Mercurial > repos > timpalpant > java_genomics_toolkit
view java-genomics-toolkit/src/edu/unc/genomics/visualization/KMeans.java @ 0:1daf3026d231
Upload alpha version
author | timpalpant |
---|---|
date | Mon, 13 Feb 2012 21:55:55 -0500 |
parents | |
children |
line wrap: on
line source
package edu.unc.genomics.visualization; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.nio.charset.Charset; import java.nio.file.Files; import java.nio.file.Path; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Random; import org.apache.commons.lang3.StringUtils; import org.apache.commons.math.stat.clustering.Cluster; import org.apache.commons.math.stat.clustering.KMeansPlusPlusClusterer; import org.apache.log4j.Logger; import com.beust.jcommander.Parameter; import edu.unc.genomics.CommandLineTool; import edu.unc.genomics.ReadablePathValidator; import edu.unc.genomics.io.IntervalFileSnifferException; import edu.unc.genomics.io.WigFileException; public class KMeans extends CommandLineTool { private static final Logger log = Logger.getLogger(KMeans.class); @Parameter(names = {"-i", "--input"}, description = "Input file (matrix2png format)", required = true, validateWith = ReadablePathValidator.class) public Path inputFile; @Parameter(names = {"-k", "--clusters"}, description = "Number of clusters") public int k = 10; @Parameter(names = {"-1", "--min"}, description = "Minimum column to use for clustering") public int minCol = 1; @Parameter(names = {"-2", "--max"}, description = "Maximum column to use for clustering") public Integer maxCol; @Parameter(names = {"-o", "--output"}, description = "Output file (clustered matrix2png format)", required = true) public Path outputFile; private Map<String, String> rows = new HashMap<String, String>(); private List<KMeansRow> data = new ArrayList<KMeansRow>(); @Override public void run() throws IOException { log.debug("Loading data from the input matrix"); String headerLine = ""; try (BufferedReader reader = Files.newBufferedReader(inputFile, Charset.defaultCharset())) { // Header line int lineNum = 1; headerLine = reader.readLine(); int numColsInMatrix = StringUtils.countMatches(headerLine, "\t"); // Validate the range info if (maxCol != null) { if (maxCol > numColsInMatrix) { throw new RuntimeException("Invalid range of data specified for clustering ("+maxCol+" > "+numColsInMatrix+")"); } } else { maxCol = numColsInMatrix; } // Loop over the rows and load the data String line; while ((line = reader.readLine()) != null) { lineNum++; if (StringUtils.countMatches(line, "\t") != numColsInMatrix) { throw new RuntimeException("Irregular input matrix does not have same number of columns on line " + lineNum); } int delim = line.indexOf('\t'); String id = line.substring(0, delim); String[] row = line.substring(delim+1).split("\t"); String[] subset = Arrays.copyOfRange(row, minCol, maxCol); float[] rowData = new float[subset.length]; for (int i = 0; i < subset.length; i++) { try { rowData[i] = Float.parseFloat(subset[i]); } catch (NumberFormatException e) { rowData[i] = Float.NaN; } } data.add(new KMeansRow(id, rowData)); rows.put(id, line); } } // Perform the clustering log.debug("Clustering the data"); Random rng = new Random(); KMeansPlusPlusClusterer<KMeansRow> clusterer = new KMeansPlusPlusClusterer<KMeansRow>(rng); List<Cluster<KMeansRow>> clusters = clusterer.cluster(data, k, 50); // Write to output log.debug("Writing clustered data to output file"); try (BufferedWriter writer = Files.newBufferedWriter(outputFile, Charset.defaultCharset())) { writer.write(headerLine); writer.newLine(); int n = 1; int count = 1; for (Cluster<KMeansRow> cluster : clusters) { int numRowsInCluster = cluster.getPoints().size(); int stop = count + numRowsInCluster - 1; log.info("Cluster "+(n++)+": rows "+count+"-"+stop); count = stop+1; for (KMeansRow row : cluster.getPoints()) { writer.write(rows.get(row.getId())); writer.newLine(); } } } } public static void main(String[] args) throws IOException, WigFileException, IntervalFileSnifferException { new KMeans().instanceMain(args); } }