diff ebcsgen_simulate.py @ 0:179d32e79968 draft

planemo upload for repository https://github.com/sybila/galaxytools/tree/master/tools/ebcsgen commit 33b83dc8c71401922b087400fa1f4080e9abe170
author sybila
date Tue, 04 Oct 2022 13:15:48 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ebcsgen_simulate.py	Tue Oct 04 13:15:48 2022 +0000
@@ -0,0 +1,51 @@
+import argparse
+
+from eBCSgen.Errors import UnspecifiedParsingError
+from eBCSgen.Errors.InvalidInputError import InvalidInputError
+from eBCSgen.Errors.ModelParsingError import ModelParsingError
+from eBCSgen.Errors.RatesNotSpecifiedError import RatesNotSpecifiedError
+from eBCSgen.Parsing.ParseBCSL import Parser
+
+
+args_parser = argparse.ArgumentParser(description='Simulation')
+
+args_parser._action_groups.pop()
+required = args_parser.add_argument_group('required arguments')
+
+required.add_argument('--model', type=str, required=True)
+required.add_argument('--output', type=str, required=True)
+required.add_argument('--deterministic', required=True)
+required.add_argument('--direct', required=True)
+required.add_argument('--runs', type=int, required=True)
+required.add_argument('--max_time', type=float, required=True)
+required.add_argument('--volume', type=float, required=True)
+required.add_argument('--step', type=float, required=True)
+
+args = args_parser.parse_args()
+
+model_parser = Parser("model")
+model_str = open(args.model, "r").read()
+
+model = model_parser.parse(model_str)
+
+if model.success:
+    if len(model.data.params) != 0:
+        raise InvalidInputError("Provided model is parametrised - simulation cannot be executed.")
+    if not model.data.all_rates:
+        raise RatesNotSpecifiedError("Some rules do not have rates specified - simulation cannot be executed.")
+
+    if eval(args.deterministic):
+        vm = model.data.to_vector_model()
+        df = vm.deterministic_simulation(args.max_time, args.volume, args.step)
+    else:
+        if eval(args.direct):
+            df = model.data.network_free_simulation(args.max_time)
+        else:
+            vm = model.data.to_vector_model()
+            df = vm.stochastic_simulation(args.max_time, args.runs)
+
+    df.to_csv(args.output, index=None, header=True)
+else:
+    if "error" in model.data:
+        raise UnspecifiedParsingError(model.data["error"])
+    raise ModelParsingError(model.data, model_str)