Mercurial > repos > siyuan > prada
view pyPRADA_1.2/tools/samtools-0.1.16/bcftools/em.c @ 0:acc2ca1a3ba4
Uploaded
author | siyuan |
---|---|
date | Thu, 20 Feb 2014 00:44:58 -0500 |
parents | |
children |
line wrap: on
line source
#include <stdlib.h> #include <string.h> #include <math.h> #include "bcf.h" #include "kmin.h" static double g_q2p[256]; #define ITER_MAX 50 #define ITER_TRY 10 #define EPS 1e-5 extern double kf_gammaq(double, double); /* Generic routines */ // get the 3 genotype likelihoods static double *get_pdg3(const bcf1_t *b) { double *pdg; const uint8_t *PL = 0; int i, PL_len = 0; // initialize g_q2p if necessary if (g_q2p[0] == 0.) for (i = 0; i < 256; ++i) g_q2p[i] = pow(10., -i / 10.); // set PL and PL_len for (i = 0; i < b->n_gi; ++i) { if (b->gi[i].fmt == bcf_str2int("PL", 2)) { PL = (const uint8_t*)b->gi[i].data; PL_len = b->gi[i].len; break; } } if (i == b->n_gi) return 0; // no PL // fill pdg pdg = malloc(3 * b->n_smpl * sizeof(double)); for (i = 0; i < b->n_smpl; ++i) { const uint8_t *pi = PL + i * PL_len; double *p = pdg + i * 3; p[0] = g_q2p[pi[2]]; p[1] = g_q2p[pi[1]]; p[2] = g_q2p[pi[0]]; } return pdg; } // estimate site allele frequency in a very naive and inaccurate way static double est_freq(int n, const double *pdg) { int i, gcnt[3], tmp1; // get a rough estimate of the genotype frequency gcnt[0] = gcnt[1] = gcnt[2] = 0; for (i = 0; i < n; ++i) { const double *p = pdg + i * 3; if (p[0] != 1. || p[1] != 1. || p[2] != 1.) { int which = p[0] > p[1]? 0 : 1; which = p[which] > p[2]? which : 2; ++gcnt[which]; } } tmp1 = gcnt[0] + gcnt[1] + gcnt[2]; return (tmp1 == 0)? -1.0 : (.5 * gcnt[1] + gcnt[2]) / tmp1; } /* Single-locus EM */ typedef struct { int beg, end; const double *pdg; } minaux1_t; static double prob1(double f, void *data) { minaux1_t *a = (minaux1_t*)data; double p = 1., l = 0., f3[3]; int i; // printf("brent %lg\n", f); if (f < 0 || f > 1) return 1e300; f3[0] = (1.-f)*(1.-f); f3[1] = 2.*f*(1.-f); f3[2] = f*f; for (i = a->beg; i < a->end; ++i) { const double *pdg = a->pdg + i * 3; p *= pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2]; if (p < 1e-200) l -= log(p), p = 1.; } return l - log(p); } // one EM iteration for allele frequency estimate static double freq_iter(double *f, const double *_pdg, int beg, int end) { double f0 = *f, f3[3], err; int i; // printf("em %lg\n", *f); f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0; for (i = beg, f0 = 0.; i < end; ++i) { const double *pdg = _pdg + i * 3; f0 += (pdg[1] * f3[1] + 2. * pdg[2] * f3[2]) / (pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2]); } f0 /= (end - beg) * 2; err = fabs(f0 - *f); *f = f0; return err; } /* The following function combines EM and Brent's method. When the signal from * the data is strong, EM is faster but sometimes, EM may converge very slowly. * When this happens, we switch to Brent's method. The idea is learned from * Rasmus Nielsen. */ static double freqml(double f0, int beg, int end, const double *pdg) { int i; double f; for (i = 0, f = f0; i < ITER_TRY; ++i) if (freq_iter(&f, pdg, beg, end) < EPS) break; if (i == ITER_TRY) { // haven't converged yet; try Brent's method minaux1_t a; a.beg = beg; a.end = end; a.pdg = pdg; kmin_brent(prob1, f0 == f? .5*f0 : f0, f, (void*)&a, EPS, &f); } return f; } // one EM iteration for genotype frequency estimate static double g3_iter(double g[3], const double *_pdg, int beg, int end) { double err, gg[3]; int i; gg[0] = gg[1] = gg[2] = 0.; // printf("%lg,%lg,%lg\n", g[0], g[1], g[2]); for (i = beg; i < end; ++i) { double sum, tmp[3]; const double *pdg = _pdg + i * 3; tmp[0] = pdg[0] * g[0]; tmp[1] = pdg[1] * g[1]; tmp[2] = pdg[2] * g[2]; sum = (tmp[0] + tmp[1] + tmp[2]) * (end - beg); gg[0] += tmp[0] / sum; gg[1] += tmp[1] / sum; gg[2] += tmp[2] / sum; } err = fabs(gg[0] - g[0]) > fabs(gg[1] - g[1])? fabs(gg[0] - g[0]) : fabs(gg[1] - g[1]); err = err > fabs(gg[2] - g[2])? err : fabs(gg[2] - g[2]); g[0] = gg[0]; g[1] = gg[1]; g[2] = gg[2]; return err; } // perform likelihood ratio test static double lk_ratio_test(int n, int n1, const double *pdg, double f3[3][3]) { double r; int i; for (i = 0, r = 1.; i < n1; ++i) { const double *p = pdg + i * 3; r *= (p[0] * f3[1][0] + p[1] * f3[1][1] + p[2] * f3[1][2]) / (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]); } for (; i < n; ++i) { const double *p = pdg + i * 3; r *= (p[0] * f3[2][0] + p[1] * f3[2][1] + p[2] * f3[2][2]) / (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]); } return r; } // x[0]: ref frequency // x[1..3]: alt-alt, alt-ref, ref-ref frequenc // x[4]: HWE P-value // x[5..6]: group1 freq, group2 freq // x[7]: 1-degree P-value // x[8]: 2-degree P-value int bcf_em1(const bcf1_t *b, int n1, int flag, double x[9]) { double *pdg; int i, n, n2; if (b->n_alleles < 2) return -1; // one allele only // initialization if (n1 < 0 || n1 > b->n_smpl) n1 = 0; if (flag & 1<<7) flag |= 7<<5; // compute group freq if LRT is required if (flag & 0xf<<1) flag |= 0xf<<1; n = b->n_smpl; n2 = n - n1; pdg = get_pdg3(b); if (pdg == 0) return -1; for (i = 0; i < 9; ++i) x[i] = -1.; { if ((x[0] = est_freq(n, pdg)) < 0.) { free(pdg); return -1; // no data } x[0] = freqml(x[0], 0, n, pdg); } if (flag & (0xf<<1|1<<8)) { // estimate the genotype frequency and test HWE double *g = x + 1, f3[3], r; f3[0] = g[0] = (1 - x[0]) * (1 - x[0]); f3[1] = g[1] = 2 * x[0] * (1 - x[0]); f3[2] = g[2] = x[0] * x[0]; for (i = 0; i < ITER_MAX; ++i) if (g3_iter(g, pdg, 0, n) < EPS) break; // Hardy-Weinberg equilibrium (HWE) for (i = 0, r = 1.; i < n; ++i) { double *p = pdg + i * 3; r *= (p[0] * g[0] + p[1] * g[1] + p[2] * g[2]) / (p[0] * f3[0] + p[1] * f3[1] + p[2] * f3[2]); } x[4] = kf_gammaq(.5, log(r)); } if ((flag & 7<<5) && n1 > 0 && n1 < n) { // group frequency x[5] = freqml(x[0], 0, n1, pdg); x[6] = freqml(x[0], n1, n, pdg); } if ((flag & 1<<7) && n1 > 0 && n1 < n) { // 1-degree P-value double f[3], f3[3][3]; f[0] = x[0]; f[1] = x[5]; f[2] = x[6]; for (i = 0; i < 3; ++i) f3[i][0] = (1-f[i])*(1-f[i]), f3[i][1] = 2*f[i]*(1-f[i]), f3[i][2] = f[i]*f[i]; x[7] = kf_gammaq(.5, log(lk_ratio_test(n, n1, pdg, f3))); } if ((flag & 1<<8) && n1 > 0 && n1 < n) { // 2-degree P-value double g[3][3]; for (i = 0; i < 3; ++i) memcpy(g[i], x + 1, 3 * sizeof(double)); for (i = 0; i < ITER_MAX; ++i) if (g3_iter(g[1], pdg, 0, n1) < EPS) break; for (i = 0; i < ITER_MAX; ++i) if (g3_iter(g[2], pdg, n1, n) < EPS) break; x[8] = kf_gammaq(1., log(lk_ratio_test(n, n1, pdg, g))); } // free free(pdg); return 0; } /* Two-locus EM (LD) */ #define _G1(h, k) ((h>>1&1) + (k>>1&1)) #define _G2(h, k) ((h&1) + (k&1)) // 0: the previous site; 1: the current site static int pair_freq_iter(int n, double *pdg[2], double f[4]) { double ff[4]; int i, k, h; // printf("%lf,%lf,%lf,%lf\n", f[0], f[1], f[2], f[3]); memset(ff, 0, 4 * sizeof(double)); for (i = 0; i < n; ++i) { double *p[2], sum, tmp; p[0] = pdg[0] + i * 3; p[1] = pdg[1] + i * 3; for (k = 0, sum = 0.; k < 4; ++k) for (h = 0; h < 4; ++h) sum += f[k] * f[h] * p[0][_G1(k,h)] * p[1][_G2(k,h)]; for (k = 0; k < 4; ++k) { tmp = f[0] * (p[0][_G1(0,k)] * p[1][_G2(0,k)] + p[0][_G1(k,0)] * p[1][_G2(k,0)]) + f[1] * (p[0][_G1(1,k)] * p[1][_G2(1,k)] + p[0][_G1(k,1)] * p[1][_G2(k,1)]) + f[2] * (p[0][_G1(2,k)] * p[1][_G2(2,k)] + p[0][_G1(k,2)] * p[1][_G2(k,2)]) + f[3] * (p[0][_G1(3,k)] * p[1][_G2(3,k)] + p[0][_G1(k,3)] * p[1][_G2(k,3)]); ff[k] += f[k] * tmp / sum; } } for (k = 0; k < 4; ++k) f[k] = ff[k] / (2 * n); return 0; } double bcf_pair_freq(const bcf1_t *b0, const bcf1_t *b1, double f[4]) { const bcf1_t *b[2]; int i, j, n_smpl; double *pdg[2], flast[4], r, f0[2]; // initialize others if (b0->n_smpl != b1->n_smpl) return -1; // different number of samples n_smpl = b0->n_smpl; b[0] = b0; b[1] = b1; f[0] = f[1] = f[2] = f[3] = -1.; if (b[0]->n_alleles < 2 || b[1]->n_alleles < 2) return -1; // one allele only pdg[0] = get_pdg3(b0); pdg[1] = get_pdg3(b1); if (pdg[0] == 0 || pdg[1] == 0) { free(pdg[0]); free(pdg[1]); return -1; } // set the initial value f0[0] = est_freq(n_smpl, pdg[0]); f0[1] = est_freq(n_smpl, pdg[1]); f[0] = (1 - f0[0]) * (1 - f0[1]); f[3] = f0[0] * f0[1]; f[1] = (1 - f0[0]) * f0[1]; f[2] = f0[0] * (1 - f0[1]); // iteration for (j = 0; j < ITER_MAX; ++j) { double eps = 0; memcpy(flast, f, 4 * sizeof(double)); pair_freq_iter(n_smpl, pdg, f); for (i = 0; i < 4; ++i) { double x = fabs(f[i] - flast[i]); if (x > eps) eps = x; } if (eps < EPS) break; } // free free(pdg[0]); free(pdg[1]); { // calculate r^2 double p[2], q[2], D; p[0] = f[0] + f[1]; q[0] = 1 - p[0]; p[1] = f[0] + f[2]; q[1] = 1 - p[1]; D = f[0] * f[3] - f[1] * f[2]; r = sqrt(D * D / (p[0] * p[1] * q[0] * q[1])); // printf("R(%lf,%lf,%lf,%lf)=%lf\n", f[0], f[1], f[2], f[3], r); if (isnan(r)) r = -1.; } return r; }