Mercurial > repos > thomaswollmann > overlay_moving_and_fixed_image
comparison overlay_moving_and_fixed_image.py @ 0:bd06c3ba70b0 draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/overlay_moving_and_fixed_image/ commit 787ebcc8daa1834214bc92c201c921c704ef2d1f
| author | thomaswollmann |
|---|---|
| date | Mon, 07 Jan 2019 05:37:21 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:bd06c3ba70b0 |
|---|---|
| 1 import argparse | |
| 2 from PIL import Image | |
| 3 import skimage.io | |
| 4 import skimage.color | |
| 5 from skimage.transform import ProjectiveTransform | |
| 6 from scipy.ndimage import map_coordinates | |
| 7 import numpy as np | |
| 8 import pandas as pd | |
| 9 | |
| 10 | |
| 11 def _stackcopy(a, b): | |
| 12 if a.ndim == 3: | |
| 13 a[:] = b[:, :, np.newaxis] | |
| 14 else: | |
| 15 a[:] = b | |
| 16 | |
| 17 | |
| 18 def warp_coords_batch(coord_map, shape, dtype=np.float64, batch_size=1000000): | |
| 19 rows, cols = shape[0], shape[1] | |
| 20 coords_shape = [len(shape), rows, cols] | |
| 21 if len(shape) == 3: | |
| 22 coords_shape.append(shape[2]) | |
| 23 coords = np.empty(coords_shape, dtype=dtype) | |
| 24 | |
| 25 tf_coords = np.indices((cols, rows), dtype=dtype).reshape(2, -1).T | |
| 26 | |
| 27 for i in range(0, (tf_coords.shape[0]//batch_size+1)): | |
| 28 tf_coords[batch_size*i:batch_size*(i+1)] = coord_map(tf_coords[batch_size*i:batch_size*(i+1)]) | |
| 29 tf_coords = tf_coords.T.reshape((-1, cols, rows)).swapaxes(1, 2) | |
| 30 | |
| 31 _stackcopy(coords[1, ...], tf_coords[0, ...]) | |
| 32 _stackcopy(coords[0, ...], tf_coords[1, ...]) | |
| 33 if len(shape) == 3: | |
| 34 coords[2, ...] = range(shape[2]) | |
| 35 | |
| 36 return coords | |
| 37 | |
| 38 | |
| 39 def transform(moving_image, fixed_image, warp_matrix): | |
| 40 trans = ProjectiveTransform(matrix=warp_matrix) | |
| 41 warped_coords = warp_coords_batch(trans, fixed_image.shape) | |
| 42 return map_coordinates(moving_image, warped_coords) | |
| 43 | |
| 44 | |
| 45 def overlay(moving_image, fixed_image, factor, overlay_out_path): | |
| 46 moving_image = Image.fromarray(moving_image).convert("RGBA") | |
| 47 fixed_image = Image.fromarray(fixed_image).convert("RGBA") | |
| 48 overlay_out = Image.blend(moving_image, fixed_image, factor) | |
| 49 overlay_out.save(overlay_out_path, "PNG") | |
| 50 | |
| 51 | |
| 52 if __name__=="__main__": | |
| 53 parser = argparse.ArgumentParser(description = "Overlay two images") | |
| 54 parser.add_argument("fixed_image", help = "Path to fixed image") | |
| 55 parser.add_argument("moving_image", help = "Path to moving image") | |
| 56 parser.add_argument("warp_matrix", help="Paste path to warp_matrix.csv that should be used for transformation") | |
| 57 parser.add_argument("--inverse_transform", dest='inverse_transform', action='store_true', help="Set if inverse transform should be visualized") | |
| 58 parser.add_argument("--factor", dest = "factor", help = "Enter the factor by which images should be blended, 1.0 returns a copy of second image", type = float, default = 0.5) | |
| 59 parser.add_argument("overlay_out", help = "Overlay output path") | |
| 60 args = parser.parse_args() | |
| 61 | |
| 62 fixed_image = skimage.io.imread(args.fixed_image) | |
| 63 moving_image = skimage.io.imread(args.moving_image) | |
| 64 | |
| 65 warp_matrix = pd.read_csv(args.warp_matrix, delimiter=",", header=None) | |
| 66 warp_matrix = np.array(warp_matrix) | |
| 67 if args.inverse_transform: | |
| 68 fixed_image = transform(fixed_image, moving_image, warp_matrix) | |
| 69 else: | |
| 70 warp_matrix = np.linalg.inv(warp_matrix) | |
| 71 moving_image = transform(moving_image, fixed_image, warp_matrix) | |
| 72 | |
| 73 overlay(moving_image, fixed_image, args.factor, args.overlay_out) |
