comparison src/heatMapClustering.R @ 0:f274c8d45613 draft

"planemo upload for repository https://github.com/juliechevalier/GIANT/tree/master commit cb276a594444c8f32e9819fefde3a21f121d35df"
author vandelj
date Fri, 26 Jun 2020 09:43:41 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:f274c8d45613
1 # A command-line interface to plot heatmap based on expression or diff. exp. analysis
2 # written by Jimmy Vandel
3 # one of these arguments is required:
4 #
5 #
6 initial.options <- commandArgs(trailingOnly = FALSE)
7 file.arg.name <- "--file="
8 script.name <- sub(file.arg.name, "", initial.options[grep(file.arg.name, initial.options)])
9 script.basename <- dirname(script.name)
10 source(file.path(script.basename, "utils.R"))
11 source(file.path(script.basename, "getopt.R"))
12
13 #addComment("Welcome R!")
14
15 # setup R error handling to go to stderr
16 options( show.error.messages=F, error = function () { cat(geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
17
18 # we need that to not crash galaxy with an UTF8 error on German LC settings.
19 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
20 loc <- Sys.setlocale("LC_NUMERIC", "C")
21
22 #get starting time
23 start.time <- Sys.time()
24
25
26 options(stringAsfactors = FALSE, useFancyQuotes = FALSE, OutDec=".")
27
28 #get options
29 args <- commandArgs()
30
31 # get options, using the spec as defined by the enclosed list.
32 # we read the options from the default: commandArgs(TRUE).
33 spec <- matrix(c(
34 "expressionFile", "x", 1, "character",
35 "diffAnalyseFile", "x", 1, "character",
36 "factorInfo","x", 1, "character",
37 "genericData","x", 0, "logical",
38 "comparisonName","x",1,"character",
39 "comparisonNameLow","x",1,"character",
40 "comparisonNameHigh","x",1,"character",
41 "filterInputOutput","x", 1, "character",
42 "FCthreshold","x", 1, "double",
43 "pvalThreshold","x", 1, "double",
44 "geneListFiltering","x",1,"character",
45 "clusterNumber","x",1,"integer",
46 "maxRows","x",1,"integer",
47 "sampleClusterNumber","x",1,"integer",
48 "dataTransformation","x",1,"character",
49 "distanceMeasure","x",1,"character",
50 "aggloMethod","x",1,"character",
51 "personalColors","x",1,"character",
52 "sideBarColorPalette","x",1,"character",
53 "format", "x", 1, "character",
54 "quiet", "x", 0, "logical",
55 "log", "x", 1, "character",
56 "outputFile" , "x", 1, "character"),
57 byrow=TRUE, ncol=4)
58 opt <- getoptLong(spec)
59
60 # enforce the following required arguments
61 if (is.null(opt$log)) {
62 addComment("[ERROR]'log file' is required")
63 q( "no", 1, F )
64 }
65 addComment("[INFO]Start of R script",T,opt$log,display=FALSE)
66 if (is.null(opt$format)) {
67 addComment("[ERROR]'output format' is required",T,opt$log)
68 q( "no", 1, F )
69 }
70 if (is.null(opt$outputFile)) {
71 addComment("[ERROR]'output file' is required",T,opt$log)
72 q( "no", 1, F )
73 }
74
75 if(is.null(opt$expressionFile) && !is.null(opt$genericData)){
76 addComment("[ERROR]generic data clustering is based on expression clustering",T,opt$log)
77 q( "no", 1, F )
78 }
79
80 if (is.null(opt$clusterNumber) || opt$clusterNumber<2) {
81 addComment("[ERROR]valid genes clusters number is required",T,opt$log)
82 q( "no", 1, F )
83 }
84
85 if (is.null(opt$sampleClusterNumber) || opt$sampleClusterNumber<1) {
86 addComment("[ERROR]valid samples clusters number is required",T,opt$log)
87 q( "no", 1, F )
88 }
89
90 if (is.null(opt$dataTransformation)) {
91 addComment("[ERROR]data transformation option is required",T,opt$log)
92 q( "no", 1, F )
93 }
94
95 if (is.null(opt$distanceMeasure)) {
96 addComment("[ERROR]distance measure option is required",T,opt$log)
97 q( "no", 1, F )
98 }
99
100 if (is.null(opt$aggloMethod)) {
101 addComment("[ERROR]agglomeration method option is required",T,opt$log)
102 q( "no", 1, F )
103 }
104
105 if (is.null(opt$maxRows) || opt$maxRows<2) {
106 addComment("[ERROR]valid plotted row number is required",T,opt$log)
107 q( "no", 1, F )
108 }
109
110 if (!is.null(opt[["comparisonName"]]) && nchar(opt[["comparisonName"]])==0){
111 addComment("[ERROR]you have to specify comparison",T,opt$log)
112 q( "no", 1, F )
113 }
114
115 if (!is.null(opt$comparisonNameLow) && nchar(opt$comparisonNameLow)==0){
116 addComment("[ERROR]you have to specify comparisonLow",T,opt$log)
117 q( "no", 1, F )
118 }
119
120 if (!is.null(opt$comparisonNameHigh) && nchar(opt$comparisonNameHigh)==0){
121 addComment("[ERROR]you have to specify comparisonHigh",T,opt$log)
122 q( "no", 1, F )
123 }
124
125 if (is.null(opt$genericData) && (!is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh))){
126 addComment("[ERROR]comparisonLow and comparisonHigh can be specified only with generic data",T,opt$log)
127 q( "no", 1, F )
128 }
129
130 if (!is.null(opt$genericData) && !is.null(opt[["comparisonName"]])){
131 addComment("[ERROR]basic comparison cannot be specified for generic data",T,opt$log)
132 q( "no", 1, F )
133 }
134
135 if ((!is.null(opt[["comparisonName"]]) || !is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh)) && is.null(opt$diffAnalyseFile)) {
136 addComment("[ERROR]'diff. exp. analysis file' is required",T,opt$log)
137 q( "no", 1, F )
138 }
139
140 if (!is.null(opt$genericData) && !is.null(opt$diffAnalyseFile) && is.null(opt$comparisonNameLow) && is.null(opt$comparisonNameHigh)){
141 addComment("[ERROR]Missing comparison information for filtering",T,opt$log)
142 q( "no", 1, F )
143 }
144
145 if ((!is.null(opt$FCthreshold) || !is.null(opt$pvalThreshold)) && (is.null(opt[["comparisonName"]]) && is.null(opt$comparisonNameLow) && is.null(opt$comparisonNameHigh))) {
146 addComment("[ERROR]'comparisons' are missing for filtering",T,opt$log)
147 q( "no", 1, F )
148 }
149
150 if ((!is.null(opt$FCthreshold) || !is.null(opt$pvalThreshold)) && !is.null(opt$geneListFiltering)) {
151 addComment("[ERROR]Cannot have two filtering strategies",T,opt$log)
152 q( "no", 1, F )
153 }
154
155 verbose <- if (is.null(opt$quiet)) {
156 TRUE
157 }else{
158 FALSE}
159
160 addComment("[INFO]Parameters checked!",T,opt$log,display=FALSE)
161
162 addComment(c("[INFO]Working directory: ",getwd()),TRUE,opt$log,display=FALSE)
163 addComment(c("[INFO]Command line: ",args),TRUE,opt$log,display=FALSE)
164
165 #directory for plots and HTML
166 dir.create(file.path(getwd(), "plotDir"))
167 dir.create(file.path(getwd(), "plotLyDir"))
168
169 #silent package loading
170 suppressPackageStartupMessages({
171 library("plotly")
172 library("dendextend")
173 #library("ggdendro")
174 #library("plyr")
175 library("ggplot2")
176 library("heatmaply")
177 library("circlize")
178 #library("RColorBrewer")
179 #source("https://bioconductor.org/biocLite.R")
180 #biocLite("ComplexHeatmap")
181 library("ComplexHeatmap")
182 #library("processx")
183 })
184
185 expressionToCluster=!is.null(opt$expressionFile)
186
187 #load input data files
188 if(expressionToCluster){
189 #first expression data
190 expressionMatrix=read.csv(file=opt$expressionFile,header=F,sep="\t",colClasses="character")
191 #remove first row to convert it as colnames (to avoid X before colnames with header=T)
192 colNamesData=expressionMatrix[1,-1]
193 expressionMatrix=expressionMatrix[-1,]
194 #remove first colum to convert it as rownames
195 rowNamesData=expressionMatrix[,1]
196 expressionMatrix=expressionMatrix[,-1]
197 if(is.data.frame(expressionMatrix)){
198 expressionMatrix=data.matrix(expressionMatrix)
199 }else{
200 expressionMatrix=data.matrix(as.numeric(expressionMatrix))
201 }
202 dimnames(expressionMatrix)=list(rowNamesData,colNamesData)
203
204 #check input files
205 if (!is.numeric(expressionMatrix)) {
206 addComment("[ERROR]Expression data is not fully numeric!",T,opt$log,display=FALSE)
207 q( "no", 1, F )
208 }
209
210 addComment("[INFO]Expression data loaded and checked")
211 addComment(c("[INFO]Dim of expression matrix:",dim(expressionMatrix)),T,opt$log,display=FALSE)
212 }
213
214 nbComparisons=0
215 nbColPerContrast=5
216 comparisonMatrix=NULL
217 comparisonMatrixInfoGene=NULL
218 #if available comparisons
219 if(!is.null(opt[["comparisonName"]])){
220 #load results from differential expression analysis
221 #consider first row contains column names
222 comparisonMatrix=read.csv(file=opt$diffAnalyseFile,header=F,sep="\t")
223 colnames(comparisonMatrix)=as.character(unlist(comparisonMatrix[1,]))
224 #remove the second line also as it's information line (p-val,FDR.p-val,FC,logFC)
225 comparisonMatrix=comparisonMatrix[-c(1,2),]
226 #remove first and second colums, convert the first one as rownames
227 rownames(comparisonMatrix)=as.character(unlist(comparisonMatrix[,1]))
228 #and save second column content that contain geneInfo
229 comparisonMatrixInfoGene=as.character(unlist(comparisonMatrix[,2]))
230 names(comparisonMatrixInfoGene)=as.character(unlist(comparisonMatrix[,1]))
231 comparisonMatrix=comparisonMatrix[,-c(1,2)]
232
233 comparisonMatrix=matrix(as.numeric(as.matrix(comparisonMatrix)),ncol=ncol(comparisonMatrix),dimnames = dimnames(comparisonMatrix))
234
235 if (ncol(comparisonMatrix)%%nbColPerContrast != 0) {
236 addComment("[ERROR]Diff. exp. data does not contain good number of columns per contrast, should contains in this order:p-val,FDR.p-val,FC,log2(FC) and t-stat",T,opt$log,display=FALSE)
237 q( "no", 1, F )
238 }
239
240 if(max(comparisonMatrix[,c(seq(1,ncol(comparisonMatrix),nbColPerContrast),seq(2,ncol(comparisonMatrix),nbColPerContrast))])>1 || min(comparisonMatrix[,c(seq(1,ncol(comparisonMatrix),nbColPerContrast),seq(2,ncol(comparisonMatrix),nbColPerContrast))])<0){
241 addComment("[ERROR]Seem that diff. exp. data does not contain correct values for p-val and FDR.p-val columns, should be including in [0,1] interval",T,opt$log,display=FALSE)
242 q( "no", 1, F )
243 }
244
245 if (!is.numeric(comparisonMatrix)) {
246 addComment("[ERROR]Diff. exp. data is not fully numeric!",T,opt$log,display=FALSE)
247 q( "no", 1, F )
248 }
249
250 if(expressionToCluster && length(setdiff(rownames(comparisonMatrix),rownames(expressionMatrix)))!=0){
251 addComment("[WARNING]All genes from diff. exp. file are not included in expression file",T,opt$log,display=FALSE)
252 }
253
254 if(expressionToCluster && length(setdiff(rownames(expressionMatrix),rownames(comparisonMatrix)))!=0){
255 addComment("[WARNING]All genes from expression file are not included in diff. exp. file",T,opt$log,display=FALSE)
256 }
257
258 addComment("[INFO]Diff. exp. analysis loaded and checked",T,opt$log,display=FALSE)
259 addComment(c("[INFO]Dim of original comparison matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE)
260
261 #restrict to user specified comparisons
262 restrictedComparisons=unlist(strsplit(opt[["comparisonName"]],","))
263 #should be improved to avoid selection of column names starting too similarly
264 colToKeep=which(unlist(lapply(colnames(comparisonMatrix),function(x)any(startsWith(x,restrictedComparisons)))))
265 comparisonMatrix=matrix(comparisonMatrix[,colToKeep],ncol=length(colToKeep),dimnames = list(rownames(comparisonMatrix),colnames(comparisonMatrix)[colToKeep]))
266
267 #get number of required comparisons
268 nbComparisons=ncol(comparisonMatrix)/nbColPerContrast
269
270 addComment(c("[INFO]Dim of effective filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE)
271 }
272
273 #should be only the case with generic data
274 if(!is.null(opt$comparisonNameLow) || !is.null(opt$comparisonNameHigh)){
275 #load generic data used for filtering
276 nbColPerContrast=1
277 #consider first row contains column names
278 comparisonMatrix=read.csv(file=opt$diffAnalyseFile,header=F,sep="\t")
279 colnames(comparisonMatrix)=as.character(unlist(comparisonMatrix[1,]))
280 #remove first colum, convert the first one as rownames
281 rownames(comparisonMatrix)=as.character(unlist(comparisonMatrix[,1]))
282 comparisonMatrix=comparisonMatrix[-1,-1]
283
284 comparisonMatrix=matrix(as.numeric(as.matrix(comparisonMatrix)),ncol=ncol(comparisonMatrix),dimnames = dimnames(comparisonMatrix))
285
286 if (!is.numeric(comparisonMatrix)) {
287 addComment("[ERROR]Filtering matrix is not fully numeric!",T,opt$log,display=FALSE)
288 q( "no", 1, F )
289 }
290
291 if(expressionToCluster && length(setdiff(rownames(comparisonMatrix),rownames(expressionMatrix)))!=0){
292 addComment("[WARNING]All genes from filtering file are not included in expression file",T,opt$log,display=FALSE)
293 }
294
295 if(expressionToCluster && length(setdiff(rownames(expressionMatrix),rownames(comparisonMatrix)))!=0){
296 addComment("[WARNING]All genes from expression file are not included in filtering file",T,opt$log,display=FALSE)
297 }
298
299 addComment("[INFO]Filtering file loaded and checked",T,opt$log,display=FALSE)
300 addComment(c("[INFO]Dim of original filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE)
301
302 #restrict to user specified comparisons
303 restrictedComparisons=c()
304 if(!is.null(opt$comparisonNameLow))restrictedComparisons=unique(c(restrictedComparisons,unlist(strsplit(opt$comparisonNameLow,","))))
305 if(!is.null(opt$comparisonNameHigh))restrictedComparisons=unique(c(restrictedComparisons,unlist(strsplit(opt$comparisonNameHigh,","))))
306
307 if (!all(restrictedComparisons%in%colnames(comparisonMatrix))){
308 addComment("[ERROR]Selected columns in filtering file are not present in filtering matrix!",T,opt$log,display=FALSE)
309 q( "no", 1, F )
310 }
311 comparisonMatrix=matrix(comparisonMatrix[,restrictedComparisons],ncol=length(restrictedComparisons),dimnames = list(rownames(comparisonMatrix),restrictedComparisons))
312
313 #get number of required comparisons
314 nbComparisons=ncol(comparisonMatrix)
315
316 addComment(c("[INFO]Dim of effective filtering matrix:",dim(comparisonMatrix)),T,opt$log,display=FALSE)
317 }
318
319
320
321 factorInfoMatrix=NULL
322 if(!is.null(opt$factorInfo)){
323 #get group information
324 #load factors file
325 factorInfoMatrix=read.csv(file=opt$factorInfo,header=F,sep="\t",colClasses="character")
326 #remove first row to convert it as colnames
327 colnames(factorInfoMatrix)=factorInfoMatrix[1,]
328 factorInfoMatrix=factorInfoMatrix[-1,]
329 #use first colum to convert it as rownames but not removing it to avoid conversion as vector in unique factor case
330 rownames(factorInfoMatrix)=factorInfoMatrix[,1]
331
332 factorBarColor=colnames(factorInfoMatrix)[2]
333
334 if(ncol(factorInfoMatrix)>2){
335 addComment("[ERROR]Factors file should not contain more than 2 columns",T,opt$log,display=FALSE)
336 q( "no", 1, F )
337 }
338
339 #factor file is used for color band on heatmap, so all expression matrix column should be in the factor file
340 if(expressionToCluster && length(setdiff(colnames(expressionMatrix),rownames(factorInfoMatrix)))!=0){
341 addComment("[ERROR]Missing samples in factor file",T,opt$log,display=FALSE)
342 q( "no", 1, F )
343 }
344
345 #factor file is used for color band on heatmap, so all comparison matrix column should be in the factor file
346 if(!expressionToCluster && length(setdiff(colnames(comparisonMatrix),rownames(factorInfoMatrix)))!=0){
347 addComment("[ERROR]Missing differential contrasts in factor file",T,opt$log,display=FALSE)
348 q( "no", 1, F )
349 }
350
351 addComment("[INFO]Factors OK",T,opt$log,display=FALSE)
352 addComment(c("[INFO]Dim of factorInfo matrix:",dim(factorInfoMatrix)),T,opt$log,display=FALSE)
353 }
354
355 if(!is.null(opt$personalColors)){
356 ##parse personal colors
357 personalColors=unlist(strsplit(opt$personalColors,","))
358 if(length(personalColors)==2){
359 ##add medium color between two to get three colors
360 personalColors=c(personalColors[1],paste(c("#",as.character(as.hexmode(floor(apply(col2rgb(personalColors),1,mean))))),collapse=""),personalColors[2])
361 }
362 if(length(personalColors)!=3){
363 addComment("[ERROR]Personalized colors doesn't contain enough colors",T,opt$log,display=FALSE)
364 q( "no", 1, F )
365 }
366
367 }
368
369
370 if(!is.null(opt$filterInputOutput) && opt$filterInputOutput=="input"){
371 #filter input data
372
373 if(is.null(opt$geneListFiltering)){
374 #filtering using stat thresholds
375 #rowToKeep=intersect(which(comparisonMatrix[,seq(2,ncol(comparisonMatrix),4)]<=opt$pvalThreshold),which(abs(comparisonMatrix[,seq(4,ncol(comparisonMatrix),4)])>=log2(opt$FCthreshold)))
376 if(is.null(opt$genericData)){
377 #diff. expression matrix
378 rowToKeep=names(which(unlist(apply(comparisonMatrix,1,function(x)length(intersect(which(x[seq(2,length(x),nbColPerContrast)]<opt$pvalThreshold),which(abs(x[seq(4,length(x),nbColPerContrast)])>log2(opt$FCthreshold))))!=0))))
379 }else{
380 #generic filtering matrix
381 rowToKeep=rownames(comparisonMatrix)
382 if(!is.null(opt$comparisonNameLow)){
383 restrictedLowComparisons=unlist(strsplit(opt$comparisonNameLow,","))
384 rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedLowComparisons]>opt$FCthreshold))!=0)))))
385 }
386 if(!is.null(opt$comparisonNameHigh)){
387 restrictedHighComparisons=unlist(strsplit(opt$comparisonNameHigh,","))
388 rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedHighComparisons]<opt$pvalThreshold))!=0)))))
389 }
390 }
391 }else{
392 #filtering using user gene list
393 geneListFiltering=read.csv(opt$geneListFiltering,as.is = 1,header=F)
394 rowToKeep=unlist(c(geneListFiltering))
395 }
396
397 if(!is.null(comparisonMatrix) && !all(rowToKeep%in%rownames(comparisonMatrix))){
398 #should arrive only with user gene list filtering with diff.exp. results clustering
399 addComment("[WARNING] some genes of the user defined list are not in the diff. exp. input file",T,opt$log)
400 rowToKeep=intersect(rowToKeep,rownames(comparisonMatrix))
401 }
402
403 if(expressionToCluster && !all(rowToKeep%in%rownames(expressionMatrix))){
404 addComment("[WARNING] some genes selected by the input filter are not in the expression file",T,opt$log)
405 rowToKeep=intersect(rowToKeep,rownames(expressionMatrix))
406 }
407
408 if(length(rowToKeep)==0){
409 addComment("[ERROR]No gene survived to the input filtering thresholds, execution will be aborted.
410 Please consider to change threshold values and re-run the tool.",T,opt$log)
411 q( "no", 1, F )
412 }
413
414 #filter comparison matrix
415 if(!is.null(comparisonMatrix)){
416 comparisonMatrix=matrix(comparisonMatrix[rowToKeep,],ncol=ncol(comparisonMatrix),dimnames = list(rowToKeep,colnames(comparisonMatrix)))
417 if(!is.null(comparisonMatrixInfoGene))comparisonMatrixInfoGene=comparisonMatrixInfoGene[rowToKeep]
418 }
419 #then expression matrix
420 if(expressionToCluster)expressionMatrix=matrix(expressionMatrix[rowToKeep,],ncol=ncol(expressionMatrix),dimnames = list(rowToKeep,colnames(expressionMatrix)))
421
422 if(!is.null(comparisonMatrix) && expressionToCluster && nrow(comparisonMatrix)!=nrow(expressionMatrix)){
423 addComment("[ERROR]Problem during input filtering, please check code",T,opt$log,display=FALSE)
424 q( "no", 1, F )
425 }
426
427 addComment("[INFO]Filtering step done",T,opt$log,display=FALSE)
428 addComment(c("[INFO]Input filtering step:",length(rowToKeep),"remaining rows"),T,opt$log,display=FALSE)
429 }
430
431
432 addComment("[INFO]Ready to plot",T,opt$log,display=FALSE)
433
434 ##---------------------
435
436 #plot heatmap
437 if(expressionToCluster){
438 #will make clustering based on expression value or generic value
439 dataToHeatMap=expressionMatrix
440 valueMeaning="Intensity"
441 if(!is.null(opt$genericData))valueMeaning="Value"
442 }else{
443 #will make clustering on log2(FC) values
444 dataToHeatMap=matrix(comparisonMatrix[,seq(4,ncol(comparisonMatrix),nbColPerContrast)],ncol=nbComparisons,dimnames = list(rownames(comparisonMatrix),colnames(comparisonMatrix)[seq(1,ncol(comparisonMatrix),nbColPerContrast)]))
445 valueMeaning="Log2(FC)"
446 }
447 addComment(c("[INFO]Dim of heatmap matrix:",dim(dataToHeatMap)),T,opt$log,display=FALSE)
448
449 if(nrow(dataToHeatMap)==1 && ncol(dataToHeatMap)==1){
450 addComment("[ERROR]Cannot make clustering with unique cell tab",T,opt$log,display=FALSE)
451 q( "no", 1, F )
452 }
453
454
455 #apply data transformation if needed
456 if(opt$dataTransformation=="log"){
457 dataToHeatMap=log(dataToHeatMap)
458 valueMeaning=paste(c("log(",valueMeaning,")"),collapse="")
459 addComment("[INFO]Data to cluster and to display in the heatmap are log transformed",T,opt$log,display=FALSE)
460 }
461 if(opt$dataTransformation=="log2"){
462 dataToHeatMap=log2(dataToHeatMap)
463 valueMeaning=paste(c("log2(",valueMeaning,")"),collapse="")
464 addComment("[INFO]Data to cluster and to display in the heatmap are log2 transformed",T,opt$log,display=FALSE)
465 }
466
467 maxRowsToDisplay=opt$maxRows
468
469 nbClusters=opt$clusterNumber
470 if(nbClusters>nrow(dataToHeatMap)){
471 #correct number of clusters if needed
472 nbClusters=nrow(dataToHeatMap)
473 addComment(c("[WARNING]Not enough rows to reach required clusters number, it is reduced to number of rows:",nbClusters),T,opt$log,display=FALSE)
474 }
475
476 nbSampleClusters=opt$sampleClusterNumber
477 if(nbSampleClusters>ncol(dataToHeatMap)){
478 #correct number of clusters if needed
479 nbSampleClusters=ncol(dataToHeatMap)
480 addComment(c("[WARNING]Not enough columns to reach required conditions clusters number, it is reduced to number of columns:",nbSampleClusters),T,opt$log,display=FALSE)
481 }
482
483 colClust=FALSE
484 rowClust=FALSE
485 effectiveRowClust=FALSE
486
487 #make appropriate clustering if needed
488 if(nrow(dataToHeatMap)>1 && nbClusters>1)rowClust=hclust(distExtended(dataToHeatMap,method = opt$distanceMeasure),method = opt$aggloMethod)
489 if(ncol(dataToHeatMap)>1 && nbSampleClusters>1)colClust=hclust(distExtended(t(dataToHeatMap),method = opt$distanceMeasure),method = opt$aggloMethod)
490
491 if(nrow(dataToHeatMap)>maxRowsToDisplay){
492 #make subsampling based on preliminary global clustering
493 #clusteringResults=cutree(rowClust,nbClusters)
494 #heatMapGenesToKeep=unlist(lapply(seq(1,nbClusters),function(x)sample(which(clusteringResults==x),min(length(which(clusteringResults==x)),round(maxRowsToDisplay/nbClusters)))))
495 ##OR
496 #basic subsampling
497 heatMapGenesToKeep=sample(rownames(dataToHeatMap),maxRowsToDisplay)
498 effectiveDataToHeatMap=matrix(dataToHeatMap[heatMapGenesToKeep,],ncol=ncol(dataToHeatMap),dimnames=list(heatMapGenesToKeep,colnames(dataToHeatMap)))
499 effectiveNbClusters=min(nbClusters,maxRowsToDisplay)
500 if(nrow(effectiveDataToHeatMap)>1 && effectiveNbClusters>1)effectiveRowClust=hclust(distExtended(effectiveDataToHeatMap, method = opt$distanceMeasure),method = opt$aggloMethod)
501 addComment(c("[WARNING]Too many rows for efficient heatmap drawing",maxRowsToDisplay,"subsampling is done for vizualization only"),T,opt$log,display=FALSE)
502 rm(heatMapGenesToKeep)
503 }else{
504 effectiveDataToHeatMap=dataToHeatMap
505 effectiveRowClust=rowClust
506 effectiveNbClusters=nbClusters
507 }
508
509 addComment(c("[INFO]Dim of plotted heatmap matrix:",dim(effectiveDataToHeatMap)),T,opt$log,display=FALSE)
510
511 personalized_hoverinfo=matrix("",ncol = ncol(effectiveDataToHeatMap),nrow = nrow(effectiveDataToHeatMap),dimnames = dimnames(effectiveDataToHeatMap))
512 if(expressionToCluster){
513 for(iCol in colnames(effectiveDataToHeatMap)){for(iRow in rownames(effectiveDataToHeatMap)){personalized_hoverinfo[iRow,iCol]=paste(c("Probe: ",iRow,"\nCondition: ",iCol,"\n",valueMeaning,": ",effectiveDataToHeatMap[iRow,iCol]),collapse="")}}
514 }else{
515 for(iCol in colnames(effectiveDataToHeatMap)){for(iRow in rownames(effectiveDataToHeatMap)){personalized_hoverinfo[iRow,iCol]=paste(c("Probe: ",iRow,"\nCondition: ",iCol,"\nFC: ",round(2^effectiveDataToHeatMap[iRow,iCol],2)),collapse="")}}
516 }
517
518 #trying to overcome limitation of heatmaply package to modify xtick and ytick label, using directly plotly functions, but for now plotly do not permit to have personalized color for each x/y tick separately
519 test=FALSE
520 if(test==TRUE){
521
522 #define dendogram shapes
523 dd.row <- as.dendrogram(effectiveRowClust)
524 dd.col <- as.dendrogram(colClust)
525
526 #and color them
527 dd.row=color_branches(dd.row, k = effectiveNbClusters, groupLabels = T)
528 dd.col=color_branches(dd.col, k = nbSampleClusters, groupLabels = T)
529
530 #generating function for dendogram from segment list
531 ggdend <- function(df) {
532 ggplot() +
533 geom_segment(data = df, aes(x=x, y=y, xend=xend, yend=yend)) +
534 labs(x = "", y = "") + theme_minimal() +
535 theme(axis.text = element_blank(), axis.ticks = element_blank(),
536 panel.grid = element_blank())
537 }
538
539 # generate x/y dendogram plots
540 px <- ggdend(dendro_data(dd.col)$segments)
541 py <- ggdend(dendro_data(dd.row)$segments) + coord_flip()
542
543 # reshape data matrix
544 col.ord <- order.dendrogram(dd.col)
545 row.ord <- order.dendrogram(dd.row)
546 xx <- effectiveDataToHeatMap[row.ord, col.ord]
547 # and also personalized_hoverinfo
548 personalized_hoverinfo=personalized_hoverinfo[row.ord, col.ord]
549
550 # hide axis ticks and grid lines
551 eaxis <- list(
552 showticklabels = FALSE,
553 showgrid = FALSE,
554 zeroline = FALSE
555 )
556
557 #make the empty plot
558 p_empty <- plot_ly() %>%
559 layout(margin = list(l = 200),
560 xaxis = eaxis,
561 yaxis = eaxis)
562
563 heatmap.plotly <- plot_ly(
564 z = xx, x = 1:ncol(xx), y = 1:nrow(xx), colors = viridis(n = 101, alpha = 1, begin = 0, end = 1, option = "inferno"),
565 type = "heatmap", showlegend = FALSE, text = personalized_hoverinfo, hoverinfo = "text",
566 colorbar = list(
567 # Capitalise first letter
568 title = valueMeaning,
569 tickmode = "array",
570 len = 0.3
571 )
572 ) %>%
573 layout(
574 xaxis = list(
575 tickfont = list(size = 10,color=get_leaves_branches_col(dd.row)),
576 tickangle = 45,
577 tickvals = 1:ncol(xx), ticktext = colnames(xx),
578 linecolor = "#ffffff",
579 range = c(0.5, ncol(xx) + 0.5),
580 showticklabels = TRUE
581 ),
582 yaxis = list(
583 tickfont = list(size = 10, color=get_leaves_branches_col(dd.col)),
584 tickangle = 0,
585 tickvals = 1:nrow(xx), ticktext = rownames(xx),
586 linecolor = "#ffffff",
587 range = c(0.5, nrow(xx) + 0.5),
588 showticklabels = TRUE
589 )
590 )
591
592 #generate plotly
593 pp <- subplot(px, p_empty, heatmap.plotly, py, nrows = 2, margin = 0,widths = c(0.8,0.2),heights = c(0.2,0.8), shareX = TRUE,
594 shareY = TRUE)
595
596 #save image file
597 export(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse=""))
598 #rise a bug due to token stuf
599 #orca(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse=""))
600
601
602 #save plotLy file
603 htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/Heatmap.html"),collapse=""),selfcontained = F)
604
605 #htmlwidgets::saveWidget(as_widget(pp),"~/Bureau/test.html",selfcontained = F)
606
607 }else{ #test
608 label_names=c("Probe","Condition",valueMeaning)
609
610 # #color hclust objects
611 # dd.row=color_branches(effectiveRowClust, k = effectiveNbClusters)
612 # #rowColors=get_leaves_branches_col(dd.row)
613 # #rowColors[order.dendrogram(dd.row)]=rowColors
614 # rowGroup=cutree(effectiveRowClust, k = effectiveNbClusters)
615 #
616 # #get order of class as they will be displayed on the dendogram
617 # rowGroupRenamed=data.frame(cluster=mapvalues(rowGroup, unique(rowGroup[order.dendrogram(dd.row)[nleaves(dd.row):1]]), 1:effectiveNbClusters))
618 #
619 # dd.col=color_branches(colClust, k = nbSampleClusters)
620 # #colColors=get_leaves_branches_col(dd.col)
621 # #colColors[order.dendrogram(dd.col)]=colColors
622 # colGroup=cutree(colClust, k = nbSampleClusters)
623 #
624 # # #get order of class as they will be displayed on the dendogram
625 # colGroupRenamed=data.frame(sampleCluster=mapvalues(colGroup, unique(colGroup[order.dendrogram(dd.col)[nleaves(dd.col):1]]), 1:nbSampleClusters))
626
627
628 #while option is not correctly managed by heatmap apply, put personalized_hoverinfo to NULL
629 personalized_hoverinfo=NULL
630
631 if(is.null(opt$personalColors)){
632 heatmapColors=viridis(n = 101, alpha = 1, begin = 0, end = 1, option = "inferno")
633 }else{
634 heatmapColors=personalColors
635 }
636
637 colGroupRenamed=NULL
638 if(!is.null(factorInfoMatrix)){
639 colGroupRenamed=eval(parse(text=(paste("data.frame(",factorBarColor,"=factorInfoMatrix[colnames(effectiveDataToHeatMap),2])",sep=""))))
640 sideBarGroupNb=length(table(factorInfoMatrix[colnames(effectiveDataToHeatMap),2]))
641 sideBarColorPaletteName="Spectral"
642 if(!is.null(opt$sideBarColorPalette) && opt$sideBarColorPalette%in%rownames(RColorBrewer::brewer.pal.info)){
643 sideBarColorPaletteName=opt$sideBarColorPalette
644 }
645 sideBarColorPalette=setNames(colorRampPalette(RColorBrewer::brewer.pal(RColorBrewer::brewer.pal.info[sideBarColorPaletteName,"maxcolors"], sideBarColorPaletteName))(sideBarGroupNb),unique(factorInfoMatrix[colnames(effectiveDataToHeatMap),2]))
646 }
647
648 if(!is.null(colGroupRenamed)){
649 pp <- heatmaply(effectiveDataToHeatMap,key.title = valueMeaning,k_row=effectiveNbClusters,k_col=nbSampleClusters,col_side_colors=colGroupRenamed,col_side_palette=sideBarColorPalette,Rowv=effectiveRowClust,Colv=colClust,label_names=label_names,custom_hovertext=personalized_hoverinfo,plot_method = "plotly",colors = heatmapColors)
650 }else{
651 pp <- heatmaply(effectiveDataToHeatMap,key.title = valueMeaning,k_row=effectiveNbClusters,k_col=nbSampleClusters,Rowv=effectiveRowClust,Colv=colClust,label_names=label_names,custom_hovertext=personalized_hoverinfo,plot_method = "plotly",colors = heatmapColors)
652 }
653
654
655 #save image file
656 export(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse=""))
657 #rise a bug due to token stuf
658 #orca(pp, file = paste(c(file.path(getwd(), "plotDir"),"/Heatmap.",opt$format),collapse=""))
659
660
661 #save plotLy file
662 htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/Heatmap.html"),collapse=""),selfcontained = F)
663
664 }
665 addComment("[INFO]Heatmap drawn",T,opt$log,display=FALSE)
666
667
668 #plot circular heatmap
669 if(!class(effectiveRowClust)=="logical"){
670 dendo=as.dendrogram(effectiveRowClust)
671
672 if(is.null(opt$personalColors)){
673 col_fun = colorRamp2(quantile(effectiveDataToHeatMap,probs = seq(0,1,0.01)), viridis(101,option = "inferno"))
674 }else{
675 col_fun = colorRamp2(quantile(effectiveDataToHeatMap,probs = seq(0,1,0.5)), personalColors)
676 }
677
678 if(opt$format=="pdf"){
679 pdf(paste(c("./plotDir/circularPlot.pdf"),collapse=""))}else{
680 png(paste(c("./plotDir/circularPlot.png"),collapse=""))
681 }
682
683 circos.par(cell.padding = c(0, 0, 0, 0), gap.degree = 5)
684 circos.initialize(c(rep("a",nrow(effectiveDataToHeatMap)),"b"),xlim=cbind(c(0,0),c(nrow(effectiveDataToHeatMap),5)))
685 circos.track(ylim = c(0, 1), bg.border = NA, panel.fun = function(x, y) {
686 if(CELL_META$sector.index=="a"){
687 nr = ncol(effectiveDataToHeatMap)
688 nc = nrow(effectiveDataToHeatMap)
689 circos.text(1:nc- 0.5, rep(0,nc), adj = c(0, 0),
690 rownames(effectiveDataToHeatMap)[order.dendrogram(dendo)], facing = "clockwise", niceFacing = TRUE, cex = 0.3)
691 }
692 })
693
694 circos.track(ylim = c(0, ncol(effectiveDataToHeatMap)), bg.border = NA, panel.fun = function(x, y) {
695
696 m = t(matrix(effectiveDataToHeatMap[order.dendrogram(dendo),],ncol=ncol(effectiveDataToHeatMap)))
697 col_mat = col_fun(m)
698 nr = nrow(m)
699 nc = ncol(m)
700 if(CELL_META$sector.index=="a"){
701 for(i in 1:nr) {
702 circos.rect(1:nc - 1, rep(nr - i, nc),
703 1:nc, rep(nr - i + 1, nc),
704 border = col_mat[i, ], col = col_mat[i, ])
705 }
706 }else{
707 circos.text(rep(1,nr), seq(nr,1,-1) , colnames(effectiveDataToHeatMap),cex = 0.3)
708 }
709 })
710
711 #dendo = color_branches(dendo, k = effectiveNbClusters, col = colorRampPalette(brewer.pal(12,"Set3"))(effectiveNbClusters))
712 dendo = color_branches(dendo, k = effectiveNbClusters, col = rev(colorspace::rainbow_hcl(effectiveNbClusters)))
713
714
715 circos.track(ylim = c(0, attributes(dendo)$height), bg.border = NA, track.height = 0.25,
716 panel.fun = function(x, y) {
717 if(CELL_META$sector.index=="a")circos.dendrogram(dendo)} )
718
719 circos.clear()
720 ##add legend
721 lgd_links = Legend(at = seq(ceiling(min(effectiveDataToHeatMap)),floor(max(effectiveDataToHeatMap)),ceiling((floor(max(effectiveDataToHeatMap))-ceiling(min(effectiveDataToHeatMap)))/4)), col_fun = col_fun,
722 title_position = "topleft", grid_width = unit(5, "mm") ,title = valueMeaning)
723
724 pushViewport(viewport(x = 0.85, y = 0.80,
725 width = 0.1,
726 height = 0.1,
727 just = c("left", "bottom")))
728 grid.draw(lgd_links)
729 upViewport()
730
731
732 dev.off()
733
734 addComment("[INFO]Circular heatmap drawn",T,opt$log,display=FALSE)
735 loc <- Sys.setlocale("LC_NUMERIC","C")
736 }else{
737 addComment(c("[WARNING]Circular plot will not be plotted considering row or cluster number < 2"),T,opt$log,display=FALSE)
738 }
739 rm(effectiveDataToHeatMap,effectiveRowClust,effectiveNbClusters)
740
741 #plot screeplot
742 if(class(rowClust)!="logical" && nrow(dataToHeatMap)>2){
743 screePlotData=c()
744 for(iNbClusters in 2:(nbClusters+min(10,max(0,nrow(dataToHeatMap)-nbClusters)))){
745 clusteringResults=cutree(rowClust,iNbClusters)
746 #clusteringResults=kmeans(dataToHeatMap,iNbClusters)$cluster
747
748 #compute variance between each intra-class points amongst themselves (need at least 3 points by cluster)
749 #screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>2){var(dist(dataToHeatMap[temp,]))}else{0}}))) )
750 #compute variance between each intra-class points and fictive mean point (need at least 2 points by cluster)
751 #screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ var(dist(rbind(apply(dataToHeatMap[temp,],2,mean),dataToHeatMap[temp,]))[1:length(temp)]) }else{0}}))) )
752 if(ncol(dataToHeatMap)>1)screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ sum((distExtended(rbind(apply(dataToHeatMap[temp,],2,mean),dataToHeatMap[temp,]),method = opt$distanceMeasure)[1:length(temp)])^2) }else{0}}))) )
753 else screePlotData=c(screePlotData,sum(unlist(lapply(seq(1,iNbClusters),function(x){temp=which(clusteringResults==x);if(length(temp)>1){ sum((dataToHeatMap[temp,]-mean(dataToHeatMap[temp,]))^2) }else{0}}))) )
754 }
755
756 dataToPlot=data.frame(clusterNb=seq(2,length(screePlotData)+1),wcss=screePlotData)
757 p <- ggplot(data=dataToPlot, aes(clusterNb,wcss)) + geom_point(colour="#EE4444") + geom_line(colour="#DD9999") +
758 ggtitle("Scree plot") + theme_bw() + xlab(label="Cluster number") + ylab(label="Within cluster sum of squares") +
759 theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),legend.position = "none") +
760 scale_x_continuous(breaks=seq(min(dataToPlot$clusterNb), max(dataToPlot$clusterNb), 1))
761
762 #save plotly files
763 pp <- ggplotly(p)
764
765 if(opt$format=="pdf"){
766 pdf(paste(c("./plotDir/screePlot.pdf"),collapse=""))}else{
767 png(paste(c("./plotDir/screePlot.png"),collapse=""))
768 }
769 plot(p)
770 dev.off()
771
772 #save plotly files
773 htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/screePlot.html"),collapse=""),selfcontained = F)
774
775 addComment("[INFO]Scree plot drawn",T,opt$log,display=FALSE)
776 }else{
777 addComment(c("[WARNING]Scree plot will not be plotted considering row number <= 2"),T,opt$log,display=FALSE)
778 }
779
780 ##----------------------
781
782 #filter output based on parameters
783
784 rowToKeep=rownames(dataToHeatMap)
785 if(!is.null(opt$filterInputOutput) && opt$filterInputOutput=="output"){
786 #rowToKeep=intersect(which(comparisonMatrix[,seq(2,ncol(comparisonMatrix),4)]<=opt$pvalThreshold),which(abs(comparisonMatrix[,seq(4,ncol(comparisonMatrix),4)])>=log2(opt$FCthreshold)))
787 if(is.null(opt$geneListFiltering)){
788 if(is.null(opt$genericData)){
789 #diff. expression matrix
790 rowToKeep=names(which(unlist(apply(comparisonMatrix,1,function(x)length(intersect(which(x[seq(2,length(x),nbColPerContrast)]<=opt$pvalThreshold),which(abs(x[seq(4,length(x),nbColPerContrast)])>=log2(opt$FCthreshold))))!=0))))
791 }else{
792 #generic filtering matrix
793 rowToKeep=rownames(comparisonMatrix)
794 if(!is.null(opt$comparisonNameLow)){
795 restrictedLowComparisons=unlist(strsplit(opt$comparisonNameLow,","))
796 rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedLowComparisons]>opt$FCthreshold))!=0)))))
797 }
798 if(!is.null(opt$comparisonNameHigh)){
799 restrictedHighComparisons=unlist(strsplit(opt$comparisonNameHigh,","))
800 rowToKeep=intersect(rowToKeep,names(which(unlist(apply(comparisonMatrix,1,function(x)length(which(x[restrictedHighComparisons]<opt$pvalThreshold))!=0)))))
801 }
802 }
803 }else{
804 geneListFiltering=read.csv(opt$geneListFiltering,as.is = 1,header=F)
805 rowToKeep=unlist(c(geneListFiltering))
806 }
807 if(!is.null(comparisonMatrix) && !all(rowToKeep%in%rownames(comparisonMatrix))){
808 #should arrive only with user gene list filtering with diff.exp. results clustering
809 addComment("[WARNING] some genes of the user defined list are not in the diff. exp. input file",T,opt$log)
810 rowToKeep=intersect(rowToKeep,rownames(comparisonMatrix))
811 }
812
813 if(expressionToCluster && !all(rowToKeep%in%rownames(expressionMatrix))){
814 addComment("[WARNING] some genes selected by the output filter are not in the expression file",T,opt$log)
815 rowToKeep=intersect(rowToKeep,rownames(expressionMatrix))
816 }
817 addComment(c("[INFO]Output filtering step:",length(rowToKeep),"remaining rows"),T,opt$log,display=FALSE)
818 }
819
820 #we add differential analysis info in output if it was directly used for clustering or when it was used for filtering with expression
821
822 #in case of expression or generic data clustering without filtering based on external stats
823 if(expressionToCluster && is.null(comparisonMatrix)){
824 if(length(rowToKeep)==0){
825 addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE)
826 outputData=matrix(c("Gene","Cluster","noGene","noClustering"),ncol=2,nrow=2,byrow = TRUE)
827 }else{
828 outputData=matrix(0,ncol=2,nrow=length(rowToKeep)+1)
829 outputData[1,]=c("Gene","Cluster")
830 outputData[2:(length(rowToKeep)+1),1]=rowToKeep
831 if(class(rowClust)!="logical" ){
832 outputData[2:(length(rowToKeep)+1),2]=cutree(rowClust,nbClusters)[rowToKeep]
833 }else{
834 outputData[2:(length(rowToKeep)+1),2]=0
835 }
836 }
837 }
838
839 #in case of generic data clustering with filtering based on generic external data
840 if(!is.null(opt$genericData) && !is.null(comparisonMatrix)){
841 if(length(rowToKeep)==0){
842 addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE)
843 outputData=matrix(c("Gene","Cluster","noGene","noClustering"),ncol=2,nrow=2,byrow = TRUE)
844 }else{
845 outputData=matrix(0,ncol=2+nbComparisons,nrow=length(rowToKeep)+1)
846 outputData[1,]=c("Gene","Cluster",colnames(comparisonMatrix))
847 outputData[2:(length(rowToKeep)+1),1]=rowToKeep
848 if(class(rowClust)!="logical" ){
849 outputData[2:(length(rowToKeep)+1),2]=cutree(rowClust,nbClusters)[rowToKeep]
850 }else{
851 outputData[2:(length(rowToKeep)+1),2]=0
852 }
853 outputData[2:(length(rowToKeep)+1),3:(ncol(comparisonMatrix)+2)]=prettyNum(comparisonMatrix[rowToKeep,],digits=4)
854 }
855 }
856
857 #in case of expression data clustering with filtering based on diff. exp. results or diff. exp. results clustering
858 if(is.null(opt$genericData) && !is.null(comparisonMatrix)){
859 if(length(rowToKeep)==0){
860 addComment("[WARNING]No more gene after output filtering step, tabular output will be empty",T,opt$log,display=FALSE)
861 outputData=matrix(0,ncol=3,nrow=3)
862 outputData[1,]=c("","","Comparison")
863 outputData[2,]=c("Gene","Info","Cluster")
864 outputData[3,]=c("noGene","noInfo","noClustering")
865 }else{
866 outputData=matrix(0,ncol=3+nbComparisons*nbColPerContrast,nrow=length(rowToKeep)+2)
867 outputData[1,]=c("","","Comparison",rep(colnames(comparisonMatrix)[seq(1,ncol(comparisonMatrix),nbColPerContrast)],each=nbColPerContrast))
868 outputData[2,]=c("Gene","Info","Cluster",rep(c("p-val","FDR.p-val","FC","log2(FC)","t-stat"),nbComparisons))
869 outputData[3:(length(rowToKeep)+2),1]=rowToKeep
870 outputData[3:(length(rowToKeep)+2),2]=comparisonMatrixInfoGene[rowToKeep]
871 if(class(rowClust)!="logical" ){
872 outputData[3:(length(rowToKeep)+2),3]=cutree(rowClust,nbClusters)[rowToKeep]
873 }else{
874 outputData[3:(length(rowToKeep)+2),3]=0
875 }
876 outputData[3:(length(rowToKeep)+2),4:(ncol(comparisonMatrix)+3)]=prettyNum(comparisonMatrix[rowToKeep,],digits=4)
877 }
878 }
879
880 addComment("[INFO]Formated output",T,opt$log,display=FALSE)
881 write.table(outputData,file=opt$outputFile,quote=FALSE,sep="\t",col.names = F,row.names = F)
882
883 ##----------------------
884
885 end.time <- Sys.time()
886 addComment(c("[INFO]Total execution time for R script:",as.numeric(end.time - start.time,units="mins"),"mins"),T,opt$log,display=FALSE)
887
888
889 addComment("[INFO]End of R script",T,opt$log,display=FALSE)
890
891 printSessionInfo(opt$log)
892
893 #sessionInfo()
894
895
896