Mercurial > repos > steffen > covenntree
comparison coVennTree/coVennTree.xml @ 0:745aede829e9 draft default tip
Imported from capsule None
| author | steffen |
|---|---|
| date | Fri, 30 Jan 2015 09:55:45 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:745aede829e9 |
|---|---|
| 1 <tool id="coVennTree" name="CoVennTree (Comparative weighted Venn Tree) - Rooted Tree" version="1.6.0"> | |
| 2 <description>Comparative rooted tree analysis for files in dsv format</description> | |
| 3 <requirements> | |
| 4 <requirement type="package" version="1.6">coVennTree</requirement> | |
| 5 <requirement type="package" version="5.18.1">perl</requirement> | |
| 6 </requirements> | |
| 7 <command interpreter="perl"> | |
| 8 coVennTree.pl | |
| 9 $infile | |
| 10 $color_mode | |
| 11 $trans_func | |
| 12 $leafs_allInformation | |
| 13 $outfile_network | |
| 14 $outfile_attribute | |
| 15 </command> | |
| 16 | |
| 17 <inputs> | |
| 18 <param name="infile" type="data" format="tabular" label="Path File" help="Tabular file containing the paths and values"/> | |
| 19 | |
| 20 | |
| 21 <param name="color_mode" multiple="false" type="select" label="Select color mode for Venn diagrams"> | |
| 22 <option value="0">(1) Set1: blue Set2: red Set3: yellow</option> | |
| 23 <option value="1">(2) Set1: red Set2: green Set3: blue</option> | |
| 24 <option value="2">(3) Set1: green Set2: magenta Set3: blue</option> | |
| 25 <option value="3">(4) Set1: green Set2: purple Set3: red</option> | |
| 26 <option value="4">(5) Set1: dark gray Set2: mid-grey Set3: light gray</option> | |
| 27 </param> | |
| 28 | |
| 29 | |
| 30 <param name="trans_func" multiple="false" type="select" label="Select transformation function"> | |
| 31 <option value="0">(1) datasets max: 3,000 data points in sum</option> | |
| 32 <option value="1">(2) datasets max: 30,000 data points in sum</option> | |
| 33 <option value="2">(3) datasets max: 300,000 data points in sum</option> | |
| 34 <option value="3">(4) datasets max: 3,000,000 data points in sum</option> | |
| 35 <option value="4">(5) datasets max: 30,000,000 data points in sum</option> | |
| 36 <option value="5">(6) datasets max: 300,000,000 data points in sum</option> | |
| 37 <option value="6">(7) datasets max: 3,000,000,000 data points in sum</option> | |
| 38 </param> | |
| 39 | |
| 40 | |
| 41 <param name="leafs_allInformation" multiple="false" type="select" label="Select tree analyzes function"> | |
| 42 <option value="1">(1) leaf + inner nodes informations</option> | |
| 43 <option value="0">(2) only leaf information</option> | |
| 44 </param> | |
| 45 | |
| 46 </inputs> | |
| 47 | |
| 48 <outputs> | |
| 49 <data format="tabular" name="outfile_network" label="Network" /> | |
| 50 <data format="tabular" name="outfile_attribute" label="Attributes" /> | |
| 51 </outputs> | |
| 52 | |
| 53 <tests> | |
| 54 <test> | |
| 55 </test> | |
| 56 </tests> | |
| 57 | |
| 58 <help> | |
| 59 .. class:: infomark | |
| 60 | |
| 61 CoVennTree compares up to three rooted trees at the same time. | |
| 62 | |
| 63 CoVennTree (Comparative weighted Venn Tree) is a software to analyze and compare up to three datasets. Unlike other | |
| 64 methods, CoVennTree correlates data on the leaf level and transfers this information to the root node. CoVennTree works with numbers to compute weighted | |
| 65 Venn diagrams for each node in the graph (rooted tree). Therefore any kind of input data can be processed as long as the data structure will be taken into account. | |
| 66 | |
| 67 | |
| 68 | |
| 69 **Input** | |
| 70 | |
| 71 *Input example* | |
| 72 | |
| 73 | |
| 74 .. image:: $PATH_TO_IMAGES/example1.png | |
| 75 :height: 430 | |
| 76 :width: 600 | |
| 77 | |
| 78 | |
| 79 *dsv-format: The following table represents the graph.* | |
| 80 | |
| 81 | |
| 82 =========== ====== ====== ====== | |
| 83 #Datasets set1 set2 set3 | |
| 84 =========== ====== ====== ====== | |
| 85 "root;" 0 0 0 | |
| 86 "root;A;" 10000 0 0 | |
| 87 "root;A;C;" 600000 300000 500000 | |
| 88 "root;A;D;" 0 100000 200000 | |
| 89 "root;A;E;" 800000 0 100000 | |
| 90 "root;B;" 10000 20000 50000 | |
| 91 =========== ====== ====== ====== | |
| 92 | |
| 93 | |
| 94 ------- | |
| 95 | |
| 96 | |
| 97 **Results** | |
| 98 | |
| 99 A specific color is assigned to each dataset in five optional color schemes (see parameter "Select color mode for weighted Venn diagrams"). | |
| 100 In this example set1 corresponds to color blue, set2 to red and set3 to yellow. | |
| 101 In order to cover a wide numerical range a non linear transformation function is used. | |
| 102 | |
| 103 | |
| 104 *Data format \*.sif* | |
| 105 | |
| 106 [parent_node] [connected_with] [child_node] | |
| 107 | |
| 108 | |
| 109 *Data format \*.venn* | |
| 110 | |
| 111 [id] [google_url] [id_vds] [Venn_abs_values] | |
| 112 | |
| 113 | |
| 114 *Output example "leaf information and not assigned information"* | |
| 115 | |
| 116 By selecting "leaf information + not assigned information" artificial nodes can be inserted. | |
| 117 Artificial nodes will be inserted if inner nodes have values larger than zero. | |
| 118 | |
| 119 .. image:: $PATH_TO_IMAGES/venn-graph-off.png | |
| 120 :height: 358 | |
| 121 :width: 425 | |
| 122 | |
| 123 | |
| 124 ------- | |
| 125 | |
| 126 | |
| 127 *Output example "only leaf information"* | |
| 128 | |
| 129 By selecting "only leaf information" only leaf nodes are considered for the computation of weighted Venn diagrams. | |
| 130 | |
| 131 .. image:: $PATH_TO_IMAGES/venn-graph-on.png | |
| 132 :height: 358 | |
| 133 :width: 400 | |
| 134 | |
| 135 | |
| 136 | |
| 137 </help> | |
| 138 <citations> | |
| 139 <citation type="doi"> | |
| 140 | |
| 141 </citation>> | |
| 142 </citations> | |
| 143 </tool> |
