Mercurial > repos > siyuan > prada
view pyPRADA_1.2/tools/samtools-0.1.16/bam2bcf_indel.c @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children |
line wrap: on
line source
#include <assert.h> #include <ctype.h> #include <string.h> #include "bam.h" #include "bam2bcf.h" #include "ksort.h" #include "kaln.h" #include "kprobaln.h" #include "khash.h" KHASH_SET_INIT_STR(rg) #define MINUS_CONST 0x10000000 #define INDEL_WINDOW_SIZE 50 void *bcf_call_add_rg(void *_hash, const char *hdtext, const char *list) { const char *s, *p, *q, *r, *t; khash_t(rg) *hash; if (list == 0 || hdtext == 0) return _hash; if (_hash == 0) _hash = kh_init(rg); hash = (khash_t(rg)*)_hash; if ((s = strstr(hdtext, "@RG\t")) == 0) return hash; do { t = strstr(s + 4, "@RG\t"); // the next @RG if ((p = strstr(s, "\tID:")) != 0) p += 4; if ((q = strstr(s, "\tPL:")) != 0) q += 4; if (p && q && (t == 0 || (p < t && q < t))) { // ID and PL are both present int lp, lq; char *x; for (r = p; *r && *r != '\t' && *r != '\n'; ++r); lp = r - p; for (r = q; *r && *r != '\t' && *r != '\n'; ++r); lq = r - q; x = calloc((lp > lq? lp : lq) + 1, 1); for (r = q; *r && *r != '\t' && *r != '\n'; ++r) x[r-q] = *r; if (strstr(list, x)) { // insert ID to the hash table khint_t k; int ret; for (r = p; *r && *r != '\t' && *r != '\n'; ++r) x[r-p] = *r; x[r-p] = 0; k = kh_get(rg, hash, x); if (k == kh_end(hash)) k = kh_put(rg, hash, x, &ret); else free(x); } else free(x); } s = t; } while (s); return hash; } void bcf_call_del_rghash(void *_hash) { khint_t k; khash_t(rg) *hash = (khash_t(rg)*)_hash; if (hash == 0) return; for (k = kh_begin(hash); k < kh_end(hash); ++k) if (kh_exist(hash, k)) free((char*)kh_key(hash, k)); kh_destroy(rg, hash); } static int tpos2qpos(const bam1_core_t *c, const uint32_t *cigar, int32_t tpos, int is_left, int32_t *_tpos) { int k, x = c->pos, y = 0, last_y = 0; *_tpos = c->pos; for (k = 0; k < c->n_cigar; ++k) { int op = cigar[k] & BAM_CIGAR_MASK; int l = cigar[k] >> BAM_CIGAR_SHIFT; if (op == BAM_CMATCH) { if (c->pos > tpos) return y; if (x + l > tpos) { *_tpos = tpos; return y + (tpos - x); } x += l; y += l; last_y = y; } else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l; else if (op == BAM_CDEL || op == BAM_CREF_SKIP) { if (x + l > tpos) { *_tpos = is_left? x : x + l; return y; } x += l; } } *_tpos = x; return last_y; } // FIXME: check if the inserted sequence is consistent with the homopolymer run // l is the relative gap length and l_run is the length of the homopolymer on the reference static inline int est_seqQ(const bcf_callaux_t *bca, int l, int l_run) { int q, qh; q = bca->openQ + bca->extQ * (abs(l) - 1); qh = l_run >= 3? (int)(bca->tandemQ * (double)abs(l) / l_run + .499) : 1000; return q < qh? q : qh; } static inline int est_indelreg(int pos, const char *ref, int l, char *ins4) { int i, j, max = 0, max_i = pos, score = 0; l = abs(l); for (i = pos + 1, j = 0; ref[i]; ++i, ++j) { if (ins4) score += (toupper(ref[i]) != "ACGTN"[(int)ins4[j%l]])? -10 : 1; else score += (toupper(ref[i]) != toupper(ref[pos+1+j%l]))? -10 : 1; if (score < 0) break; if (max < score) max = score, max_i = i; } return max_i - pos; } int bcf_call_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos, bcf_callaux_t *bca, const char *ref, const void *rghash) { extern void ks_introsort_uint32_t(int, uint32_t*); int i, s, j, k, t, n_types, *types, max_rd_len, left, right, max_ins, *score1, *score2, max_ref2; int N, K, l_run, ref_type, n_alt; char *inscns = 0, *ref2, *query, **ref_sample; khash_t(rg) *hash = (khash_t(rg)*)rghash; if (ref == 0 || bca == 0) return -1; // mark filtered reads if (rghash) { N = 0; for (s = N = 0; s < n; ++s) { for (i = 0; i < n_plp[s]; ++i) { bam_pileup1_t *p = plp[s] + i; const uint8_t *rg = bam_aux_get(p->b, "RG"); p->aux = 1; // filtered by default if (rg) { khint_t k = kh_get(rg, hash, (const char*)(rg + 1)); if (k != kh_end(hash)) p->aux = 0, ++N; // not filtered } } } if (N == 0) return -1; // no reads left } // determine if there is a gap for (s = N = 0; s < n; ++s) { for (i = 0; i < n_plp[s]; ++i) if (plp[s][i].indel != 0) break; if (i < n_plp[s]) break; } if (s == n) return -1; // there is no indel at this position. for (s = N = 0; s < n; ++s) N += n_plp[s]; // N is the total number of reads { // find out how many types of indels are present int m, n_alt = 0, n_tot = 0; uint32_t *aux; aux = calloc(N + 1, 4); m = max_rd_len = 0; aux[m++] = MINUS_CONST; // zero indel is always a type for (s = 0; s < n; ++s) { for (i = 0; i < n_plp[s]; ++i) { const bam_pileup1_t *p = plp[s] + i; if (rghash == 0 || p->aux == 0) { ++n_tot; if (p->indel != 0) { ++n_alt; aux[m++] = MINUS_CONST + p->indel; } } j = bam_cigar2qlen(&p->b->core, bam1_cigar(p->b)); if (j > max_rd_len) max_rd_len = j; } } ks_introsort(uint32_t, m, aux); // squeeze out identical types for (i = 1, n_types = 1; i < m; ++i) if (aux[i] != aux[i-1]) ++n_types; if (n_types == 1 || (double)n_alt / n_tot < bca->min_frac || n_alt < bca->min_support) { // then skip free(aux); return -1; } types = (int*)calloc(n_types, sizeof(int)); t = 0; types[t++] = aux[0] - MINUS_CONST; for (i = 1; i < m; ++i) if (aux[i] != aux[i-1]) types[t++] = aux[i] - MINUS_CONST; free(aux); for (t = 0; t < n_types; ++t) if (types[t] == 0) break; ref_type = t; // the index of the reference type (0) assert(n_types < 64); } { // calculate left and right boundary left = pos > INDEL_WINDOW_SIZE? pos - INDEL_WINDOW_SIZE : 0; right = pos + INDEL_WINDOW_SIZE; if (types[0] < 0) right -= types[0]; // in case the alignments stand out the reference for (i = pos; i < right; ++i) if (ref[i] == 0) break; right = i; } /* The following block fixes a long-existing flaw in the INDEL * calling model: the interference of nearby SNPs. However, it also * reduces the power because sometimes, substitutions caused by * indels are not distinguishable from true mutations. Multiple * sequence realignment helps to increase the power. */ { // construct per-sample consensus int L = right - left + 1, max_i, max2_i; uint32_t *cns, max, max2; char *ref0, *r; ref_sample = calloc(n, sizeof(void*)); cns = calloc(L, 4); ref0 = calloc(L, 1); for (i = 0; i < right - left; ++i) ref0[i] = bam_nt16_table[(int)ref[i+left]]; for (s = 0; s < n; ++s) { r = ref_sample[s] = calloc(L, 1); memset(cns, 0, sizeof(int) * L); // collect ref and non-ref counts for (i = 0; i < n_plp[s]; ++i) { bam_pileup1_t *p = plp[s] + i; bam1_t *b = p->b; uint32_t *cigar = bam1_cigar(b); uint8_t *seq = bam1_seq(b); int x = b->core.pos, y = 0; for (k = 0; k < b->core.n_cigar; ++k) { int op = cigar[k]&0xf; int j, l = cigar[k]>>4; if (op == BAM_CMATCH) { for (j = 0; j < l; ++j) if (x + j >= left && x + j < right) cns[x+j-left] += (bam1_seqi(seq, y+j) == ref0[x+j-left])? 1 : 0x10000; x += l; y += l; } else if (op == BAM_CDEL || op == BAM_CREF_SKIP) x += l; else if (op == BAM_CINS || op == BAM_CSOFT_CLIP) y += l; } } // determine the consensus for (i = 0; i < right - left; ++i) r[i] = ref0[i]; max = max2 = 0; max_i = max2_i = -1; for (i = 0; i < right - left; ++i) { if (cns[i]>>16 >= max>>16) max2 = max, max2_i = max_i, max = cns[i], max_i = i; else if (cns[i]>>16 >= max2>>16) max2 = cns[i], max2_i = i; } if ((double)(max&0xffff) / ((max&0xffff) + (max>>16)) >= 0.7) max_i = -1; if ((double)(max2&0xffff) / ((max2&0xffff) + (max2>>16)) >= 0.7) max2_i = -1; if (max_i >= 0) r[max_i] = 15; if (max2_i >= 0) r[max2_i] = 15; // for (i = 0; i < right - left; ++i) fputc("=ACMGRSVTWYHKDBN"[(int)r[i]], stderr); fputc('\n', stderr); } free(ref0); free(cns); } { // the length of the homopolymer run around the current position int c = bam_nt16_table[(int)ref[pos + 1]]; if (c == 15) l_run = 1; else { for (i = pos + 2; ref[i]; ++i) if (bam_nt16_table[(int)ref[i]] != c) break; l_run = i; for (i = pos; i >= 0; --i) if (bam_nt16_table[(int)ref[i]] != c) break; l_run -= i + 1; } } // construct the consensus sequence max_ins = types[n_types - 1]; // max_ins is at least 0 if (max_ins > 0) { int *inscns_aux = calloc(4 * n_types * max_ins, sizeof(int)); // count the number of occurrences of each base at each position for each type of insertion for (t = 0; t < n_types; ++t) { if (types[t] > 0) { for (s = 0; s < n; ++s) { for (i = 0; i < n_plp[s]; ++i) { bam_pileup1_t *p = plp[s] + i; if (p->indel == types[t]) { uint8_t *seq = bam1_seq(p->b); for (k = 1; k <= p->indel; ++k) { int c = bam_nt16_nt4_table[bam1_seqi(seq, p->qpos + k)]; if (c < 4) ++inscns_aux[(t*max_ins+(k-1))*4 + c]; } } } } } } // use the majority rule to construct the consensus inscns = calloc(n_types * max_ins, 1); for (t = 0; t < n_types; ++t) { for (j = 0; j < types[t]; ++j) { int max = 0, max_k = -1, *ia = &inscns_aux[(t*max_ins+j)*4]; for (k = 0; k < 4; ++k) if (ia[k] > max) max = ia[k], max_k = k; inscns[t*max_ins + j] = max? max_k : 4; } } free(inscns_aux); } // compute the likelihood given each type of indel for each read max_ref2 = right - left + 2 + 2 * (max_ins > -types[0]? max_ins : -types[0]); ref2 = calloc(max_ref2, 1); query = calloc(right - left + max_rd_len + max_ins + 2, 1); score1 = calloc(N * n_types, sizeof(int)); score2 = calloc(N * n_types, sizeof(int)); bca->indelreg = 0; for (t = 0; t < n_types; ++t) { int l, ir; kpa_par_t apf1 = { 1e-4, 1e-2, 10 }, apf2 = { 1e-6, 1e-3, 10 }; apf1.bw = apf2.bw = abs(types[t]) + 3; // compute indelreg if (types[t] == 0) ir = 0; else if (types[t] > 0) ir = est_indelreg(pos, ref, types[t], &inscns[t*max_ins]); else ir = est_indelreg(pos, ref, -types[t], 0); if (ir > bca->indelreg) bca->indelreg = ir; // fprintf(stderr, "%d, %d, %d\n", pos, types[t], ir); // realignment for (s = K = 0; s < n; ++s) { // write ref2 for (k = 0, j = left; j <= pos; ++j) ref2[k++] = bam_nt16_nt4_table[(int)ref_sample[s][j-left]]; if (types[t] <= 0) j += -types[t]; else for (l = 0; l < types[t]; ++l) ref2[k++] = inscns[t*max_ins + l]; for (; j < right && ref[j]; ++j) ref2[k++] = bam_nt16_nt4_table[(int)ref_sample[s][j-left]]; for (; k < max_ref2; ++k) ref2[k] = 4; if (j < right) right = j; // align each read to ref2 for (i = 0; i < n_plp[s]; ++i, ++K) { bam_pileup1_t *p = plp[s] + i; int qbeg, qend, tbeg, tend, sc, kk; uint8_t *seq = bam1_seq(p->b); uint32_t *cigar = bam1_cigar(p->b); if (p->b->core.flag&4) continue; // unmapped reads // FIXME: the following loop should be better moved outside; nonetheless, realignment should be much slower anyway. for (kk = 0; kk < p->b->core.n_cigar; ++kk) if ((cigar[kk]&BAM_CIGAR_MASK) == BAM_CREF_SKIP) break; if (kk < p->b->core.n_cigar) continue; // FIXME: the following skips soft clips, but using them may be more sensitive. // determine the start and end of sequences for alignment qbeg = tpos2qpos(&p->b->core, bam1_cigar(p->b), left, 0, &tbeg); qend = tpos2qpos(&p->b->core, bam1_cigar(p->b), right, 1, &tend); if (types[t] < 0) { int l = -types[t]; tbeg = tbeg - l > left? tbeg - l : left; } // write the query sequence for (l = qbeg; l < qend; ++l) query[l - qbeg] = bam_nt16_nt4_table[bam1_seqi(seq, l)]; { // do realignment; this is the bottleneck const uint8_t *qual = bam1_qual(p->b), *bq; uint8_t *qq; qq = calloc(qend - qbeg, 1); bq = (uint8_t*)bam_aux_get(p->b, "ZQ"); if (bq) ++bq; // skip type for (l = qbeg; l < qend; ++l) { qq[l - qbeg] = bq? qual[l] + (bq[l] - 64) : qual[l]; if (qq[l - qbeg] > 30) qq[l - qbeg] = 30; if (qq[l - qbeg] < 7) qq[l - qbeg] = 7; } sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]), (uint8_t*)query, qend - qbeg, qq, &apf1, 0, 0); l = (int)(100. * sc / (qend - qbeg) + .499); // used for adjusting indelQ below if (l > 255) l = 255; score1[K*n_types + t] = score2[K*n_types + t] = sc<<8 | l; if (sc > 5) { sc = kpa_glocal((uint8_t*)ref2 + tbeg - left, tend - tbeg + abs(types[t]), (uint8_t*)query, qend - qbeg, qq, &apf2, 0, 0); l = (int)(100. * sc / (qend - qbeg) + .499); if (l > 255) l = 255; score2[K*n_types + t] = sc<<8 | l; } free(qq); } /* for (l = 0; l < tend - tbeg + abs(types[t]); ++l) fputc("ACGTN"[(int)ref2[tbeg-left+l]], stderr); fputc('\n', stderr); for (l = 0; l < qend - qbeg; ++l) fputc("ACGTN"[(int)query[l]], stderr); fputc('\n', stderr); fprintf(stderr, "pos=%d type=%d read=%d:%d name=%s qbeg=%d tbeg=%d score=%d\n", pos, types[t], s, i, bam1_qname(p->b), qbeg, tbeg, sc); */ } } } free(ref2); free(query); { // compute indelQ int *sc, tmp, *sumq; sc = alloca(n_types * sizeof(int)); sumq = alloca(n_types * sizeof(int)); memset(sumq, 0, sizeof(int) * n_types); for (s = K = 0; s < n; ++s) { for (i = 0; i < n_plp[s]; ++i, ++K) { bam_pileup1_t *p = plp[s] + i; int *sct = &score1[K*n_types], indelQ1, indelQ2, seqQ, indelQ; for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t; for (t = 1; t < n_types; ++t) // insertion sort for (j = t; j > 0 && sc[j] < sc[j-1]; --j) tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp; /* errmod_cal() assumes that if the call is wrong, the * likelihoods of other events are equal. This is about * right for substitutions, but is not desired for * indels. To reuse errmod_cal(), I have to make * compromise for multi-allelic indels. */ if ((sc[0]&0x3f) == ref_type) { indelQ1 = (sc[1]>>14) - (sc[0]>>14); seqQ = est_seqQ(bca, types[sc[1]&0x3f], l_run); } else { for (t = 0; t < n_types; ++t) // look for the reference type if ((sc[t]&0x3f) == ref_type) break; indelQ1 = (sc[t]>>14) - (sc[0]>>14); seqQ = est_seqQ(bca, types[sc[0]&0x3f], l_run); } tmp = sc[0]>>6 & 0xff; indelQ1 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ1 + .499); // reduce indelQ sct = &score2[K*n_types]; for (t = 0; t < n_types; ++t) sc[t] = sct[t]<<6 | t; for (t = 1; t < n_types; ++t) // insertion sort for (j = t; j > 0 && sc[j] < sc[j-1]; --j) tmp = sc[j], sc[j] = sc[j-1], sc[j-1] = tmp; if ((sc[0]&0x3f) == ref_type) { indelQ2 = (sc[1]>>14) - (sc[0]>>14); } else { for (t = 0; t < n_types; ++t) // look for the reference type if ((sc[t]&0x3f) == ref_type) break; indelQ2 = (sc[t]>>14) - (sc[0]>>14); } tmp = sc[0]>>6 & 0xff; indelQ2 = tmp > 111? 0 : (int)((1. - tmp/111.) * indelQ2 + .499); // pick the smaller between indelQ1 and indelQ2 indelQ = indelQ1 < indelQ2? indelQ1 : indelQ2; if (indelQ > 255) indelQ = 255; if (seqQ > 255) seqQ = 255; p->aux = (sc[0]&0x3f)<<16 | seqQ<<8 | indelQ; // use 22 bits in total sumq[sc[0]&0x3f] += indelQ < seqQ? indelQ : seqQ; // fprintf(stderr, "pos=%d read=%d:%d name=%s call=%d indelQ=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), types[sc[0]&0x3f], indelQ, seqQ); } } // determine bca->indel_types[] and bca->inscns bca->maxins = max_ins; bca->inscns = realloc(bca->inscns, bca->maxins * 4); for (t = 0; t < n_types; ++t) sumq[t] = sumq[t]<<6 | t; for (t = 1; t < n_types; ++t) // insertion sort for (j = t; j > 0 && sumq[j] > sumq[j-1]; --j) tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp; for (t = 0; t < n_types; ++t) // look for the reference type if ((sumq[t]&0x3f) == ref_type) break; if (t) { // then move the reference type to the first tmp = sumq[t]; for (; t > 0; --t) sumq[t] = sumq[t-1]; sumq[0] = tmp; } for (t = 0; t < 4; ++t) bca->indel_types[t] = B2B_INDEL_NULL; for (t = 0; t < 4 && t < n_types; ++t) { bca->indel_types[t] = types[sumq[t]&0x3f]; memcpy(&bca->inscns[t * bca->maxins], &inscns[(sumq[t]&0x3f) * max_ins], bca->maxins); } // update p->aux for (s = n_alt = 0; s < n; ++s) { for (i = 0; i < n_plp[s]; ++i) { bam_pileup1_t *p = plp[s] + i; int x = types[p->aux>>16&0x3f]; for (j = 0; j < 4; ++j) if (x == bca->indel_types[j]) break; p->aux = j<<16 | (j == 4? 0 : (p->aux&0xffff)); if ((p->aux>>16&0x3f) > 0) ++n_alt; // fprintf(stderr, "X pos=%d read=%d:%d name=%s call=%d type=%d q=%d seqQ=%d\n", pos, s, i, bam1_qname(p->b), p->aux>>16&63, bca->indel_types[p->aux>>16&63], p->aux&0xff, p->aux>>8&0xff); } } } free(score1); free(score2); // free for (i = 0; i < n; ++i) free(ref_sample[i]); free(ref_sample); free(types); free(inscns); return n_alt > 0? 0 : -1; }