Mercurial > repos > vandelj > giant_hierarchical_clustering
view src/heatMapClustering.R @ 3:dd0f4da5f68f draft
Uploaded
author | vandelj |
---|---|
date | Tue, 15 Sep 2020 15:54:23 +0000 |
parents | 14045c80a222 |
children |
line wrap: on
line source
# A command-line interface to plot heatmap based on expression or diff. exp. analysis # written by Jimmy Vandel # one of these arguments is required: # # initial.options <- commandArgs(trailingOnly = FALSE) file.arg.name <- "--file=" script.name <- sub(file.arg.name, "", initial.options[grep(file.arg.name, initial.options)]) script.basename <- dirname(script.name) source(file.path(script.basename, "utils.R")) source(file.path(script.basename, "getopt.R")) #addComment("Welcome R!") # setup R error handling to go to stderr options( show.error.messages=F, error = function () { cat(geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) # we need that to not crash galaxy with an UTF8 error on German LC settings. loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") loc <- Sys.setlocale("LC_NUMERIC", "C") #get starting time start.time <- Sys.time() options(stringAsfactors = FALSE, useFancyQuotes = FALSE, OutDec=".") #get options args <- commandArgs() # get options, using the spec as defined by the enclosed list. # we read the options from the default: commandArgs(TRUE). spec <- matrix(c( "expressionFile", "x", 1, "character", "diffAnalyseFile", "x", 1, "character", "factorInfo","x", 1, "character", "genericData","x", 0, "logical", "comparisonName","x",1,"character", "comparisonNameLow","x",1,"character", "comparisonNameHigh","x",1,"character", "filterInputOutput","x", 1, "character", "FCthreshold","x", 1, "double", "pvalThreshold","x", 1, "double", "geneListFiltering","x",1,"character", "clusterNumber","x",1,"integer", "maxRows","x",1,"integer", "sampleClusterNumber","x",1,"integer", "dataTransformation","x",1,"character", "distanceMeasure","x",1,"character", "aggloMethod","x",1,"character", "personalColors","x",1,"character", "sideBarColorPalette","x",1,"character", "format", "x", 1, "character", "quiet", "x", 0, "logical", "log", "x", 1, "character", "outputFile" , "x", 1, "character"), byrow=TRUE, ncol=4) opt <- getoptLong(spec) # enforce the following required arguments if (is.null(opt$log)) { addComment("[ERROR]'log file' is required") q( "no", 1, F ) } addComment("[INFO]Start of R script",T,opt$log,display=FALSE) if (is.null(opt$format)) { addComment("[ERROR]'output format' is required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$outputFile)) { addComment("[ERROR]'output file' is required",T,opt$log) q( "no", 1, F ) } if(is.null(opt$expressionFile) && !is.null(opt$genericData)){ addComment("[ERROR]generic data clustering is based on expression clustering",T,opt$log) q( "no", 1, F ) } if (is.null(opt$clusterNumber) || opt$clusterNumber<2) { addComment("[ERROR]valid genes clusters number is required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$sampleClusterNumber) || opt$sampleClusterNumber<1) { addComment("[ERROR]valid samples clusters number is required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$dataTransformation)) { addComment("[ERROR]data transformation option is required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$distanceMeasure)) { addComment("[ERROR]distance measure option is required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$aggloMethod)) { addComment("[ERROR]agglomeration method option is required",T,opt$log) q( "no", 1, F ) } if (is.null(opt$maxRows) || opt$maxRows<2) { addComment("[ERROR]valid plotted row number is required",T,opt$log) q( "no", 1, F ) } if (!is.null(opt[["comparisonName"]]) && nchar(opt[["comparisonName"]])==0){ addComment("[ERROR]you have to specify comparison",T,opt$log) q( "no", 1, F ) } if (!is.null(opt$comparisonNameLow) && nchar(opt$comparisonNameLow)==0){ addComment("[ERROR]you have to specify comparisonLow",T,opt$log) q( "no", 1, F ) } if (!is.null(opt$comparisonNameHigh) && nchar(opt$comparisonNameHigh)==0){ addComment("[ERROR]you have to specify comparisonHigh",T,opt$log) q( "no", 1, F ) } if (is.null(opt$genericData) && (!is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh))){ addComment("[ERROR]comparisonLow and comparisonHigh can be specified only with generic data",T,opt$log) q( "no", 1, F ) } if (!is.null(opt$genericData) && !is.null(opt[["comparisonName"]])){ addComment("[ERROR]basic comparison cannot be specified for generic data",T,opt$log) q( "no", 1, F ) } if ((!is.null(opt[["comparisonName"]]) || !is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh)) && is.null(opt$diffAnalyseFile)) { addComment("[ERROR]'diff. exp. analysis file' is required",T,opt$log) q( "no", 1, F ) } if (!is.null(opt$genericData) && !is.null(opt$diffAnalyseFile) && is.null(opt$comparisonNameLow) && is.null(opt$comparisonNameHigh)){ addComment("[ERROR]Missing comparison information for filtering",T,opt$log) q( "no", 1, F ) } if ((!is.null(opt$FCthreshold) || !is.null(opt$pvalThreshold)) && (is.null(opt[["comparisonName"]]) && is.null(opt$comparisonNameLow) && is.null(opt$comparisonNameHigh))) { addComment("[ERROR]'comparisons' are missing for filtering",T,opt$log) q( "no", 1, F ) } if ((!is.null(opt$FCthreshold) || !is.null(opt$pvalThreshold)) && !is.null(opt$geneListFiltering)) { addComment("[ERROR]Cannot have two filtering strategies",T,opt$log) q( "no", 1, F ) } verbose <- if (is.null(opt$quiet)) { TRUE }else{ FALSE} addComment("[INFO]Parameters checked!",T,opt$log,display=FALSE) addComment(c("[INFO]Working directory: ",getwd()),TRUE,opt$log,display=FALSE) addComment(c("[INFO]Command line: ",args),TRUE,opt$log,display=FALSE) #directory for plots and HTML dir.create(file.path(getwd(), "plotDir")) dir.create(file.path(getwd(), "plotLyDir")) #silent package loading suppressPackageStartupMessages({ library("plotly") library("dendextend") #library("ggdendro") #library("plyr") library("ggplot2") library("heatmaply") library("circlize") #library("RColorBrewer") #source("https://bioconductor.org/biocLite.R") #biocLite("ComplexHeatmap") library("ComplexHeatmap") #library("processx") }) expressionToCluster=!is.null(opt$expressionFile) #load input data files if(expressionToCluster){ #first expression data expressionMatrix=read.csv(file=opt$expressionFile,header=F,sep="\t",colClasses="character") #remove first row to convert it as colnames (to avoid X before colnames with header=T) colNamesData=expressionMatrix[1,-1] expressionMatrix=expressionMatrix[-1,] #remove first colum to convert it as rownames rowNamesData=expressionMatrix[,1] expressionMatrix=expressionMatrix[,-1] if(is.data.frame(expressionMatrix)){ expressionMatrix=data.matrix(expressionMatrix) }else{ expressionMatrix=data.matrix(as.numeric(expressionMatrix)) } dimnames(expressionMatrix)=list(rowNamesData,colNamesData) #check input files if (!is.numeric(expressionMatrix)) { addComment("[ERROR]Expression data is not fully numeric!",T,opt$log,display=FALSE) q( "no", 1, F ) } addComment("[INFO]Expression data loaded and checked") addComment(c("[INFO]Dim of expression matrix:",dim(expressionMatrix)),T,opt$log,display=FALSE) } nbComparisons=0 nbColPerContrast=5 comparisonMatrix=NULL comparisonMatrixInfoGene=NULL #if available comparisons if(!is.null(opt[["comparisonName"]])){ #load results from differential expression analysis #consider first row contains column names comparisonMatrix=read.csv(file=opt$diffAnalyseFile,header=F,sep="\t") colnames(comparisonMatrix)=as.character(unlist(comparisonMatrix[1,])) #remove the second line also as it's information line (p-val,FDR.p-val,FC,logFC) comparisonMatrix=comparisonMatrix[-c(1,2),] #remove first and second colums, convert the first one as rownames rownames(comparisonMatrix)=as.character(unlist(comparisonMatrix[,1])) #and save second column content that contain geneInfo comparisonMatrixInfoGene=as.character(unlist(comparisonMatrix[,2])) names(comparisonMatrixInfoGene)=as.character(unlist(comparisonMatrix[,1])) comparisonMatrix=comparisonMatrix[,-c(1,2)] comparisonMatrix=matrix(as.numeric(as.matrix(comparisonMatrix)),ncol=ncol(comparisonMatrix),dimnames = dimnames(comparisonMatrix)) if (ncol(comparisonMatrix)%%nbColPerContrast != 0) { addComment("[ERROR]Diff. exp. data does not contain good number of columns per contrast, should contains in this order:p-val,FDR.p-val,FC,log2(FC) and t-stat",T,opt$log,display=FALSE) q( "no", 1, F ) } if(max(comparisonMatrix[,c(seq(1,ncol(comparisonMatrix),nbColPerContrast),seq(2,ncol(comparisonMatrix),nbColPerContrast))])>1 || min(comparisonMatrix[,c(seq(1,ncol(comparisonMatrix),nbColPerContrast),seq(2,ncol(comparisonMatrix),nbColPerContrast))])<0){ addComment("[ERROR]Seem that diff. exp. data does not contain correct values for p-val and FDR.p-val columns, should be including in [0,1] interval",T,opt$log,display=FALSE) q( "no", 1, F ) } if (!is.numeric(comparisonMatrix)) { addComment("[ERROR]Diff. exp. data is not fully numeric!",T,opt$log,display=FALSE) q( "no", 1, F ) } if(expressionToCluster && length(setdiff(rownames(comparisonMatrix),rownames(expressionMatrix)))!=0){ addComment("[WARNING]All genes from diff. exp. file are not included in expression file",T,opt$log,display=FALSE) } if(expressionToCluster && length(setdiff(rownames(expressionMatrix),rownames(comparisonMatrix)))!=0){ addComment("[WARNING]All genes from expression file are not included in diff. exp. file",T,opt$log,display=FALSE) } addComment("[INFO]Diff. exp. analysis loaded and checked",T,opt$log,display=FALSE) addComment(c("[INFO]Dim of original comparison matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) #restrict to user specified comparisons restrictedComparisons=unlist(strsplit(opt[["comparisonName"]],",")) #should be improved to avoid selection of column names starting too similarly colToKeep=which(unlist(lapply(colnames(comparisonMatrix),function(x)any(startsWith(x,restrictedComparisons))))) comparisonMatrix=matrix(comparisonMatrix[,colToKeep],ncol=length(colToKeep),dimnames = list(rownames(comparisonMatrix),colnames(comparisonMatrix)[colToKeep])) #get number of required comparisons nbComparisons=ncol(comparisonMatrix)/nbColPerContrast addComment(c("[INFO]Dim of effective filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) } #should be only the case with generic data if(!is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh)){ #load generic data used for filtering nbColPerContrast=1 #consider first row contains column names comparisonMatrix=read.csv(file=opt$diffAnalyseFile,header=F,sep="\t") colnames(comparisonMatrix)=as.character(unlist(comparisonMatrix[1,])) #remove first colum, convert the first one as rownames rownames(comparisonMatrix)=as.character(unlist(comparisonMatrix[,1])) comparisonMatrix=comparisonMatrix[-1,-1] comparisonMatrix=matrix(as.numeric(as.matrix(comparisonMatrix)),ncol=ncol(comparisonMatrix),dimnames = dimnames(comparisonMatrix)) if (!is.numeric(comparisonMatrix)) { addComment("[ERROR]Filtering matrix is not fully numeric!",T,opt$log,display=FALSE) q( "no", 1, F ) } if(expressionToCluster && length(setdiff(rownames(comparisonMatrix),rownames(expressionMatrix)))!=0){ addComment("[WARNING]All genes from filtering file are not included in expression file",T,opt$log,display=FALSE) } if(expressionToCluster && length(setdiff(rownames(expressionMatrix),rownames(comparisonMatrix)))!=0){ addComment("[WARNING]All genes from expression file are not included in filtering file",T,opt$log,display=FALSE) } addComment("[INFO]Filtering file loaded and checked",T,opt$log,display=FALSE) addComment(c("[INFO]Dim of original filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) #restrict to user specified comparisons restrictedComparisons=c() if(!is.null(opt$comparisonNameLow))restrictedComparisons=unique(c(restrictedComparisons,unlist(strsplit(opt$comparisonNameLow,",")))) if(!is.null(opt$comparisonNameHigh))restrictedComparisons=unique(c(restrictedComparisons,unlist(strsplit(opt$comparisonNameHigh,",")))) if (!all(restrictedComparisons%in%colnames(comparisonMatrix))){ addComment("[ERROR]Selected columns in filtering file are not present in filtering matrix!",T,opt$log,display=FALSE) q( "no", 1, F ) } comparisonMatrix=matrix(comparisonMatrix[,restrictedComparisons],ncol=length(restrictedComparisons),dimnames = list(rownames(comparisonMatrix),restrictedComparisons)) #get number of required comparisons nbComparisons=ncol(comparisonMatrix) addComment(c("[INFO]Dim of effective filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE) } factorInfoMatrix=NULL if(!is.null(opt$factorInfo)){ #get group information #load factors file factorInfoMatrix=read.csv(file=opt$factorInfo,header=F,sep="\t",colClasses="character") #remove first row to convert it as colnames colnames(factorInfoMatrix)=factorInfoMatrix[1,] factorInfoMatrix=factorInfoMatrix[-1,] #use first colum to convert it as rownames but not removing it to avoid conversion as vector in unique factor case rownames(factorInfoMatrix)=factorInfoMatrix[,1] factorBarColor=colnames(factorInfoMatrix)[2] if(ncol(factorInfoMatrix)>2){ addComment("[ERROR]Factors file should not contain more than 2 columns",T,opt$log,display=FALSE) q( "no", 1, F ) } #factor file is used for color band on heatmap, so all expression matrix column should be in the factor file if(expressionToCluster && length(setdiff(colnames(expressionMatrix),rownames(factorInfoMatrix)))!=0){ addComment("[ERROR]Missing samples in factor file",T,opt$log,display=FALSE) q( "no", 1, F ) } #factor file is used for color band on heatmap, so all comparison matrix column should be in the factor file if(!expressionToCluster && length(setdiff(colnames(comparisonMatrix),rownames(factorInfoMatrix)))!=0){ addComment("[ERROR]Missing differential contrasts in factor file",T,opt$log,display=FALSE) q( "no", 1, F ) } addComment("[INFO]Factors OK",T,opt$log,display=FALSE) addComment(c("[INFO]Dim of factorInfo matrix:",dim(factorInfoMatrix)),T,opt$log,display=FALSE) } if(!is.null(opt$personalColors)){ ##parse personal colors personalColors=unlist(strsplit(opt$personalColors,",")) if(length(personalColors)==2){ ##add medium color between two to get three colors personalColors=c(personalColors[1],paste(c("#",as.character(as.hexmode(floor(apply(col2rgb(personalColors),1,mean))))),collapse=""),personalColors[2]) } if(length(personalColors)!=3){ addComment("[ERROR]Personalized colors doesn't contain enough colors",T,opt$log,display=FALSE) q( "no", 1, F ) } } if(!is.null(opt$filterInputOutput) && opt$filterInputOutput=="input"){ #filter input data if(is.null(opt$geneListFiltering)){ #filtering using stat thresholds #rowToKeep=intersect(which(comparisonMatrix[,seq(2,ncol(comparisonMatrix),4)]<=opt$pvalThreshold),which(abs(comparisonMatrix[,seq(4,ncol(comparisonMatrix),4)])>=log2(opt$FCthreshold))) if(is.null(opt$genericData)){ #diff. expression matrix rowToKeep=names(which(unlist(apply(comparisonMatrix,1,function(x)length(intersect(which(x[seq(2,length(x),nbColPerContrast)]<opt$pvalThreshold),which(abs(x[seq(4,length(x),nbColPerContrast)])>log2(opt$FCthreshold))))!=0)))) }else{ #generic filtering matrix rowToKeep=rownames(comparisonMatrix) if(!is.null(opt$comparisonNameLow)){ restrictedLowComparisons=unlist(strsplit(opt$comparisonNameLow,",")) rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedLowComparisons]>opt$FCthreshold))!=0))))) } if(!is.null(opt$comparisonNameHigh)){ restrictedHighComparisons=unlist(strsplit(opt$comparisonNameHigh,",")) rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedHighComparisons]<opt$pvalThreshold))!=0))))) } } }else{ #filtering using user gene list geneListFiltering=read.csv(opt$geneListFiltering,as.is = 1,header=F) rowToKeep=unlist(c(geneListFiltering)) } if(!is.null(comparisonMatrix) && !all(rowToKeep%in%rownames(comparisonMatrix))){ #should arrive only with user gene list filtering with diff.exp. results clustering addComment("[WARNING] some genes of the user defined list are not in the diff. exp. input file",T,opt$log) rowToKeep=intersect(rowToKeep,rownames(comparisonMatrix)) } if(expressionToCluster && !all(rowToKeep%in%rownames(expressionMatrix))){ addComment("[WARNING] some genes selected by the input filter are not in the expression file",T,opt$log) rowToKeep=intersect(rowToKeep,rownames(expressionMatrix)) } if(length(rowToKeep)==0){ addComment("[ERROR]No gene survived to the input filtering thresholds, execution will be aborted. Please consider to change threshold values and re-run the tool.",T,opt$log) q( "no", 1, F ) } #filter comparison matrix if(!is.null(comparisonMatrix)){ comparisonMatrix=matrix(comparisonMatrix[rowToKeep,],ncol=ncol(comparisonMatrix),dimnames = list(rowToKeep,colnames(comparisonMatrix))) if(!is.null(comparisonMatrixInfoGene))comparisonMatrixInfoGene=comparisonMatrixInfoGene[rowToKeep] } #then expression matrix if(expressionToCluster)expressionMatrix=matrix(expressionMatrix[rowToKeep,],ncol=ncol(expressionMatrix),dimnames = list(rowToKeep,colnames(expressionMatrix))) if(!is.null(comparisonMatrix) && expressionToCluster && nrow(comparisonMatrix)!=nrow(expressionMatrix)){ addComment("[ERROR]Problem during input filtering, please check code",T,opt$log,display=FALSE) q( "no", 1, F ) } addComment("[INFO]Filtering step done",T,opt$log,display=FALSE) addComment(c("[INFO]Input filtering step:",length(rowToKeep),"remaining rows"),T,opt$log,display=FALSE) } addComment("[INFO]Ready to plot",T,opt$log,display=FALSE) ##--------------------- #plot heatmap if(expressionToCluster){ #will make clustering based on expression value or generic value dataToHeatMap=expressionMatrix valueMeaning="Intensity" if(!is.null(opt$genericData))valueMeaning="Value" }else{ #will make clustering on log2(FC) values dataToHeatMap=matrix(comparisonMatrix[,seq(4,ncol(comparisonMatrix),nbColPerContrast)],ncol=nbComparisons,dimnames = list(rownames(comparisonMatrix),colnames(comparisonMatrix)[seq(1,ncol(comparisonMatrix),nbColPerContrast)])) valueMeaning="Log2(FC)" } addComment(c("[INFO]Dim of heatmap matrix:",dim(dataToHeatMap)),T,opt$log,display=FALSE) if(nrow(dataToHeatMap)==1 && ncol(dataToHeatMap)==1){ addComment("[ERROR]Cannot make clustering with unique cell tab",T,opt$log,display=FALSE) q( "no", 1, F ) } #apply data transformation if needed if(opt$dataTransformation=="log"){ dataToHeatMap=log(dataToHeatMap) valueMeaning=paste(c("log(",valueMeaning,")"),collapse="") addComment("[INFO]Data to cluster and to display in the heatmap are log transformed",T,opt$log,display=FALSE) } if(opt$dataTransformation=="log2"){ dataToHeatMap=log2(dataToHeatMap) valueMeaning=paste(c("log2(",valueMeaning,")"),collapse="") addComment("[INFO]Data to cluster and to display in the heatmap are log2 transformed",T,opt$log,display=FALSE) } maxRowsToDisplay=opt$maxRows nbClusters=opt$clusterNumber if(nbClusters>nrow(dataToHeatMap)){ #correct number of clusters if needed nbClusters=nrow(dataToHeatMap) addComment(c("[WARNING]Not enough rows to reach required clusters number, it is reduced to number of rows:",nbClusters),T,opt$log,display=FALSE) } nbSampleClusters=opt$sampleClusterNumber if(nbSampleClusters>ncol(dataToHeatMap)){ #correct number of clusters if needed nbSampleClusters=ncol(dataToHeatMap) addComment(c("[WARNING]Not enough columns to reach required conditions clusters number, it is reduced to number of columns:",nbSampleClusters),T,opt$log,display=FALSE) } colClust=FALSE rowClust=FALSE effectiveRowClust=FALSE #make appropriate clustering if needed if(nrow(dataToHeatMap)>1 && nbClusters>1)rowClust=hclust(distExtended(dataToHeatMap,method = opt$distanceMeasure),method = opt$aggloMethod) if(ncol(dataToHeatMap)>1 && nbSampleClusters>1)colClust=hclust(distExtended(t(dataToHeatMap),method = opt$distanceMeasure),method = opt$aggloMethod) if(nrow(dataToHeatMap)>maxRowsToDisplay){ #make subsampling based on preliminary global clustering #clusteringResults=cutree(rowClust,nbClusters) #heatMapGenesToKeep=unlist(lapply(seq(1,nbClusters),function(x)sample(which(clusteringResults==x),min(length(which(clusteringResults==x)),round(maxRowsToDisplay/nbClusters))))) ##OR #basic subsampling heatMapGenesToKeep=sample(rownames(dataToHeatMap),maxRowsToDisplay) effectiveDataToHeatMap=matrix(dataToHeatMap[heatMapGenesToKeep,],ncol=ncol(dataToHeatMap),dimnames=list(heatMapGenesToKeep,colnames(dataToHeatMap))) effectiveNbClusters=min(nbClusters,maxRowsToDisplay) if(nrow(effectiveDataToHeatMap)>1 && effectiveNbClusters>1)effectiveRowClust=hclust(distExtended(effectiveDataToHeatMap, method = opt$distanceMeasure),method = opt$aggloMethod) addComment(c("[WARNING]Too many rows for efficient heatmap drawing",maxRowsToDisplay,"subsampling is done for vizualization only"),T,opt$log,display=FALSE) rm(heatMapGenesToKeep) }else{ effectiveDataToHeatMap=dataToHeatMap effectiveRowClust=rowClust effectiveNbClusters=nbClusters } addComment(c("[INFO]Dim of plotted heatmap matrix:",dim(effectiveDataToHeatMap)),T,opt$log,display=FALSE) personalized_hoverinfo=matrix("",ncol = ncol(effectiveDataToHeatMap),nrow = nrow(effectiveDataToHeatMap),dimnames = dimnames(effectiveDataToHeatMap)) if(expressionToCluster){ for(iCol in colnames(effectiveDataToHeatMap)){for(iRow in rownames(effectiveDataToHeatMap)){personalized_hoverinfo[iRow,iCol]=paste(c("Probe: ",iRow,"\nCondition: ",iCol,"\n",valueMeaning,": ",effectiveDataToHeatMap[iRow,iCol]),collapse="")}} }else{ for(iCol in colnames(effectiveDataToHeatMap)){for(iRow in rownames(effectiveDataToHeatMap)){personalized_hoverinfo[iRow,iCol]=paste(c("Probe: ",iRow,"\nCondition: ",iCol,"\nFC: ",round(2^effectiveDataToHeatMap[iRow,iCol],2)),collapse="")}} } #trying to overcome limitation of heatmaply package to modify xtick and ytick label, using directly plotly functions, but for now plotly do not permit to have personalized color for each x/y tick separately test=FALSE if(test==TRUE){ #define dendogram shapes dd.row <- as.dendrogram(effectiveRowClust) dd.col <- as.dendrogram(colClust) #and color them dd.row=color_branches(dd.row, k = effectiveNbClusters, groupLabels = T) dd.col=color_branches(dd.col, k = nbSampleClusters, groupLabels = T) #generating function for dendogram from segment list ggdend <- function(df) { ggplot() + geom_segment(data = df, aes(x=x, y=y, xend=xend, yend=yend)) + labs(x = "", y = "") + theme_minimal() + theme(axis.text = element_blank(), axis.ticks = element_blank(), panel.grid = element_blank()) } # generate x/y dendogram plots px <- ggdend(dendro_data(dd.col)$segments) py <- ggdend(dendro_data(dd.row)$segments) + coord_flip() # reshape data matrix col.ord <- order.dendrogram(dd.col) row.ord <- order.dendrogram(dd.row) xx <- effectiveDataToHeatMap[row.ord, col.ord] # and also personalized_hoverinfo personalized_hoverinfo=personalized_hoverinfo[row.ord, col.ord] # hide axis ticks and grid lines eaxis <- list( showticklabels = FALSE, showgrid = FALSE, zeroline = FALSE ) #make the empty plot p_empty <- plot_ly() %>% layout(margin = list(l = 200), xaxis = eaxis, yaxis = eaxis) heatmap.plotly <- plot_ly( z = xx, x = 1:ncol(xx), y = 1:nrow(xx), colors = viridis(n = 101, alpha = 1, begin = 0, end = 1, option = "inferno"), type = "heatmap", showlegend = FALSE, text = personalized_hoverinfo, hoverinfo = "text", colorbar = list( # Capitalise first letter title = valueMeaning, tickmode = "array", len = 0.3 ) ) %>% layout( xaxis = list( tickfont = list(size = 10,color=get_leaves_branches_col(dd.row)), tickangle = 45, tickvals = 1:ncol(xx), ticktext = colnames(xx), linecolor = "#ffffff", range = c(0.5, ncol(xx) + 0.5), showticklabels = TRUE ), yaxis = list( tickfont = list(size = 10, color=get_leaves_branches_col(dd.col)), tickangle = 0, tickvals = 1:nrow(xx), ticktext = rownames(xx), linecolor = "#ffffff", range = c(0.5, nrow(xx) + 0.5), showticklabels = TRUE ) ) #generate plotly pp <- subplot(px, p_empty, heatmap.plotly, py, nrows = 2, margin = 0,widths = c(0.8,0.2),heights = c(0.2,0.8), shareX = TRUE, shareY = TRUE) #save image file export(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) #rise a bug due to token stuf #orca(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) #save plotLy file htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/Heatmap.html"),collapse=""),selfcontained = F) #htmlwidgets::saveWidget(as_widget(pp),"~/Bureau/test.html",selfcontained = F) }else{ #test label_names=c("Probe","Condition",valueMeaning) # #color hclust objects # dd.row=color_branches(effectiveRowClust, k = effectiveNbClusters) # #rowColors=get_leaves_branches_col(dd.row) # #rowColors[order.dendrogram(dd.row)]=rowColors # rowGroup=cutree(effectiveRowClust, k = effectiveNbClusters) # # #get order of class as they will be displayed on the dendogram # rowGroupRenamed=data.frame(cluster=mapvalues(rowGroup, unique(rowGroup[order.dendrogram(dd.row)[nleaves(dd.row):1]]), 1:effectiveNbClusters)) # # dd.col=color_branches(colClust, k = nbSampleClusters) # #colColors=get_leaves_branches_col(dd.col) # #colColors[order.dendrogram(dd.col)]=colColors # colGroup=cutree(colClust, k = nbSampleClusters) # # # #get order of class as they will be displayed on the dendogram # colGroupRenamed=data.frame(sampleCluster=mapvalues(colGroup, unique(colGroup[order.dendrogram(dd.col)[nleaves(dd.col):1]]), 1:nbSampleClusters)) #while option is not correctly managed by heatmap apply, put personalized_hoverinfo to NULL personalized_hoverinfo=NULL if(is.null(opt$personalColors)){ heatmapColors=viridis(n = 101, alpha = 1, begin = 0, end = 1, option = "inferno") }else{ heatmapColors=personalColors } colGroupRenamed=NULL if(!is.null(factorInfoMatrix)){ colGroupRenamed=eval(parse(text=(paste("data.frame(",factorBarColor,"=factorInfoMatrix[colnames(effectiveDataToHeatMap),2])",sep="")))) sideBarGroupNb=length(table(factorInfoMatrix[colnames(effectiveDataToHeatMap),2])) sideBarColorPaletteName="Spectral" if(!is.null(opt$sideBarColorPalette) && opt$sideBarColorPalette%in%rownames(RColorBrewer::brewer.pal.info)){ sideBarColorPaletteName=opt$sideBarColorPalette } sideBarColorPalette=setNames(colorRampPalette(RColorBrewer::brewer.pal(RColorBrewer::brewer.pal.info[sideBarColorPaletteName,"maxcolors"], sideBarColorPaletteName))(sideBarGroupNb),unique(factorInfoMatrix[colnames(effectiveDataToHeatMap),2])) } if(!is.null(colGroupRenamed)){ pp <- heatmaply(effectiveDataToHeatMap,key.title = valueMeaning,k_row=effectiveNbClusters,k_col=nbSampleClusters,col_side_colors=colGroupRenamed,col_side_palette=sideBarColorPalette,Rowv=effectiveRowClust,Colv=colClust,label_names=label_names,custom_hovertext=personalized_hoverinfo,plot_method = "plotly",colors = heatmapColors) }else{ pp <- heatmaply(effectiveDataToHeatMap,key.title = valueMeaning,k_row=effectiveNbClusters,k_col=nbSampleClusters,Rowv=effectiveRowClust,Colv=colClust,label_names=label_names,custom_hovertext=personalized_hoverinfo,plot_method = "plotly",colors = heatmapColors) } #save image file export(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) #rise a bug due to token stuf #orca(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse="")) #save plotLy file htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/Heatmap.html"),collapse=""),selfcontained = F) } addComment("[INFO]Heatmap drawn",T,opt$log,display=FALSE) #plot circular heatmap if(!class(effectiveRowClust)=="logical"){ dendo=as.dendrogram(effectiveRowClust) if(is.null(opt$personalColors)){ col_fun = colorRamp2(quantile(effectiveDataToHeatMap,probs = seq(0,1,0.01)), viridis(101,option = "inferno")) }else{ col_fun = colorRamp2(quantile(effectiveDataToHeatMap,probs = seq(0,1,0.5)), personalColors) } if(opt$format=="pdf"){ pdf(paste(c("./plotDir/circularPlot.pdf"),collapse=""))}else{ png(paste(c("./plotDir/circularPlot.png"),collapse="")) } circos.par(cell.padding = c(0, 0, 0, 0), gap.degree = 5) circos.initialize(c(rep("a",nrow(effectiveDataToHeatMap)),"b"),xlim=cbind(c(0,0),c(nrow(effectiveDataToHeatMap),5))) circos.track(ylim = c(0, 1), bg.border = NA, panel.fun = function(x, y) { if(CELL_META$sector.index=="a"){ nr = ncol(effectiveDataToHeatMap) nc = nrow(effectiveDataToHeatMap) circos.text(1:nc- 0.5, rep(0,nc), adj = c(0, 0), rownames(effectiveDataToHeatMap)[order.dendrogram(dendo)], facing = "clockwise", niceFacing = TRUE, cex = 0.3) } }) circos.track(ylim = c(0, ncol(effectiveDataToHeatMap)), bg.border = NA, panel.fun = function(x, y) { m = t(matrix(effectiveDataToHeatMap[order.dendrogram(dendo),],ncol=ncol(effectiveDataToHeatMap))) col_mat = col_fun(m) nr = nrow(m) nc = ncol(m) if(CELL_META$sector.index=="a"){ for(i in 1:nr) { circos.rect(1:nc - 1, rep(nr - i, nc), 1:nc, rep(nr - i + 1, nc), border = col_mat[i, ], col = col_mat[i, ]) } }else{ circos.text(rep(1,nr), seq(nr,1,-1) , colnames(effectiveDataToHeatMap),cex = 0.3) } }) #dendo = color_branches(dendo, k = effectiveNbClusters, col = colorRampPalette(brewer.pal(12,"Set3"))(effectiveNbClusters)) dendo = color_branches(dendo, k = effectiveNbClusters, col = rev(colorspace::rainbow_hcl(effectiveNbClusters))) circos.track(ylim = c(0, attributes(dendo)$height), bg.border = NA, track.height = 0.25, panel.fun = function(x, y) { if(CELL_META$sector.index=="a")circos.dendrogram(dendo)} ) circos.clear() ##add legend lgd_links = Legend(at = seq(ceiling(min(effectiveDataToHeatMap)),floor(max(effectiveDataToHeatMap)),ceiling((floor(max(effectiveDataToHeatMap))-ceiling(min(effectiveDataToHeatMap)))/4)), col_fun = col_fun, title_position = "topleft", grid_width = unit(5, "mm") ,title = valueMeaning) pushViewport(viewport(x = 0.85, y = 0.80, width = 0.1, height = 0.1, just = c("left", "bottom"))) grid.draw(lgd_links) upViewport() dev.off() addComment("[INFO]Circular heatmap drawn",T,opt$log,display=FALSE) loc <- Sys.setlocale("LC_NUMERIC","C") }else{ addComment(c("[WARNING]Circular plot will not be plotted considering row or cluster number < 2"),T,opt$log,display=FALSE) } rm(effectiveDataToHeatMap,effectiveRowClust,effectiveNbClusters) #plot screeplot if(class(rowClust)!="logical" && nrow(dataToHeatMap)>2){ screePlotData=c() for(iNbClusters in 2:(nbClusters+min(10,max(0,nrow(dataToHeatMap)-nbClusters)))){ clusteringResults=cutree(rowClust,iNbClusters) #clusteringResults=kmeans(dataToHeatMap,iNbClusters)$cluster #compute variance between each intra-class points amongst themselves (need at least 3 points by cluster) #screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>2){var(dist(dataToHeatMap[temp,]))}else{0}}))) ) #compute variance between each intra-class points and fictive mean point (need at least 2 points by cluster) #screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ var(dist(rbind(apply(dataToHeatMap[temp,],2,mean),dataToHeatMap[temp,]))[1:length(temp)]) }else{0}}))) ) if(ncol(dataToHeatMap)>1)screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ sum((distExtended(rbind(apply(dataToHeatMap[temp,],2,mean),dataToHeatMap[temp,]),method = opt$distanceMeasure)[1:length(temp)])^2) }else{0}}))) ) else screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ sum((dataToHeatMap[temp,]-mean(dataToHeatMap[temp,]))^2) }else{0}}))) ) } dataToPlot=data.frame(clusterNb=seq(2,length(screePlotData)+1),wcss=screePlotData) p <- ggplot(data=dataToPlot, aes(clusterNb,wcss)) + geom_point(colour="#EE4444") + geom_line(colour="#DD9999") + ggtitle("Scree plot") + theme_bw() + xlab(label="Cluster number") + ylab(label="Within cluster sum of squares") + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),legend.position = "none") + scale_x_continuous(breaks=seq(min(dataToPlot$clusterNb), max(dataToPlot$clusterNb), 1)) #save plotly files pp <- ggplotly(p) if(opt$format=="pdf"){ pdf(paste(c("./plotDir/screePlot.pdf"),collapse=""))}else{ png(paste(c("./plotDir/screePlot.png"),collapse="")) } plot(p) dev.off() #save plotly files htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/screePlot.html"),collapse=""),selfcontained = F) addComment("[INFO]Scree plot drawn",T,opt$log,display=FALSE) }else{ addComment(c("[WARNING]Scree plot will not be plotted considering row number <= 2"),T,opt$log,display=FALSE) } ##---------------------- #filter output based on parameters rowToKeep=rownames(dataToHeatMap) if(!is.null(opt$filterInputOutput) && opt$filterInputOutput=="output"){ #rowToKeep=intersect(which(comparisonMatrix[,seq(2,ncol(comparisonMatrix),4)]<=opt$pvalThreshold),which(abs(comparisonMatrix[,seq(4,ncol(comparisonMatrix),4)])>=log2(opt$FCthreshold))) if(is.null(opt$geneListFiltering)){ if(is.null(opt$genericData)){ #diff. expression matrix rowToKeep=names(which(unlist(apply(comparisonMatrix,1,function(x)length(intersect(which(x[seq(2,length(x),nbColPerContrast)]<=opt$pvalThreshold),which(abs(x[seq(4,length(x),nbColPerContrast)])>=log2(opt$FCthreshold))))!=0)))) }else{ #generic filtering matrix rowToKeep=rownames(comparisonMatrix) if(!is.null(opt$comparisonNameLow)){ restrictedLowComparisons=unlist(strsplit(opt$comparisonNameLow,",")) rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedLowComparisons]>opt$FCthreshold))!=0))))) } if(!is.null(opt$comparisonNameHigh)){ restrictedHighComparisons=unlist(strsplit(opt$comparisonNameHigh,",")) rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedHighComparisons]<opt$pvalThreshold))!=0))))) } } }else{ geneListFiltering=read.csv(opt$geneListFiltering,as.is = 1,header=F) rowToKeep=unlist(c(geneListFiltering)) } if(!is.null(comparisonMatrix) && !all(rowToKeep%in%rownames(comparisonMatrix))){ #should arrive only with user gene list filtering with diff.exp. results clustering addComment("[WARNING] some genes of the user defined list are not in the diff. exp. input file",T,opt$log) rowToKeep=intersect(rowToKeep,rownames(comparisonMatrix)) } if(expressionToCluster && !all(rowToKeep%in%rownames(expressionMatrix))){ addComment("[WARNING] some genes selected by the output filter are not in the expression file",T,opt$log) rowToKeep=intersect(rowToKeep,rownames(expressionMatrix)) } addComment(c("[INFO]Output filtering step:",length(rowToKeep),"remaining rows"),T,opt$log,display=FALSE) } #we add differential analysis info in output if it was directly used for clustering or when it was used for filtering with expression #in case of expression or generic data clustering without filtering based on external stats if(expressionToCluster && is.null(comparisonMatrix)){ if(length(rowToKeep)==0){ addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE) outputData=matrix(c("Gene","Cluster","noGene","noClustering"),ncol=2,nrow=2,byrow = TRUE) }else{ outputData=matrix(0,ncol=2,nrow=length(rowToKeep)+1) outputData[1,]=c("Gene","Cluster") outputData[2:(length(rowToKeep)+1),1]=rowToKeep if(class(rowClust)!="logical" ){ outputData[2:(length(rowToKeep)+1),2]=cutree(rowClust,nbClusters)[rowToKeep] }else{ outputData[2:(length(rowToKeep)+1),2]=0 } } } #in case of generic data clustering with filtering based on generic external data if(!is.null(opt$genericData) && !is.null(comparisonMatrix)){ if(length(rowToKeep)==0){ addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE) outputData=matrix(c("Gene","Cluster","noGene","noClustering"),ncol=2,nrow=2,byrow = TRUE) }else{ outputData=matrix(0,ncol=2+nbComparisons,nrow=length(rowToKeep)+1) outputData[1,]=c("Gene","Cluster",colnames(comparisonMatrix)) outputData[2:(length(rowToKeep)+1),1]=rowToKeep if(class(rowClust)!="logical" ){ outputData[2:(length(rowToKeep)+1),2]=cutree(rowClust,nbClusters)[rowToKeep] }else{ outputData[2:(length(rowToKeep)+1),2]=0 } outputData[2:(length(rowToKeep)+1),3:(ncol(comparisonMatrix)+2)]=prettyNum(comparisonMatrix[rowToKeep,],digits=4) } } #in case of expression data clustering with filtering based on diff. exp. results or diff. exp. results clustering if(is.null(opt$genericData) && !is.null(comparisonMatrix)){ if(length(rowToKeep)==0){ addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE) outputData=matrix(0,ncol=3,nrow=3) outputData[1,]=c("","","Comparison") outputData[2,]=c("Gene","Info","Cluster") outputData[3,]=c("noGene","noInfo","noClustering") }else{ outputData=matrix(0,ncol=3+nbComparisons*nbColPerContrast,nrow=length(rowToKeep)+2) outputData[1,]=c("","","Comparison",rep(colnames(comparisonMatrix)[seq(1,ncol(comparisonMatrix),nbColPerContrast)],each=nbColPerContrast)) outputData[2,]=c("Gene","Info","Cluster",rep(c("p-val","FDR.p-val","FC","log2(FC)","t-stat"),nbComparisons)) outputData[3:(length(rowToKeep)+2),1]=rowToKeep outputData[3:(length(rowToKeep)+2),2]=comparisonMatrixInfoGene[rowToKeep] if(class(rowClust)!="logical" ){ outputData[3:(length(rowToKeep)+2),3]=cutree(rowClust,nbClusters)[rowToKeep] }else{ outputData[3:(length(rowToKeep)+2),3]=0 } outputData[3:(length(rowToKeep)+2),4:(ncol(comparisonMatrix)+3)]=prettyNum(comparisonMatrix[rowToKeep,],digits=4) } } addComment("[INFO]Formated output",T,opt$log,display=FALSE) write.table(outputData,file=opt$outputFile,quote=FALSE,sep="\t",col.names = F,row.names = F) ##---------------------- end.time <- Sys.time() addComment(c("[INFO]Total execution time for R script:",as.numeric(end.time - start.time,units="mins"),"mins"),T,opt$log,display=FALSE) addComment("[INFO]End of R script",T,opt$log,display=FALSE) printSessionInfo(opt$log) #sessionInfo()