Mercurial > repos > theo.collard > ballgown_wrapper
changeset 2:eb1206832359 draft
Deleted selected files
author | theo.collard |
---|---|
date | Wed, 26 Apr 2017 08:41:12 -0400 |
parents | fa62657e9b57 |
children | 896cdffe06ff |
files | ballgown.R ballgown.xml |
diffstat | 2 files changed, 0 insertions(+), 308 deletions(-) [+] |
line wrap: on
line diff
--- a/ballgown.R Wed Apr 26 08:29:56 2017 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,73 +0,0 @@ -#!/usr/bin/Rscript - -# Enabling commands line arguments. Using optparse which allows to use options. -# ---------------------------------------------------------------------------------------- - -suppressMessages(library(optparse, warn.conflicts = FALSE)) -opt_list=list( -make_option(c("-d", "--directory"), type="character", default=NULL, help="directory containing the samples", metavar="character"), -make_option(c("-p", "--phendat"), type="character", default=NULL, help="phenotype data(must be a .csv file)", metavar="character"), -make_option(c("-t","--outputtranscript"), type="character", default="output_transcript.csv", help="output_transcript.csv: contains the transcripts of the expirements", metavar="character"), -make_option(c("-g","--outputgenes"), type="character", default="output_genes.csv", help="output_genes.csv: contains the genes of the expirements", metavar="character"), -make_option(c("-e","--texpression"), type="double", default="0.5", help="transcripts expression filter", metavar="character"), -make_option(c("--bgout"), type="character", default="", help="save the ballgown object created in the process", metavar="character") -) -opt_parser=OptionParser(option_list=opt_list) -opt=parse_args(opt_parser) - -# Loading required libraries. suppressMessages() remove all noisy attachement messages -# ---------------------------------------------------------------------------------------- - -suppressMessages(library(ballgown, warn.conflicts = FALSE)) -suppressMessages(library(genefilter, warn.conflicts = FALSE)) -suppressMessages(library(dplyr, warn.conflicts = FALSE)) - -# Setup for the tool with some bases variables. -# ---------------------------------------------------------------------------------------- - - -filtstr = opt$texpression -pdat = 2 -phendata = read.csv(opt$phendat) -setwd(opt$dir) - -# Checking if the pdata file has the right samples names. -# ---------------------------------------------------------------------------------------- - -if (all(phendata$ids == list.files(".")) != TRUE) -{ - stop("Your phenotype data table does not match the samples names. ") -} - -# Creation of the ballgown object based on data -# ---------------------------------------------------------------------------------------- -bgi = ballgown(dataDir= "." , samplePattern="", pData = phendata, verbose = FALSE) - -# Filter the genes with an expression superior to the input filter -# ---------------------------------------------------------------------------------------- -bgi_filt= subset(bgi, paste("rowVars(texpr(bgi)) >",filtstr), genomesubset = TRUE) - -# Creating the variables containing the transcripts and the genes and sorting them through the arrange() command. -# Checking if there's one or more adjust variables in the phenotype data file -# ---------------------------------------------------------------------------------------- - -if (ncol(pData(bgi))<=3) { - results_transcripts=stattest(bgi_filt,feature = "transcript", covariate = colnames(pData(bgi))[pdat], adjustvars = colnames(pData(bgi)[pdat+1]), getFC = TRUE, meas = "FPKM") - results_genes=stattest(bgi_filt,feature = "gene", covariate = colnames(pData(bgi))[pdat], adjustvars = colnames(pData(bgi)[pdat+1]), getFC = TRUE, meas = "FPKM") -} else { - results_transcripts=stattest(bgi_filt,feature = "transcript", covariate = colnames(pData(bgi))[pdat], adjustvars = c(colnames(pData(bgi)[pdat+1:ncol(pData(bgi))])), getFC = TRUE, meas = "FPKM") - results_genes=stattest(bgi_filt,feature = "gene", covariate = colnames(pData(bgi))[pdat], adjustvars = c(colnames(pData(bgi)[pdat+1:ncol(pData(bgi))])), getFC = TRUE, meas = "FPKM") -} - -results_transcripts = data.frame(geneNames=ballgown::geneNames(bgi_filt), geneIDs=ballgown::geneIDs(bgi_filt), results_transcripts) -results_transcripts = arrange(results_transcripts,pval) -results_genes = arrange(results_genes,pval) - -# Main output of the wrapper, two .csv files containing the genes and transcripts with their qvalue and pvalue -#This part also output the data of the ballgown object created in the process and save it in a R data file -# ---------------------------------------------------------------------------------------- -write.csv(results_transcripts, opt$outputtranscript, row.names = FALSE) -write.csv(results_genes, opt$outputgenes, row.names = FALSE) -if (opt$bgout != ""){ - save(bgi, file=opt$bgout) -}
--- a/ballgown.xml Wed Apr 26 08:29:56 2017 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,235 +0,0 @@ -<tool id="ballgown" name="Ballgown" version="0.5.0" workflow_compatible="true"> - <description>Flexible, isoform-level differential expression analysis</description> - <requirements> - <requirement type="package" version="2.2.0">bioconductor-ballgown</requirement> - <requirement type="package" version="0.5.0">r-dplyr</requirement> - <requirement type="package" version="1.3.2">r-optparse</requirement> - - </requirements> - <command interpreter="Rscript" detect_errors="aggressive"> - ##------------------------------------------------------------------------------------ - ## This function reads the input file with the mapping between samples and files - ## E.g. of result: - ## mapping = { - ## "e2t.ctab" : "sample1", - ## "other.ctab" : "sample2", - ## "i2t.ctab" : "sample1", - ## "t_data.ctab": "sample1" - ## ... - ## } - ##------------------------------------------------------------------------------------ - #def read_sample_mapping_file(sample_mapping_file): - #try - #set mapping = {} - #set file = open($sample_mapping_file.dataset.dataset.get_file_name(),'r') - #for $line in $file: - #set content= $line.strip().split('\t') - #for $map in $content: - #set mapping[$map]= $content[0] - #end for - #end for - #return $mapping - #except - #return None - #end try - #end def - - ##------------------------------------------------------------------------------------ - ## This function returns the name of the sample associated to a given file - ##------------------------------------------------------------------------------------ - #def get_sample_name($dataset, $sample_mapping): - ##If the file with samples mapping was provided - #if $sample_mapping != None: - #return $sample_mapping.get($dataset.name, None) - ##Otherwise with extract the sample name from the filename - #else: - #return str($dataset.element_identifier) - #end if - #end def - - ##------------------------------------------------------------------------------------ - ## This function reads a dataset or list of datasets and sets the corresponding value - ## in the $result variable - ## e.g. of result - ##'sample1' : { - ## 'e_data': '/export/galaxy-central/database/files/000/dataset_13.dat' - ## 'i_data': '/export/galaxy-central/database/files/000/dataset_10.dat', - ## 't_data': '/export/galaxy-central/database/files/000/dataset_12.dat', - ## 'e2t': '/export/galaxy-central/database/files/000/dataset_9.dat', - ## 'i2t': '/export/galaxy-central/database/files/000/dataset_11.dat' - ## }, - ##------------------------------------------------------------------------------------ - #def read_input_files($param_name, $param_value, $result, $sample_mapping, $create_if_empty): - ## If input is a data collection - #if isinstance($param_value, list): - ## For each dataset - #for $dataset in $param_value: - ## Get the sample name - #set sample_name = $get_sample_name($dataset, $sample_mapping) - ## Check if sample is already registered - #if not($result.has_key($sample_name)): - #if ($create_if_empty == True): - #set result[$sample_name] = {} - #else: - #raise ValueError("Error in input. Please check that input contains all the required files for sample " + $sample_name) - #end if - #end if - ## Register the file to the sample - #set result[$sample_name][$param_name] = str($dataset.dataset.dataset.get_file_name()) - #end for - #else: - #if not($result.has_key("sample_1")): - #set result["sample_1"] = {} - #end if - #set result["sample_1"][$param_name] = str($param_name.dataset.dataset.get_file_name()) - #end if - #return $result - #end def - - ##------------------------------------------------------------------------------------ - ## Main body of the tool - ##------------------------------------------------------------------------------------ - ## Set the params for the next R script - #set result={} - #set sample_mapping=None - - ## If the samples mapping file was provided, parse the content - #if $samples_names != None and not(isinstance($samples_names, list) and (None in $samples_names)): - #set sample_mapping = $read_sample_mapping_file($samples_names) - #end if - - ## READ THE CONTENT FOR e_data AND STORE THE FILES - ## INDEXED BY THEIR SAMPLE NAME - ## e.g. 'HBR_Rep1' : { - ## 'e_data': '/export/galaxy-central/database/files/000/dataset_13.dat' - ## 'i_data': '/export/galaxy-central/database/files/000/dataset_10.dat', - ## 't_data': '/export/galaxy-central/database/files/000/dataset_12.dat', - ## 'e2t': '/export/galaxy-central/database/files/000/dataset_9.dat', - ## 'i2t': '/export/galaxy-central/database/files/000/dataset_11.dat' - ## }, - ## 'HBR_Rep2' : {...} - #set $result = $read_input_files("e_data.ctab", $e_data, $result, $sample_mapping, True) - #set $result = $read_input_files("i_data.ctab", $i_data, $result, $sample_mapping, False) - #set $result = $read_input_files("t_data.ctab", $t_data, $result, $sample_mapping, False) - #set $result = $read_input_files("e2t.ctab", $e2t, $result, $sample_mapping, False) - #set $result = $read_input_files("i2t.ctab", $i2t, $result, $sample_mapping, False) - - ## For each input sample, create a directory and link the input files for ballgown - #import os - #set n_sample = 1 - #for $key, $value in $result.iteritems(): - #set dir_name = str($output.files_path) + "/" + $key + "/" - $os.makedirs($dir_name) - #for $file_name, $file_path in $value.iteritems(): - $os.symlink($file_path, $dir_name + $file_name) - #end for - #set n_sample = $n_sample + 1 - #end for - - ## Run the R script with the location of the linked files and the name for outpot file - ballgown.R --directory $output.files_path --outputtranscript $output --outputgenes $outputgn --texpression $trexpression --phendat $phendata --bgout $bgo - </command> - <inputs> - <param name="e_data" type="data" multiple="true" format="tabular" label="Exon-level expression measurements" help="One row per exon. See below for more details."/> - <param name="i_data" type="data" multiple="true" format="tabular" label="Intron- (i.e., junction-) level expression measurements" help="One row per intron. See below for more details."/> - <param name="t_data" type="data" multiple="true" format="tabular" label="Transcript-level expression measurements" help="One row per transcript. See below for more details."/> - <param name="e2t" type="data" multiple="true" format="tabular" label="Exons-transcripts mapping" help="Table with two columns, e_id and t_id, denoting which exons belong to which transcripts. See below for more details."/> - <param name="i2t" type="data" multiple="true" format="tabular" label="Introns-transcripts mapping" help="Table with two columns, i_id and t_id, denoting which introns belong to which transcripts. See below for more details."/> - <param name="samples_names" type="data" optional="true" multiple="false" format="tabular" label="File names for samples" help="Optional. Use in case that the names for the analysed samples cannot be extracted from the filenames."/> - <param argument="--phendat" name="phendata" type="data" format="csv" label="phenotype data" /> - <param argument="--texpression" name="trexpression" type="float" value="0.5" label="minimal transcript expression to appear in the results"/> - </inputs> - <outputs> - <data name="bgo" format="rda" file="ballgown_object.rda" label="${tool.name} on ${on_string}: ballgown object (R data file)"/> - <data name="output" format="csv" file="output_transcript.csv" label="${tool.name} on ${on_string}: transcripts expression (tabular)"/> - <data name="outputgn" format="csv" file="output_genes.csv" label="${tool.name} on ${on_string}: genes expression (tabular)"/> - </outputs> - <tests> - </tests> - <help> - -======================= -Ballgown -======================= ------------------------ -**What it does** ------------------------ - -Ballgown is a software package designed to facilitate flexible differential expression analysis of RNA-seq data. -The Ballgown package provides functions to organize, visualize, and analyze the expression measurements for your transcriptome assembly. - ----- - ------------------------ -**How to use** ------------------------ -The input for this tools consists on 5 files for each sample in your experiment: - -- **e_data**: exon-level expression measurements. Tab file or collection of tab files. One row per exon. Columns are e_id (numeric exon id), chr, strand, start, end (genomic location of the exon), and the following expression measurements for each sample: - * rcount: reads overlapping the exon - * ucount: uniquely mapped reads overlapping the exon - * mrcount: multi-map-corrected number of reads overlapping the exon - * cov average per-base read coverage - * cov_sd: standard deviation of per-base read coverage - * mcov: multi-map-corrected average per-base read coverage - * mcov_sd: standard deviation of multi-map-corrected per-base coverage -- **i_data**: intron- (i.e., junction-) level expression measurements. Tab file or collection of tab files. One row per intron. Columns are i_id (numeric intron id), chr, strand, start, end (genomic location of the intron), and the following expression measurements for each sample: - * rcount: number of reads supporting the intron - * ucount: number of uniquely mapped reads supporting the intron - * mrcount: multi-map-corrected number of reads supporting the intron -- **t_data**: transcript-level expression measurements. Tab file or collection of tab files. One row per transcript. Columns are: - * t_id: numeric transcript id - * chr, strand, start, end: genomic location of the transcript - * t_name: Cufflinks-generated transcript id - * num_exons: number of exons comprising the transcript - * length: transcript length, including both exons and introns - * gene_id: gene the transcript belongs to - * gene_name: HUGO gene name for the transcript, if known - * cov: per-base coverage for the transcript (available for each sample) - * FPKM: Cufflinks-estimated FPKM for the transcript (available for each sample) -- **e2t**: Tab file or collection of tab files. Table with two columns, e_id and t_id, denoting which exons belong to which transcripts. These ids match the ids in the e_data and t_data tables. -- **i2t**: Tab file or collection of tab files. Table with two columns, i_id and t_id, denoting which introns belong to which transcripts. These ids match the ids in the i_data and t_data tables. -- samples_names: (optional) Tab file. Table with five columns, one row per sample. Defines which files from the input belong to each sample in the experiment. - -.. class:: infomark - -'''TIP''' *Note* Here's an example of a good phenotype data file for your expirement. - -+--------------+-------------------------+-------------------------+---+ -|ids |experimental variable 1 |experimental variable 2 |...| -+==============+=========================+=========================+===+ -|sample 1 |value 1 |value 2 |...| -+--------------+-------------------------+-------------------------+---+ -|sample 2 |value 2 |value 1 |...| -+--------------+-------------------------+-------------------------+---+ -|sample 3 |value 1 |value 2 |...| -+--------------+-------------------------+-------------------------+---+ -|sample 4 |value 2 |value 1 |...| -+--------------+-------------------------+-------------------------+---+ -|... |value 1 |value 2 |...| -+--------------+-------------------------+-------------------------+---+ - - -.. class:: infomark - -*Note* The minimal transcript expression is a number used to filter the transcripts that -are less or not expressed in our samples when compared to the genome - ------------------------ -**Outputs** ------------------------ - -This tool has 3 outputs: - -- **transcripts expression** : this is a csv file containing all the transcripts that are expressed above the transcripts expression value -- **genes expression** : this is a csv file containing all the genes that are expressed above the transcripts expression value -- **Ballgown object** : this is the ballgown object created during the process. This file can be re-used later for further analysis in a R console. - ----- - -**Authors**: Théo Collard [SLU Global Bioinformatics Centre], Rafael Hernández de Diego [SLU Global Bioinformatics Centre], and Tomas Klingström [SLU Global Bioinformatics Centre] - -Sources are available at https://github.com/CollardT/Ballgown-Wrapper - - </help> -</tool>