Mercurial > repos > tduigou > icfree_learner
view learner.xml @ 0:da588cac4813 draft
planemo upload for repository https://github.com/brsynth/icfree-ml commit 48497f3422d15940998cf709ea74e4b1460fb76c
| author | tduigou |
|---|---|
| date | Wed, 05 Feb 2025 14:04:54 +0000 |
| parents | |
| children | 8e8569c19fa7 |
line wrap: on
line source
<tool id="icfree_learner" name="iCFree learner" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" license="MIT"> <description>Active learning and model training</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ #import os cp '$input_param_tsv' param.tsv && unzip '$input_folder_zip' -d indir && (find indir -type f | while read file; do mv "\$file" indir; done) && python -m icfree.learner --data_folder indir --parameter_file param.tsv --output_folder 'outdir' #if str($adv.name_list) != '' --name_list '$adv.name_list' #end if #if str($adv.test) == 'true' --test #end if --nb_rep '$adv.nb_rep' #if str($adv.flatten) != '' --flatten #end if #if str($adv.seed_cond.seed_param) == 'not_random' --seed '$adv.seed_cond.seed' #end if --nb_new_data_predict '$adv.nb_new_data_predict' --nb_new_data '$adv.nb_new_data' --parameter_step '$adv.parameter_step' --n_group '$adv.n_group' --km '$adv.km' --ks '$adv.ks' --save_plot --verbose && ls 'outdir' ]]></command> <inputs> <param name="input_folder_zip" type="data" format="zip" label="Zip folder containing the data files" help="Zip folder containing the data file"/> <param name="input_param_tsv" type="data" format="tabular" label="Parameter values for the experiments" help="Parameter values for the experiment"/> <section name="adv" title="Advanced Options" expanded="false"> <param name="name_list" type="text" value="" label="Labels of the feature list" help="A comma-separated string of column names or identifiers, converted to a list of strings representing columns that contain labels (y). This separates y columns from the rest (X features). (Default: Yield1,Yield2,Yield3,Yield4,Yield5)" /> <param name="test" type="boolean" label="Validate the model" help="A flag for validating the model; not required to run inside the active learning loop. If not set, skip the validating step" checked="false" /> <param name="nb_rep" type="integer" value="100" label="Number of test repetitions for validation the model behavior" help="The number of test repetitions for validating the model behavior. 80% of data is randomly separated for training, and 20% is used for testing." /> <param name="flatten" type="boolean" label="Flattent feature data" help="A flag to indicate whether to flatten Y data. If set, treats each repetition in the same experiment independently; multiple same X values with different y outputs are modeled. Else, calculates the average of y across repetitions and only model with y average." /> <param name="nb_new_data_predict" type="integer" value="1000" label="Number of new data points generated" help="The number of new data points sampled from all possible cases." /> <param name="nb_new_data" type="integer" value="50" label="Number of new data points used" help="The number of new data points selected from the generated ones. These are the data points labeled after active learning loops. `nb_new_data_predict` must be greater than `nb_new_data` to be meaningful." /> <param name="parameter_step" type="integer" value="10" label="Step size used to decrement the maximum predefined concentration sequentially" help="The step size used to decrement the maximum predefined concentration sequentially. For example, if the maximum concentration is `max`, the sequence of concentrations is calculated as: `max - 1 * parameter_step`, `max - 2 * parameter_step`, `max - 3 * parameter_step`, and so on. Each concentration is a candidate for experimental testing. Smaller steps result in more possible combinations to sample." /> <param name="n_group" type="integer" value="15" label="Number of clusters" help="Parameter for the cluster margin algorithm, specifying the number of groups into which generated data will be clustered." /> <param name="km" type="integer" value="50" label="Number of data points for the first selection" help="Parameter for the cluster margin algorithm, specifying the number of data points for the first selection. Ensure `nb_new_data_predict > ks > km`." /> <param name="ks" type="integer" value="20" label="Number of data points for the second selection" help="Parameter for the cluster margin algorithm, specifying the number of data points for the second selection. This is also similar to `nb_new_data`." /> <!-- Seed --> <conditional name="seed_cond"> <param name="seed_param" type="select" label="Seed" help="Choose a seed or let it as random"> <option value="not_random" selected="true">fixed</option> <option value="random">random</option> </param> <when value="random"/> <when value="not_random"> <param name="seed" type="text" value="85" label="Seed value" help="Only integer allowed"> <validator type="empty_field" message="Not empty, select random"/> <validator type="regex" message="Only integer allowed">^(?:\d+)$</validator> </param> </when> </conditional> </section> </inputs> <outputs> <collection name="output_csv" type="list" label="${tool.name} - Data"> <discover_datasets pattern="(?P<name>.*).csv" format="csv" directory="outdir" /> </collection> <collection name="output_png" type="list" label="${tool.name} - Plot"> <discover_datasets pattern="(?P<name>.*).png" format="png" directory="outdir" /> </collection> </outputs> <tests> <test> <!-- python -m icfree.learner -data_folder learner -parameter_file learner.input.param.tsv -output_folder tmp -save_plot -verbose -seed 85 --> <param name="input_folder_zip" value="learner.input.folder.zip" /> <param name="input_param_tsv" value="learner.input.param.tsv" /> <output_collection name="output_csv" type="list" count="1"> <element name="next_sampling_ei50" ftype="csv" > <assert_contents> <has_n_lines n="51" /> </assert_contents> </element> </output_collection> <output_collection name="output_png" type="list" count="4"> <element name="EI selected"> <assert_contents> <has_size value="77k" delta="1k"/> </assert_contents> </element> <element name="EI"> <assert_contents> <has_size value="36k" delta="1k"/> </assert_contents> </element> <element name="Train_Test"> <assert_contents> <has_size value="64k" delta="1k"/> </assert_contents> </element> <element name="Yield evolution through each active learning query"> <assert_contents> <has_size value="19k" delta="1k"/> </assert_contents> </element> </output_collection> </test> <test> <!-- python -m icfree.learner -data_folder learner -parameter_file learner.input.param.tsv -output_folder tmp2 -name_list "Yield1,Yield2" -nb_rep 5 -flatten -seed 85 -nb_new_data_predict 20 -nb_new_data 2 -parameter_step 2 -n_group 3 -km 5 -ks 2 -save_plot -verbose --> <param name="input_folder_zip" value="learner.input.folder.zip" /> <param name="input_param_tsv" value="learner.input.param.tsv" /> <param name="name_list" value="Yield1,Yield2" /> <param name="nb_rep" value="5" /> <param name="flatten" value="true" /> <param name="nb_new_data_predict" value="20" /> <param name="nb_new_data" value="2" /> <param name="parameter_step" value="2" /> <param name="n_group" value="3" /> <param name="km" value="5" /> <param name="ks" value="2" /> <output_collection name="output_csv" type="list" count="1"> <element name="next_sampling_ei5" file="learner.output.data.2.csv" ftype="csv" > <assert_contents> <has_n_lines n="6" /> </assert_contents> </element> </output_collection> <output_collection name="output_png" type="list" count="4"> <element name="EI selected"> <assert_contents> <has_size value="24k" delta="1k"/> </assert_contents> </element> <element name="EI"> <assert_contents> <has_size value="36k" delta="1k"/> </assert_contents> </element> <element name="Train_Test"> <assert_contents> <has_size value="60k" delta="1k"/> </assert_contents> </element> <element name="Yield evolution through each active learning query"> <assert_contents> <has_size value="19k" delta="1k"/> </assert_contents> </element> </output_collection> </test> </tests> <help><![CDATA[ Learner ======= Active learning and model training ]]></help> <expand macro="creator"/> <expand macro="citation"/> </tool>
