Mercurial > repos > sybila > ebcsgen_simulation
diff ebcsgen_simulate.py @ 0:179d32e79968 draft
planemo upload for repository https://github.com/sybila/galaxytools/tree/master/tools/ebcsgen commit 33b83dc8c71401922b087400fa1f4080e9abe170
author | sybila |
---|---|
date | Tue, 04 Oct 2022 13:15:48 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ebcsgen_simulate.py Tue Oct 04 13:15:48 2022 +0000 @@ -0,0 +1,51 @@ +import argparse + +from eBCSgen.Errors import UnspecifiedParsingError +from eBCSgen.Errors.InvalidInputError import InvalidInputError +from eBCSgen.Errors.ModelParsingError import ModelParsingError +from eBCSgen.Errors.RatesNotSpecifiedError import RatesNotSpecifiedError +from eBCSgen.Parsing.ParseBCSL import Parser + + +args_parser = argparse.ArgumentParser(description='Simulation') + +args_parser._action_groups.pop() +required = args_parser.add_argument_group('required arguments') + +required.add_argument('--model', type=str, required=True) +required.add_argument('--output', type=str, required=True) +required.add_argument('--deterministic', required=True) +required.add_argument('--direct', required=True) +required.add_argument('--runs', type=int, required=True) +required.add_argument('--max_time', type=float, required=True) +required.add_argument('--volume', type=float, required=True) +required.add_argument('--step', type=float, required=True) + +args = args_parser.parse_args() + +model_parser = Parser("model") +model_str = open(args.model, "r").read() + +model = model_parser.parse(model_str) + +if model.success: + if len(model.data.params) != 0: + raise InvalidInputError("Provided model is parametrised - simulation cannot be executed.") + if not model.data.all_rates: + raise RatesNotSpecifiedError("Some rules do not have rates specified - simulation cannot be executed.") + + if eval(args.deterministic): + vm = model.data.to_vector_model() + df = vm.deterministic_simulation(args.max_time, args.volume, args.step) + else: + if eval(args.direct): + df = model.data.network_free_simulation(args.max_time) + else: + vm = model.data.to_vector_model() + df = vm.stochastic_simulation(args.max_time, args.runs) + + df.to_csv(args.output, index=None, header=True) +else: + if "error" in model.data: + raise UnspecifiedParsingError(model.data["error"]) + raise ModelParsingError(model.data, model_str)