Mercurial > repos > ufz > dfpl_predict
comparison dfpl_predict.xml @ 0:8956e949d466 draft default tip
planemo upload for repository https://github.com/Helmholtz-UFZ/galaxy-tools/tree/main/tools/dfpl commit 66c6acfeff5441c36fba97787ddc5ee3d6a4a6ec
| author | ufz |
|---|---|
| date | Thu, 19 Dec 2024 12:51:08 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:8956e949d466 |
|---|---|
| 1 <tool id="dfpl_predict" name="deepFPlearn predict" version="@TOOL_VERSION@+galaxy0" profile="23.0"> | |
| 2 <description>association of molecular structures to biological targets</description> | |
| 3 <creator> | |
| 4 <organization name="Helmholtz Centre for Environmental Research - UFZ, Research Data Management" | |
| 5 url ="https://www.ufz.de/index.php?en=45348"/> | |
| 6 </creator> | |
| 7 <macros> | |
| 8 <import>macros.xml</import> | |
| 9 </macros> | |
| 10 <expand macro="requirements"/> | |
| 11 <command detect_errors="exit_code"><![CDATA[ | |
| 12 set -o pipefail; | |
| 13 ln -s '$fnn_weights' model_weights.h5 && | |
| 14 ln -s '$autoencoder_weights' encoder_weights.h5 && | |
| 15 cat '$inputs' | |
| 16 | python '$__tool_directory__/json_flatten.py' | |
| 17 | python '$__tool_directory__/json_predict.py' | |
| 18 > config.json && | |
| 19 dfpl predict --configFile config.json && | |
| 20 cp predictions.csv '$outputFile' | |
| 21 ]]></command> | |
| 22 <configfiles> | |
| 23 <inputs name="inputs" data_style="paths"/> | |
| 24 </configfiles> | |
| 25 <inputs> | |
| 26 <section title="Input Data" name="input-data" expanded="true"> | |
| 27 <param label="Input File" argument="--inputFile" | |
| 28 type="data" format="csv" | |
| 29 help="The file containing the data for the prediction in (unquoted) comma-separated CSV format. | |
| 30 The column named 'smiles' or 'fp' contains the field to be predicted. | |
| 31 Please adjust the type that should be predicted (fp or smile) appropriately. | |
| 32 An optional column 'id' is used to assign the outcomes to the original identifiers. | |
| 33 If this column is missing, the results are numbered in the order of their appearance in the input file. | |
| 34 A header is expected and respective column names are used"/> | |
| 35 <param label="Chemical Representation" argument="--type" | |
| 36 type="select" optional="true" | |
| 37 help="Type of the chemical representation"> | |
| 38 <option value="fp" selected="true">fp</option> | |
| 39 <option value="smiles">smiles</option> | |
| 40 </param> | |
| 41 <param label="Fingerprint Type" argument="--fpType" | |
| 42 type="select" optional="true" | |
| 43 help="The type of fingerprint to be generated/used in input file"> | |
| 44 <option value="topological" selected="true">topological</option> | |
| 45 <option value="MACCS">MACCS</option> | |
| 46 </param> | |
| 47 </section> | |
| 48 <conditional name="autoencoder"> | |
| 49 <param label="Compress Fingerprints with Autoencoder" argument="--compressFeatures" | |
| 50 type="select" | |
| 51 help="Compress the fingerprints using a trained autoencoder (requires a weights file)"> | |
| 52 <option value="true">Compress fingerprints</option> | |
| 53 <option value="false">Use raw fingerprints</option> | |
| 54 </param> | |
| 55 <when value="true"> | |
| 56 <param label="Autoencoder Weights" name="autoencoder_weights" | |
| 57 type="data" format="h5" optional="false" | |
| 58 help="The autoencoder weights as generated by ``dfpl train``"/> | |
| 59 <param label="Autoencoder Type" argument="--aeType" | |
| 60 type="select" optional="true" | |
| 61 help="Autoencoder type, variational or deterministic"> | |
| 62 <option value="variational">Variational</option> | |
| 63 <option value="deterministic" selected="true">Deterministic</option> | |
| 64 </param> | |
| 65 </when> | |
| 66 <when value="false"> | |
| 67 </when> | |
| 68 </conditional> | |
| 69 <param label="Model Weights" name="fnn_weights" | |
| 70 type="data" format="h5" optional="false" | |
| 71 help="The model weights as generated by ``dfpl train``"/> | |
| 72 </inputs> | |
| 73 <outputs> | |
| 74 <data name="outputFile" | |
| 75 label="${tool.name} on ${on_string}: predicted values" | |
| 76 format="csv" /> | |
| 77 </outputs> | |
| 78 <tests> | |
| 79 <!-- TODO add test with https://zenodo.org/records/14409985 .. https://github.com/galaxyproject/galaxy/issues/19346 --> | |
| 80 <test> | |
| 81 <section name="input-data"> | |
| 82 <param name="inputFile" value="S_dataset.csv"/> | |
| 83 <param name="type" value="smiles"/> | |
| 84 <param name="fpType" value="topological"/> | |
| 85 </section> | |
| 86 <conditional name="autoencoder"> | |
| 87 <param name="compressFeatures" value="true"/> | |
| 88 <param name="autoencoder_weights" value="encoder_weights.h5" location="https://zenodo.org/api/records/14514397/files/encoder_weights.h5/content"/> | |
| 89 <param name="aeType" value="deterministic"/> | |
| 90 </conditional> | |
| 91 <param name="fnn_weights" value="model_weights.h5" location="https://zenodo.org/api/records/14514397/files/model_weights.h5/content"/> | |
| 92 <output name="outputFile"> | |
| 93 <assert_contents> | |
| 94 <has_n_lines n="7249"/> | |
| 95 <has_n_columns n="10" sep=","/> | |
| 96 <has_line n="1" line=",smiles,AR,ER,GR,Aromatase,TR,PPARg,ED,predicted"/> | |
| 97 </assert_contents> | |
| 98 </output> | |
| 99 <assert_stdout> | |
| 100 <has_text text="Prediction successful"/> | |
| 101 </assert_stdout> | |
| 102 </test> | |
| 103 </tests> | |
| 104 <help><![CDATA[ | |
| 105 This tool is the predict mode of `DeepFPLearn <https://github.com/yigbt/deepFPlearn>`_. | |
| 106 It's equivalent to running ``dfpl predict`` from the command line. | |
| 107 | |
| 108 The predict mode uses a model that was trained with ``dfpl train`` to predict | |
| 109 the association of molecular structures to a biological target. | |
| 110 | |
| 111 The input file should be a CSV file with a header. | |
| 112 | |
| 113 The tool will output the given CSV file with an additional column containing the predicted values. | |
| 114 ]]></help> | |
| 115 <expand macro="citations"/> | |
| 116 </tool> |
