Mercurial > repos > theo.collard > ballgown_wrapper
view ballgown/ballgown.R @ 6:c637c3bf6781 draft
Uploaded
author | theo.collard |
---|---|
date | Wed, 26 Apr 2017 08:45:30 -0400 |
parents | 896cdffe06ff |
children |
line wrap: on
line source
#!/usr/bin/Rscript # Enabling commands line arguments. Using optparse which allows to use options. # ---------------------------------------------------------------------------------------- suppressMessages(library(optparse, warn.conflicts = FALSE)) opt_list=list( make_option(c("-d", "--directory"), type="character", default=NULL, help="directory containing the samples", metavar="character"), make_option(c("-p", "--phendat"), type="character", default=NULL, help="phenotype data(must be a .csv file)", metavar="character"), make_option(c("-t","--outputtranscript"), type="character", default="output_transcript.csv", help="output_transcript.csv: contains the transcripts of the expirements", metavar="character"), make_option(c("-g","--outputgenes"), type="character", default="output_genes.csv", help="output_genes.csv: contains the genes of the expirements", metavar="character"), make_option(c("-e","--texpression"), type="double", default="0.5", help="transcripts expression filter", metavar="character"), make_option(c("--bgout"), type="character", default="", help="save the ballgown object created in the process", metavar="character") ) opt_parser=OptionParser(option_list=opt_list) opt=parse_args(opt_parser) # Loading required libraries. suppressMessages() remove all noisy attachement messages # ---------------------------------------------------------------------------------------- suppressMessages(library(ballgown, warn.conflicts = FALSE)) suppressMessages(library(genefilter, warn.conflicts = FALSE)) suppressMessages(library(dplyr, warn.conflicts = FALSE)) # Setup for the tool with some bases variables. # ---------------------------------------------------------------------------------------- filtstr = opt$texpression pdat = 2 phendata = read.csv(opt$phendat) setwd(opt$dir) # Checking if the pdata file has the right samples names. # ---------------------------------------------------------------------------------------- if (all(phendata$ids == list.files(".")) != TRUE) { stop("Your phenotype data table does not match the samples names. ") } # Creation of the ballgown object based on data # ---------------------------------------------------------------------------------------- bgi = ballgown(dataDir= "." , samplePattern="", pData = phendata, verbose = FALSE) # Filter the genes with an expression superior to the input filter # ---------------------------------------------------------------------------------------- bgi_filt= subset(bgi, paste("rowVars(texpr(bgi)) >",filtstr), genomesubset = TRUE) # Creating the variables containing the transcripts and the genes and sorting them through the arrange() command. # Checking if there's one or more adjust variables in the phenotype data file # ---------------------------------------------------------------------------------------- if (ncol(pData(bgi))<=3) { results_transcripts=stattest(bgi_filt,feature = "transcript", covariate = colnames(pData(bgi))[pdat], adjustvars = colnames(pData(bgi)[pdat+1]), getFC = TRUE, meas = "FPKM") results_genes=stattest(bgi_filt,feature = "gene", covariate = colnames(pData(bgi))[pdat], adjustvars = colnames(pData(bgi)[pdat+1]), getFC = TRUE, meas = "FPKM") } else { results_transcripts=stattest(bgi_filt,feature = "transcript", covariate = colnames(pData(bgi))[pdat], adjustvars = c(colnames(pData(bgi)[pdat+1:ncol(pData(bgi))])), getFC = TRUE, meas = "FPKM") results_genes=stattest(bgi_filt,feature = "gene", covariate = colnames(pData(bgi))[pdat], adjustvars = c(colnames(pData(bgi)[pdat+1:ncol(pData(bgi))])), getFC = TRUE, meas = "FPKM") } results_transcripts = data.frame(geneNames=ballgown::geneNames(bgi_filt), geneIDs=ballgown::geneIDs(bgi_filt), results_transcripts) results_transcripts = arrange(results_transcripts,pval) results_genes = arrange(results_genes,pval) # Main output of the wrapper, two .csv files containing the genes and transcripts with their qvalue and pvalue #This part also output the data of the ballgown object created in the process and save it in a R data file # ---------------------------------------------------------------------------------------- write.csv(results_transcripts, opt$outputtranscript, row.names = FALSE) write.csv(results_genes, opt$outputgenes, row.names = FALSE) if (opt$bgout != ""){ save(bgi, file=opt$bgout) }