extend(['Identity','Align_Len','Evalue','BitScore']) outfile_o.write('%s\n'%('\t'.join(header))) for info in flists[1:]: geneA,geneB=info[0],info[1] key='%s_%s'%(geneA,geneB) vv=candidates[key] row=info[:] row.extend(vv) outfile_o.write('%s\n'%('\t'.join(row))) outfile_o.close() ######################################################################################## print 'step done @ %s'%time.ctime()