Mercurial > repos > vandelj > giant_limma_analysis
diff src/ExprPlotsScript.R @ 0:f274c8d45613 draft
"planemo upload for repository https://github.com/juliechevalier/GIANT/tree/master commit cb276a594444c8f32e9819fefde3a21f121d35df"
author | vandelj |
---|---|
date | Fri, 26 Jun 2020 09:43:41 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ExprPlotsScript.R Fri Jun 26 09:43:41 2020 -0400 @@ -0,0 +1,465 @@ +# A command-line interface to basic plots for use with Galaxy +# written by Jimmy Vandel +# one of these arguments is required: +# +# +initial.options <- commandArgs(trailingOnly = FALSE) +file.arg.name <- "--file=" +script.name <- sub(file.arg.name, "", initial.options[grep(file.arg.name, initial.options)]) +script.basename <- dirname(script.name) +source(file.path(script.basename, "utils.R")) +source(file.path(script.basename, "getopt.R")) + +#addComment("Welcome R!") + +# setup R error handling to go to stderr +options( show.error.messages=F, error = function () { cat(geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) + +# we need that to not crash galaxy with an UTF8 error on German LC settings. +loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") +loc <- Sys.setlocale("LC_NUMERIC", "C") + +#get starting time +start.time <- Sys.time() + +#get options +options(stringAsfactors = FALSE, useFancyQuotes = FALSE) +args <- commandArgs() + + +# get options, using the spec as defined by the enclosed list. +# we read the options from the default: commandArgs(TRUE). +spec <- matrix(c( + "dataFile", "i", 1, "character", + "factorInfo","t", 1, "character", + "dataFileFormat","j",1,"character", + "conditionNames","c",1,"character", + "format", "f", 1, "character", + "quiet", "q", 0, "logical", + "log", "l", 1, "character", + "histo" , "h", 1, "character", + "maPlot" , "a", 1, "character", + "boxplot" , "b", 1, "character", + "microarray" , "m", 1, "character", + "acp" , "p" , 1, "character", + "screePlot" , "s" , 1, "character"), + byrow=TRUE, ncol=4) +opt <- getopt(spec) + +# enforce the following required arguments +if (is.null(opt$log)) { + addComment("[ERROR]'log file' is required") + q( "no", 1, F ) +} +addComment("[INFO]Start of R script",T,opt$log,display=FALSE) +if (is.null(opt$dataFile) || is.null(opt$dataFileFormat)) { + addComment("[ERROR]'dataFile' and it format are required",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$format)) { + addComment("[ERROR]'output format' is required",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$histo) & is.null(opt$maPlot) & is.null(opt$boxplot) & is.null(opt$microarray) & is.null(opt$acp)){ + addComment("[ERROR]Select at least one plot to draw",T,opt$log) + q( "no", 1, F ) +} + +verbose <- if (is.null(opt$quiet)) { + TRUE +}else{ + FALSE} + +addComment("[INFO]Parameters checked!",T,opt$log,display=FALSE) + +addComment(c("[INFO]Working directory: ",getwd()),TRUE,opt$log,display=FALSE) +addComment(c("[INFO]Command line: ",args),TRUE,opt$log,display=FALSE) + +#directory for plots +dir.create(file.path(getwd(), "plotDir")) +dir.create(file.path(getwd(), "plotLyDir")) + +#silent package loading +suppressPackageStartupMessages({ + library("oligo") + library("ff") + library("ggplot2") + library("plotly") +}) + + +#chargement des fichiers en entrée +#fichier de type CEL +dataAreFromCel=FALSE +if(toupper(opt$dataFileFormat)=="CEL"){ + dataAreFromCel=TRUE + celData=read.celfiles(unlist(strsplit(opt$dataFile,","))) + #load all expressions + dataMatrix=exprs(celData) + #select "pm" probes + probeInfo=getProbeInfo(celData,probeType = c("pm"),target="probeset") + #reduce dataMatrix to log expression matrix for a randomly probe selection + dataMatrix=log2(dataMatrix[sample(unique(probeInfo[,1]),min(100000,length(unique(probeInfo[,1])))),]) + addComment("[INFO]Raw data are log2 transformed",TRUE,opt$log,display=FALSE) + remove(probeInfo) +}else{ + #fichier deja tabule + dataMatrix=read.csv(file=opt$dataFile,header=F,sep="\t",colClasses="character") + #remove first row to convert it as colnames (to avoid X before colnames with header=T) + colNamesData=dataMatrix[1,-1] + dataMatrix=dataMatrix[-1,] + #remove first colum to convert it as rownames + rowNamesData=dataMatrix[,1] + dataMatrix=dataMatrix[,-1] + if(is.data.frame(dataMatrix)){ + dataMatrix=data.matrix(dataMatrix) + }else{ + dataMatrix=data.matrix(as.numeric(dataMatrix)) + } + dimnames(dataMatrix)=list(rowNamesData,colNamesData) + if(any(duplicated(rowNamesData)))addComment("[WARNING] several rows share the same probe/gene name, you should merge or rename them to avoid further analysis mistakes",TRUE,opt$log,display=FALSE) +} + +addComment("[INFO]Input data loaded",TRUE,opt$log,display=FALSE) +addComment(c("[INFO]Dim of data matrix:",dim(dataMatrix)),T,opt$log,display=FALSE) + +#get number of conditions +nbConditions=ncol(dataMatrix) + +#get condition names if they are specified +if(!is.null(opt$conditionNames) && length(opt$conditionNames)==nbConditions){ + nameConditions=opt$conditionNames + colnames(dataMatrix)=nameConditions + #rownames(phenoData(celData)@data)=nameConditions + #rownames(protocolData(celData)@data)=nameConditions +}else{ + nameConditions=colnames(dataMatrix) +} + +#create a correspondance table between plot file names and name displayed in figure legend and html items +correspondanceNameTable=matrix("",ncol=2,nrow=nbConditions) +correspondanceNameTable[,1]=paste("Condition",1:nbConditions,sep="") +correspondanceNameTable[,2]=nameConditions +rownames(correspondanceNameTable)=correspondanceNameTable[,2] + +addComment("[INFO]Retreive condition names",TRUE,opt$log,display=FALSE) + +if(!is.null(opt$factorInfo)){ + #chargement du fichier des facteurs + factorInfoMatrix=read.csv(file=file.path(getwd(), opt$factorInfo),header=F,sep="\t",colClasses="character") + #remove first row to convert it as colnames + colnames(factorInfoMatrix)=factorInfoMatrix[1,] + factorInfoMatrix=factorInfoMatrix[-1,] + #use first colum to convert it as rownames but not removing it to avoid conversion as vector in unique factor case + rownames(factorInfoMatrix)=factorInfoMatrix[,1] + + + if(length(setdiff(colnames(dataMatrix),rownames(factorInfoMatrix)))!=0){ + addComment("[ERROR]Missing samples in factor file",T,opt$log) + q( "no", 1, F ) + } + + #order sample as in expression matrix and remove spurious sample + factorInfoMatrix=factorInfoMatrix[colnames(dataMatrix),] + + addComment("[INFO]Factors OK",T,opt$log,display=FALSE) + addComment(c("[INFO]Dim of factorInfo matrix:",dim(factorInfoMatrix)),T,opt$log,display=FALSE) + +} + +addComment("[INFO]Ready to plot",T,opt$log,display=FALSE) + + +##---------------------- + +###plot histograms### +histogramPerFigure=50 +if (!is.null(opt$histo)) { + for(iToPlot in 1:(((nbConditions-1)%/%histogramPerFigure)+1)){ + firstPlot=1+histogramPerFigure*(iToPlot-1) + lastPlot=min(nbConditions,histogramPerFigure*iToPlot) + dataToPlot=data.frame(x=c(dataMatrix[,firstPlot:lastPlot]),Experiment=rep(colnames(dataMatrix)[firstPlot:lastPlot],each=nrow(dataMatrix))) + p <- ggplot(data=dataToPlot, aes(x = x, color=Experiment)) + stat_density(geom="line", size=1, position="identity") + + ggtitle("Intensity densities") + theme_bw() + ylab(label="Density") + + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5)) + if(dataAreFromCel){ + #original ploting function + #hist(celData[,firstPlot:lastPlot],lty=rep(1,nbConditions)[firstPlot:lastPlot],lwd=2,which='pm',target="probeset",transfo=log2,col=rainbow(nbConditions)[firstPlot:lastPlot]) + p <- p + xlab(label="Log2 intensities") + }else{ + p <- p + xlab(label="Intensities") + } + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$histo,iToPlot,".pdf"),collapse=""))}else{ + png(paste(c("./plotDir/",opt$histo,iToPlot,".png"),collapse="")) + } + print(p) + dev.off() + #save plotly files + pp <- ggplotly(p) + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$histo,iToPlot,".html"),collapse=""),selfcontained = F) + } + remove(p,dataToPlot) + addComment("[INFO]Histograms drawn",T,opt$log,display=FALSE) +} + +##---------------------- + +###plot MAplots### +MAplotPerPage=4 +if (!is.null(opt$maPlot)) { + iToPlot=1 + plotVector=list() + toTake=sample(nrow(dataMatrix),min(200000,nrow(dataMatrix))) + refMedianColumn=rowMedians(as.matrix(dataMatrix[toTake,])) + if(length(toTake)>100000)addComment(c("[INFO]high number of input data rows ",length(toTake),"; the generation of MA plot can take a while, please be patient"),TRUE,opt$log,display=FALSE) + for (iCondition in 1:nbConditions){ + #MAplot(celData,which=i,what=pm,transfo=log2) + #smoothScatter(x=xToPlot,y=yToPlot,main=nameConditions[iCondition]) + dataA=dataMatrix[toTake,iCondition] + dataB=refMedianColumn####ATTENTION PAR DEFAUT + xToPlot=0.5*(dataA+dataB) + yToPlot=dataA-dataB + tempX=seq(min(xToPlot),max(xToPlot),0.1) + tempY=unlist(lapply(tempX,function(x){median(yToPlot[intersect(which(xToPlot>=(x-0.1/2)),which(xToPlot<(x+0.1/2)))])})) + + dataToPlot=data.frame(x=xToPlot,y=yToPlot) + dataMedianToPlot=data.frame(x=tempX,y=tempY) + p <- ggplot(data=dataToPlot, aes(x,y)) + stat_density2d(aes(fill = ..density..^0.25), geom = "tile", contour = FALSE, n = 100) + + scale_fill_continuous(low = "white", high = "dodgerblue4") + geom_smooth(data=dataMedianToPlot,colour="red", size=0.5, se=FALSE) + + ggtitle(correspondanceNameTable[iCondition,2]) + theme_bw() + xlab(label="") + ylab(label="") + + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),legend.position = "none") + plotVector[[length(plotVector)+1]]=p + + #save plotly files + pp <- ggplotly(p) + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$maPlot,"_",correspondanceNameTable[iCondition,1],".html"),collapse=""),selfcontained = F) + + if(iCondition==nbConditions || length(plotVector)==MAplotPerPage){ + #define a new plotting file + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$maPlot,iToPlot,".pdf"),collapse=""))}else{ + png(paste(c("./plotDir/",opt$maPlot,iToPlot,".png"),collapse="")) + } + multiplot(plotlist=plotVector,cols=2) + dev.off() + if(iCondition<nbConditions){ + #prepare for a new plotting file if necessary + plotVector=list() + iToPlot=iToPlot+1 + } + } + } + remove(p,dataToPlot,dataA,dataB,toTake,xToPlot,yToPlot) + addComment("[INFO]MAplots drawn",T,opt$log,display=FALSE) +} + +##---------------------- + +###plot boxplots### +boxplotPerFigure=50 +if (!is.null(opt$boxplot)) { + for(iToPlot in 1:(((nbConditions-1)%/%boxplotPerFigure)+1)){ + firstPlot=1+boxplotPerFigure*(iToPlot-1) + lastPlot=min(nbConditions,boxplotPerFigure*iToPlot) + dataToPlot=data.frame(intensities=c(dataMatrix[,firstPlot:lastPlot]),Experiment=rep(colnames(dataMatrix)[firstPlot:lastPlot],each=nrow(dataMatrix))) + #to make HTML file lighter, sampling will be done amongst outliers + #get outliers for each boxplot + boxplotsOutliers=apply(dataMatrix[,firstPlot:lastPlot],2,function(x)boxplot.stats(x)$out) + #sample amongst them to keep at maximum of 1000 points and include both min and max outliers values + boxplotsOutliers=lapply(boxplotsOutliers,function(x)if(length(x)>0)c(sample(c(x),min(length(x),1000)),max(c(x)),min(c(x)))) + dataOutliers=data.frame(yVal=unlist(boxplotsOutliers),xVal=unlist(lapply(seq_along(boxplotsOutliers),function(x)rep(names(boxplotsOutliers)[x],length(boxplotsOutliers[[x]]))))) + #plot boxplots without outliers + p <- ggplot(data=dataToPlot, aes(y = intensities, x=Experiment ,color=Experiment)) + geom_boxplot(outlier.colour=NA,outlier.shape =NA) + + ggtitle("Intensities") + theme_bw() + xlab(label="") + + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),axis.text.x = element_text(angle = 45, hjust = 1),plot.margin=unit(c(10,10,max(unlist(lapply(dataToPlot$Experiment,function(x)nchar(as.character(x))))),15+max(unlist(lapply(dataToPlot$Experiment,function(x)nchar(as.character(x)))))),"mm")) + #add to plot sampled outliers + p <- p + geom_point(data=dataOutliers,aes(x=xVal,y=yVal,color=xVal),inherit.aes = F) + if(dataAreFromCel){ + #original plotting function + #boxplot(celData[,firstPlot:lastPlot],which='pm',col=rainbow(nbConditions)[firstPlot:lastPlot],target="probeset",transfo=log2,names=nameConditions[firstPlot:lastPlot],main="Intensities") + p <- p + ylab(label="Log2 intensities") + }else{ + p <- p + ylab(label="Intensities") + } + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$boxplot,iToPlot,".pdf"),collapse=""))}else{ + png(paste(c("./plotDir/",opt$boxplot,iToPlot,".png"),collapse="")) + } + print(p) + dev.off() + #save plotly files + pp <- ggplotly(p) + + #modify plotly object to get HTML file not too heavy for loading + for(iData in 1:length(pp$x$data)){ + ##get kept outliers y values + #yPointsToKeep=dataOutliers$yVal[which(dataOutliers$xVal==pp$x$data[[iData]]$name)] + if(pp$x$data[[iData]]$type=="scatter"){ + ##scatter plot represent outliers points added to boxplot through geom_point + ##nothing to do as outliers have been sampled allready, just have to modify hover text + #if(length(yPointsToKeep)>0){ + #pointsToKeep=which(pp$x$data[[iData]]$y %in% yPointsToKeep) + #pp$x$data[[iData]]$x=pp$x$data[[iData]]$x[pointsToKeep] + #pp$x$data[[iData]]$y=pp$x$data[[iData]]$y[pointsToKeep] + #pp$x$data[[iData]]$text=pp$x$data[[iData]]$text[pointsToKeep] + #}else{ + #pp$x$data[[iData]]$x=NULL + #pp$x$data[[iData]]$y=NULL + #pp$x$data[[iData]]$marker$opacity=0 + #pp$x$data[[iData]]$hoverinfo=NULL + #pp$x$data[[iData]]$text=NULL + #} + #modify text to display + if(dataAreFromCel){ + pp$x$data[[iData]]$text=unlist(lapply(seq_along(pp$x$data[[iData]]$y),function(x)return(paste(c("log2(intensity) ",prettyNum(pp$x$data[[iData]]$y[x],digits=4)),collapse = "")))) + }else{ + pp$x$data[[iData]]$text=unlist(lapply(seq_along(pp$x$data[[iData]]$y),function(x)return(paste(c("intensity ",prettyNum(pp$x$data[[iData]]$y[x],digits=4)),collapse = "")))) + } + }else{ + ##disable marker plotting to keep only box and whiskers plot (outliers are displayed through scatter plot) + pp$x$data[[iData]]$marker$opacity=0 + + #sample 50000 points amongst all data to get a lighter html file, sampling size should not be too low to avoid modifying limit of boxplots + pp$x$data[[iData]]$y=c(sample(dataMatrix[,pp$x$data[[iData]]$name],min(length(dataMatrix[,pp$x$data[[iData]]$name]),50000)),min(dataMatrix[,pp$x$data[[iData]]$name]),max(dataMatrix[,pp$x$data[[iData]]$name])) + pp$x$data[[iData]]$x=rep(pp$x$data[[iData]]$x[1],length(pp$x$data[[iData]]$y)) + + ##first remove outliers info + #downUpValues=boxplot.stats(dataMatrix[,pp$x$data[[iData]]$name])$stats + #if(verbose)addComment(c("filter values for boxplot",pp$x$data[[iData]]$name,"between",min(downUpValues),"and",max(downUpValues)),T,opt$log) + #pointsToRemove=which(pp$x$data[[iData]]$y<min(downUpValues)) + #if(length(pointsToRemove)>0)pp$x$data[[iData]]$y=pp$x$data[[iData]]$y[-pointsToRemove] + #pointsToRemove=which(pp$x$data[[iData]]$y>max(downUpValues)) + #if(length(pointsToRemove)>0)pp$x$data[[iData]]$y=pp$x$data[[iData]]$y[-pointsToRemove] + #then add sampled outliers info + #pp$x$data[[iData]]$y=c(yPointsToKeep,pp$x$data[[iData]]$y) + #pp$x$data[[iData]]$x=rep(pp$x$data[[iData]]$x[1],length(pp$x$data[[iData]]$y)) + } + } + + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$boxplot,iToPlot,".html"),collapse=""),selfcontained = F) + } + remove(p,dataToPlot) + addComment("[INFO]Boxplots drawn",T,opt$log,display=FALSE) + +} + +##---------------------- + +###plot microarrays (only for .CEL files)### +if (!is.null(opt$microarray) && dataAreFromCel) { + for (iCondition in 1:nbConditions){ + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$microarray,"_",correspondanceNameTable[iCondition,1],".pdf"),collapse=""),onefile = F,width = 5,height = 5)}else{ + png(paste(c("./plotDir/",opt$microarray,"_",correspondanceNameTable[iCondition,1],".png"),collapse="")) + } + image(celData[,iCondition],main=correspondanceNameTable[iCondition,2]) + dev.off() + } + addComment("[INFO]Microarray drawn",T,opt$log,display=FALSE) +} + +##---------------------- + +###plot PCA plot### +if (!is.null(opt$acp)){ + ##to avoid error when nrow is too large, results quite stable with 200k random selected rows + randomSelection=sample(nrow(dataMatrix),min(200000,nrow(dataMatrix))) + #remove constant variables + + dataFiltered=dataMatrix[randomSelection,] + toRemove=which(unlist(apply(dataFiltered,1,var))==0) + if(length(toRemove)>0){ + dataFiltered=dataFiltered[-toRemove,] + } + ##geom_text(aes(label=Experiments,hjust=1, vjust=1.3), y = PC2+0.01) + PACres = prcomp(t(dataFiltered),scale.=TRUE) + + if(!is.null(opt$screePlot)){ + #scree plot + #p <- fviz_eig(PACres) + dataToPlot=data.frame(compo=seq(1,length(PACres$sdev)),var=(PACres$sdev^2/sum(PACres$sdev^2))*100) + p<-ggplot(data=dataToPlot, aes(x=compo, y=var)) + geom_bar(stat="identity", fill="steelblue") + geom_line() + geom_point() + + ggtitle("Scree plot") + theme_bw() + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5)) + + xlab(label="Dimensions") + ylab(label="% explained variances") + scale_x_discrete(limits=dataToPlot$compo) + pp <- ggplotly(p) + + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$screePlot,".pdf"),collapse=""))}else{ + png(paste(c("./plotDir/",opt$screePlot,".png"),collapse="")) + } + plot(p) + dev.off() + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$screePlot,".html"),collapse=""),selfcontained = F) + } + + #now plot pca plots + + if(!is.null(opt$factorInfo)){ + fileIdent="" + symbolset = c("circle","cross","square","diamond","circle-open","square-open","diamond-open","x") + + #save equivalence between real factor names and generic ones in correspondanceNameTable + correspondanceNameTable=rbind(correspondanceNameTable,matrix(c(paste("Factor",1:(ncol(factorInfoMatrix)-1),sep=""),colnames(factorInfoMatrix)[-1]),ncol=2,nrow=ncol(factorInfoMatrix)-1)) + rownames(correspondanceNameTable)=correspondanceNameTable[,2] + + #first order factors from decreasing groups number + orderedFactors=colnames(factorInfoMatrix)[-1][order(unlist(lapply(colnames(factorInfoMatrix)[-1],function(x)length(table(factorInfoMatrix[,x])))),decreasing = T)] + allFactorsBigger=length(table(factorInfoMatrix[,orderedFactors[length(orderedFactors)]]))>length(symbolset) + if(allFactorsBigger)addComment("[WARNING]All factors are composed of too many groups to display two factors at same time, each PCA plot will display only one factor groups",T,opt$log,display=FALSE) + for(iFactor in 1:length(orderedFactors)){ + #if it is the last factor of the list or if all factor + if(iFactor==length(orderedFactors) || allFactorsBigger){ + if(length(orderedFactors)==1 || allFactorsBigger){ + dataToPlot=data.frame(PC1=PACres$x[,1],PC2=PACres$x[,2],PC3=PACres$x[,3],Experiments=rownames(PACres$x), Attribute1=factorInfoMatrix[rownames(PACres$x),orderedFactors[iFactor]], hoverLabel=unlist(lapply(rownames(PACres$x),function(x)paste(factorInfoMatrix[x,-1],collapse=",")))) + p <- plot_ly(dataToPlot,x = ~PC1, y = ~PC2, z = ~PC3, type = 'scatter3d', mode="markers", color=~Attribute1,colors=rainbow(length(levels(dataToPlot$Attribute1))+2),hoverinfo = 'text', text = ~paste(Experiments,"\n",hoverLabel),marker=list(size=5))%>% + layout(title = "Principal Component Analysis", scene = list(xaxis = list(title = "Component 1"),yaxis = list(title = "Component 2"),zaxis = list(title = "Component 3")), + legend=list(font = list(family = "sans-serif",size = 15,color = "#000"))) + fileIdent=correspondanceNameTable[orderedFactors[iFactor],1] + #add text label to plot + ##p <- add_text(p,x = dataToPlot$PC1, y = dataToPlot$PC2 + (max(PACres$x[,2])-min(PACres$x[,2]))*0.02, z = dataToPlot$PC3, mode = 'text', inherit = F, text=rownames(PACres$x), hoverinfo='skip', showlegend = FALSE, color=I('black')) + #save the plotly plot + htmlwidgets::saveWidget(as_widget(p), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$acp,"_",fileIdent,".html"),collapse=""),selfcontained = F) + } + }else{ + for(iFactorBis in (iFactor+1):length(orderedFactors)){ + if(length(table(factorInfoMatrix[,orderedFactors[iFactorBis]]))<=length(symbolset)){ + dataToPlot=data.frame(PC1=PACres$x[,1],PC2=PACres$x[,2],PC3=PACres$x[,3],Experiments=rownames(PACres$x), Attribute1=factorInfoMatrix[rownames(PACres$x),orderedFactors[iFactor]], Attribute2=factorInfoMatrix[rownames(PACres$x),orderedFactors[iFactorBis]], hoverLabel=unlist(lapply(rownames(PACres$x),function(x)paste(factorInfoMatrix[x,-1],collapse=",")))) + p <- plot_ly(dataToPlot,x = ~PC1, y = ~PC2, z = ~PC3, type = 'scatter3d', mode="markers", color=~Attribute1,colors=rainbow(length(levels(dataToPlot$Attribute1))+2),symbol=~Attribute2,symbols = symbolset,hoverinfo = 'text', text = ~paste(Experiments,"\n",hoverLabel),marker=list(size=5))%>% + layout(title = "Principal Component Analysis", scene = list(xaxis = list(title = "Component 1"),yaxis = list(title = "Component 2"),zaxis = list(title = "Component 3")), + legend=list(font = list(family = "sans-serif",size = 15,color = "#000"))) + fileIdent=paste(correspondanceNameTable[orderedFactors[c(iFactor,iFactorBis)],1],collapse="_AND_") + #add text label to plot + ##p <- add_text(p,x = dataToPlot$PC1, y = dataToPlot$PC2 + (max(PACres$x[,2])-min(PACres$x[,2]))*0.02, z = dataToPlot$PC3, mode = 'text', inherit = F, text=rownames(PACres$x), hoverinfo='skip', showlegend = FALSE, color=I('black')) + #save the plotly plot + htmlwidgets::saveWidget(as_widget(p), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$acp,"_",fileIdent,".html"),collapse=""),selfcontained = F) + }else{ + addComment(c("[WARNING]PCA with",orderedFactors[iFactor],"and",orderedFactors[iFactorBis],"groups cannot be displayed, too many groups (max",length(symbolset),")"),T,opt$log,display=FALSE) + } + } + } + } + }else{ + dataToPlot=data.frame(PC1=PACres$x[,1],PC2=PACres$x[,2],PC3=PACres$x[,3],Experiments=rownames(PACres$x)) + p <- plot_ly(dataToPlot,x = ~PC1, y = ~PC2, z = ~PC3, type = 'scatter3d', mode="markers",marker=list(size=5,color="salmon"),hoverinfo = 'text',text = ~paste(Experiments))%>% + layout(title = "Principal Component Analysis", scene = list(xaxis = list(title = "Component 1"),yaxis = list(title = "Component 2"),zaxis = list(title = "Component 3")), + legend=list(font = list(family = "sans-serif",size = 15,color = "#000"))) + ##p <- add_text(p,x = dataToPlot$PC1, y = dataToPlot$PC2 + (max(PACres$x[,2])-min(PACres$x[,2]))*0.02, z = dataToPlot$PC3, mode = 'text', inherit = F, text=rownames(PACres$x), hoverinfo='skip', showlegend = FALSE, color=I('black')) + + #save plotly files + htmlwidgets::saveWidget(as_widget(p), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$acp,"_plot.html"),collapse=""),selfcontained = F) + } + remove(p,dataToPlot,dataFiltered) + addComment("[INFO]ACP plot drawn",T,opt$log,display=FALSE) +} + +#write correspondances between plot file names and displayed names in figure legends, usefull to define html items in xml file +write.table(correspondanceNameTable,file=file.path(getwd(), "correspondanceFileNames.csv"),quote=FALSE,sep="\t",col.names = F,row.names = F) + +end.time <- Sys.time() +addComment(c("[INFO]Total execution time for R script:",as.numeric(end.time - start.time,units="mins"),"mins"),T,opt$log,display=FALSE) + +addComment("[INFO]End of R script",T,opt$log,display=FALSE) + +printSessionInfo(opt$log) +#sessionInfo()