Mercurial > repos > vandelj > giant_volcano_plot
diff src/LIMMAscriptV4.R @ 0:c9a38c1eadf1 draft
"planemo upload for repository https://github.com/juliechevalier/GIANT/tree/master commit cb276a594444c8f32e9819fefde3a21f121d35df"
author | vandelj |
---|---|
date | Fri, 26 Jun 2020 09:45:41 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/LIMMAscriptV4.R Fri Jun 26 09:45:41 2020 -0400 @@ -0,0 +1,1002 @@ +# A command-line interface for LIMMA to use with Galaxy +# written by Jimmy Vandel +# one of these arguments is required: +# +# +initial.options <- commandArgs(trailingOnly = FALSE) +file.arg.name <- "--file=" +script.name <- sub(file.arg.name, "", initial.options[grep(file.arg.name, initial.options)]) +script.basename <- dirname(script.name) +source(file.path(script.basename, "utils.R")) +source(file.path(script.basename, "getopt.R")) + +#addComment("Welcome R!") + +# setup R error handling to go to stderr +options( show.error.messages=F, error = function () { cat(geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) + +# we need that to not crash galaxy with an UTF8 error on German LC settings. +loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") +loc <- Sys.setlocale("LC_NUMERIC", "C") + +#get starting time +start.time <- Sys.time() + +options(stringAsfactors = FALSE, useFancyQuotes = FALSE) +args <- commandArgs() + +# get options, using the spec as defined by the enclosed list. +# we read the options from the default: commandArgs(TRUE). +spec <- matrix(c( + "dataFile", "i", 1, "character", + "factorInfo","a", 1, "character", + "blockingInfo","b", 1, "character", + "dicoRenaming","g",1,"character", + "blockingPolicy","u", 1, "character", + "fdrThreshold","t", 1, "double", + "thresholdFC","d", 1, "double", + "format", "f", 1, "character", + "histo","h", 1, "character", + "volcano","v", 1, "character", + "factorsContrast","r", 1, "character", + "contrastNames","p", 1, "character", + "firstGroupContrast","m", 1, "character", + "secondGroupContrast","n", 1, "character", + "controlGroups","c", 1, "character", + "fratioFile","s",1,"character", + "organismID","x",1,"character", + "rowNameType","y",1,"character", + "quiet", "q", 0, "logical", + "log", "l", 1, "character", + "outputFile" , "o", 1, "character", + "outputDfFile" , "z", 1, "character"), + byrow=TRUE, ncol=4) +opt <- getopt(spec) + +# enforce the following required arguments +if (is.null(opt$log)) { + addComment("[ERROR]'log file' is required\n") + q( "no", 1, F ) +} +addComment("[INFO]Start of R script",T,opt$log,display=FALSE) +if (is.null(opt$dataFile)) { + addComment("[ERROR]'dataFile' is required",T,opt$log) + q( "no", 1, F ) +} +if (!is.null(opt$blockingInfo) && is.null(opt$blockingPolicy) ) { + addComment("[ERROR]blocking policy is missing",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$dicoRenaming)) { + addComment("[ERROR]renaming dictionnary is missing",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$factorsContrast)) { + addComment("[ERROR]factor informations are missing",T,opt$log) + q( "no", 1, F ) +} +if (length(opt$firstGroupContrast)!=length(opt$secondGroupContrast)) { + addComment("[ERROR]some contrast groups seems to be empty",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$factorInfo)) { + addComment("[ERROR]factors info is missing",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$format)) { + addComment("[ERROR]'output format' is required",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$fdrThreshold)) { + addComment("[ERROR]'FDR threshold' is required",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$outputFile) || is.null(opt$outputDfFile)){ + addComment("[ERROR]'output files' are required",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$thresholdFC)){ + addComment("[ERROR]'FC threshold' is required",T,opt$log) + q( "no", 1, F ) +} +if (is.null(opt$fratioFile)) { + addComment("[ERROR]F-ratio parameter is missing",T,opt$log) + q( "no", 1, F ) +} + +#demande si le script sera bavard +verbose <- if (is.null(opt$quiet)) { + TRUE +}else{ + FALSE +} + +#paramètres internes +#pour savoir si on remplace les FC calculés par LIMMA par un calcul du LS-MEAN (ie moyenne de moyennes de chaque groupe dans chaque terme du contraste plutôt qu'une moyenne globale dans chaque terme) +useLSmean=FALSE + +addComment("[INFO]Parameters checked!",T,opt$log,display=FALSE) + +addComment(c("[INFO]Working directory: ",getwd()),TRUE,opt$log,display=FALSE) +addComment(c("[INFO]Command line: ",args),TRUE,opt$log,display=FALSE) + +#directory for plots +dir.create(file.path(getwd(), "plotDir")) +dir.create(file.path(getwd(), "plotLyDir")) + +#charge des packages silencieusement +suppressPackageStartupMessages({ + library("methods") + library("limma") + library("biomaRt") + library("ggplot2") + library("plotly") + library("stringr") + library("RColorBrewer") +}) + + +#chargement du fichier dictionnaire de renommage +renamingDico=read.csv(file=file.path(getwd(), opt$dicoRenaming),header=F,sep="\t",colClasses="character") +rownames(renamingDico)=renamingDico[,2] + + +#chargement des fichiers en entrée +expDataMatrix=read.csv(file=file.path(getwd(), opt$dataFile),header=F,sep="\t",colClasses="character") +#remove first row to convert it as colnames (to avoid X before colnames with header=T) +colNamesData=expDataMatrix[1,-1] +expDataMatrix=expDataMatrix[-1,] +#remove first colum to convert it as rownames +rowNamesData=expDataMatrix[,1] +expDataMatrix=expDataMatrix[,-1] +if(is.data.frame(expDataMatrix)){ + expDataMatrix=data.matrix(expDataMatrix) +}else{ + expDataMatrix=data.matrix(as.numeric(expDataMatrix)) +} +dimnames(expDataMatrix)=list(rowNamesData,colNamesData) + +#test the number of rows that are constant in dataMatrix +nbConstantRows=length(which(unlist(apply(expDataMatrix,1,var))==0)) +if(nbConstantRows>0){ + addComment(c("[WARNING]",nbConstantRows,"rows are constant across conditions in input data file"),T,opt$log,display=FALSE) +} + +#test if all condition names are present in dico +if(!all(colnames(expDataMatrix) %in% rownames(renamingDico))){ + addComment("[ERROR]Missing condition names in renaming dictionary",T,opt$log) + q( "no", 1, F ) +} + +addComment("[INFO]Expression data loaded and checked",T,opt$log,display=FALSE) +addComment(c("[INFO]Dim of expression matrix:",dim(expDataMatrix)),T,opt$log,display=FALSE) + +#chargement du fichier des facteurs +factorInfoMatrix=read.csv(file=file.path(getwd(), opt$factorInfo),header=F,sep="\t",colClasses="character") +#remove first row to convert it as colnames +colnames(factorInfoMatrix)=factorInfoMatrix[1,] +factorInfoMatrix=factorInfoMatrix[-1,] +#use first colum to convert it as rownames but not removing it to avoid conversion as vector in unique factor case +rownames(factorInfoMatrix)=factorInfoMatrix[,1] + +if(length(setdiff(colnames(expDataMatrix),rownames(factorInfoMatrix)))!=0){ + addComment("[ERROR]Missing samples in factor file",T,opt$log) + q( "no", 1, F ) +} + +#order sample as in expression matrix and remove spurious sample +factorInfoMatrix=factorInfoMatrix[colnames(expDataMatrix),] + +#test if all values names are present in dico +if(!all(unlist(factorInfoMatrix) %in% rownames(renamingDico))){ + addComment("[ERROR]Missing factor names in renaming dictionary",T,opt$log) + q( "no", 1, F ) +} + +addComment("[INFO]Factors OK",T,opt$log,display=FALSE) +addComment(c("[INFO]Dim of factorInfo matrix:",dim(factorInfoMatrix)),T,opt$log,display=FALSE) + +##manage blocking factor +blockingFactor=NULL +blockinFactorsList=NULL +if(!is.null(opt$blockingInfo)){ + + #chargement du fichier des blocking factors + blockingInfoMatrix=read.csv(file=file.path(getwd(), opt$blockingInfo),header=F,sep="\t",colClasses="character") + #remove first row to convert it as colnames + colnames(blockingInfoMatrix)=blockingInfoMatrix[1,] + blockingInfoMatrix=blockingInfoMatrix[-1,] + #use first colum to convert it as rownames but not removing it to avoid conversion as vector in unique factor case + rownames(blockingInfoMatrix)=blockingInfoMatrix[,1] + + + if(length(setdiff(colnames(expDataMatrix),rownames(blockingInfoMatrix)))!=0){ + addComment("[ERROR]Missing samples in blocking factor file",T,opt$log) + q( "no", 1, F ) + } + + #order sample as in expression matrix + blockingInfoMatrix=blockingInfoMatrix[colnames(expDataMatrix),] + + #test if all blocking names are present in dico + if(!all(unlist(blockingInfoMatrix) %in% rownames(renamingDico))){ + addComment("[ERROR]Missing blocking names in renaming dictionary",T,opt$log) + q( "no", 1, F ) + } + + #remove blocking factors allready present as real factors + blockingNotInMainFactors=setdiff(colnames(blockingInfoMatrix)[-1],colnames(factorInfoMatrix)[-1]) + + if(length(blockingNotInMainFactors)<(ncol(blockingInfoMatrix)-1))addComment("[WARNING]Blocking factors cannot be principal factors",T,opt$log,display=FALSE) + + if(length(blockingNotInMainFactors)>0){ + + blockingInfoMatrix=blockingInfoMatrix[,c(colnames(blockingInfoMatrix)[1],blockingNotInMainFactors)] + + groupBlocking=rep("c",ncol(expDataMatrix)) + #for each blocking factor + for(blockingFact in blockingNotInMainFactors){ + if(opt$blockingPolicy=="correlated"){ + indNewFact=as.numeric(factor(blockingInfoMatrix[,blockingFact])) + groupBlocking=paste(groupBlocking,indNewFact,sep="_") + }else{ + if(is.null(blockinFactorsList))blockinFactorsList=list() + blockinFactorsList[[blockingFact]]=factor(unlist(lapply(blockingInfoMatrix[,blockingFact],function(x)paste(c(blockingFact,"_",x),collapse="")))) + } + } + if(opt$blockingPolicy=="correlated"){ + blockingFactor=factor(groupBlocking) + if(length(levels(blockingFactor))==1){ + addComment("[ERROR]Selected blocking factors seems to be constant",T,opt$log) + q( "no", 1, F ) + } + } + addComment("[INFO]Blocking info OK",T,opt$log,display=FALSE) + }else{ + addComment("[WARNING]No blocking factors will be considered",T,opt$log,display=FALSE) + } +} + + +##rename different input parameters using renamingDictionary +opt$factorsContrast=renamingDico[unlist(lapply(unlist(strsplit(opt$factorsContrast,",")),function(x)which(renamingDico[,1]==x))),2] + +userDefinedContrasts=FALSE +if(!is.null(opt$firstGroupContrast) && !is.null(opt$secondGroupContrast)){ + userDefinedContrasts=TRUE + for(iContrast in 1:length(opt$firstGroupContrast)){ + opt$firstGroupContrast[iContrast]=paste(unlist(lapply(unlist(strsplit(opt$firstGroupContrast[iContrast],",")),function(x)paste(renamingDico[unlist(lapply(unlist(strsplit(x,"\\*")),function(x)which(renamingDico[,1]==x))),2],collapse="*"))),collapse=",") + opt$secondGroupContrast[iContrast]=paste(unlist(lapply(unlist(strsplit(opt$secondGroupContrast[iContrast],",")),function(x)paste(renamingDico[unlist(lapply(unlist(strsplit(x,"\\*")),function(x)which(renamingDico[,1]==x))),2],collapse="*"))),collapse=",") + } +} + +if(!is.null(opt$controlGroups)){ + renamedGroups=c() + for(iGroup in unlist(strsplit(opt$controlGroups,","))){ + renamedControlGroup=paste(renamingDico[unlist(lapply(unlist(strsplit(iGroup,":")),function(x)which(renamingDico[,1]==x))),2],collapse=":") + if(length(renamedControlGroup)==0 || any(which(unlist(gregexpr(text = renamedControlGroup,pattern = ":"))==-1))){ + addComment("[ERROR]Control groups for interaction seem to mismatch, please check them.",T,opt$log) + q( "no", 1, F ) + } + renamedGroups=c(renamedGroups,renamedControlGroup) + } + opt$controlGroups=renamedGroups +} +addComment("[INFO]Contrast variables are renamed to avoid confusion",T,opt$log,display=FALSE) +##renaming done + +#to convert factor as numeric value --> useless now ? +#expDataMatrix=apply(expDataMatrix,c(1,2),function(x)as.numeric(paste(x))) + +#get factors info for LIMMA +factorsList=list() +for(iFactor in opt$factorsContrast){ + if(!(iFactor %in% colnames(factorInfoMatrix))){ + addComment("[ERROR]Required factors are missing in input file",T,opt$log) + q( "no", 1, F ) + } + factorsList[[iFactor]]=factor(unlist(lapply(factorInfoMatrix[,iFactor],function(x)paste(c(iFactor,"_",x),collapse="")))) + if(length(levels(factorsList[[iFactor]]))==1){ + addComment("[ERROR]One selected factor seems to be constant",T,opt$log) + q( "no", 1, F ) + } +} + +#check if there is at least 2 factors to allow interaction computation +if(!is.null(opt$controlGroups) && length(factorsList)<2){ + addComment("[ERROR]You cannot ask for interaction with less than 2 factors",T,opt$log) + q( "no", 1, F ) +} + +#merge all factors as a single one +factorsMerged=as.character(factorsList[[opt$factorsContrast[1]]]) +for(iFactor in opt$factorsContrast[-1]){ + factorsMerged=paste(factorsMerged,as.character(factorsList[[iFactor]]),sep=".") +} +factorsMerged=factor(factorsMerged) + +#checked that coefficient number (ie. factorsMerged levels) is strictly smaller than sample size +if(length(levels(factorsMerged))>=length(factorsMerged)){ + addComment(c("[ERROR]No enough samples (",length(factorsMerged),") to estimate ",length(levels(factorsMerged))," coefficients"),T,opt$log) + q( "no", 1, F ) +} + +#get the sample size of each factor values +sampleSizeFactor=table(factorsMerged) + + +if(!is.null(blockinFactorsList)){ + factorString=c("blockinFactorsList[['", names(blockinFactorsList)[1],"']]") + for(blockingFact in names(blockinFactorsList)[-1]){ + factorString=c(factorString," + blockinFactorsList[['",blockingFact,"']]") + } + design = model.matrix(as.formula(paste(c("~ factorsMerged +",factorString," + 0"),collapse=""))) + + #rename design columns + coeffMeaning = levels(factorsMerged) + for(blockingFact in blockinFactorsList){ + coeffMeaning=c(coeffMeaning,levels(blockingFact)[-1]) + } + colnames(design) = coeffMeaning +}else{ + design = model.matrix(as.formula( ~ factorsMerged + 0)) + + #rename degin columns + coeffMeaning = levels(factorsMerged) + colnames(design) = coeffMeaning +} + +addComment(c("[INFO]Available coefficients: ",coeffMeaning),T,opt$log,display=F) + +estimableCoeff=which(colSums(design)!=0) + +addComment("[INFO]Design done",T,opt$log,display=F) + + #use blocking factor if exists +if(!is.null(blockingFactor)){ + corfit <- duplicateCorrelation(expDataMatrix, design, block=blockingFactor) + + addComment(c("[INFO]Correlation within groups: ",corfit$consensus.correlation),T,opt$log,display=F) + + #run linear model fit + data.fit = lmFit(expDataMatrix,design,block = blockingFactor, correlation=corfit$consensus.correlation) +}else{ + #run linear model fit + data.fit = lmFit(expDataMatrix,design) +} + +estimatedCoeff=which(!is.na(data.fit$coefficients[1,])) + +addComment("[INFO]Lmfit done",T,opt$log,display=F) + +#catch situation where some coefficients cannot be estimated, probably due to dependances between design columns +#if(length(setdiff(estimableCoeff,estimatedCoeff))>0){ +# addComment("[ERROR]Error in design matrix, check your group definitions",T,opt$log) +# q( "no", 1, F ) +#} +#to strong condition, should return ERROR only when coefficients relative to principal factors cannot be estimated, otherwise, return a simple WARNING + +#define requested contrasts +requiredContrasts=c() +humanReadingContrasts=c() +persoContrastName=c() +if(userDefinedContrasts){ + for(iContrast in 1:length(opt$firstGroupContrast)){ + posGroup=unlist(lapply(unlist(strsplit(opt$firstGroupContrast[iContrast],",")),function(x)paste(paste(opt$factorsContrast,unlist(strsplit(x,"\\*")),sep="_"),collapse="."))) + negGroup=unlist(lapply(unlist(strsplit(opt$secondGroupContrast[iContrast],",")),function(x)paste(paste(opt$factorsContrast,unlist(strsplit(x,"\\*")),sep="_"),collapse="."))) + #clear posGroup and negGroup from empty groups + emptyPosGroups=which(!(posGroup%in%coeffMeaning)) + if(length(emptyPosGroups)>0){ + addComment(c("[WARNING]The group(s)",posGroup[emptyPosGroups],"is/are removed from contrast as it/they is/are empty"),T,opt$log,display=FALSE) + posGroup=posGroup[-emptyPosGroups] + currentHumanContrast=paste(unlist(strsplit(opt$firstGroupContrast[iContrast],","))[-emptyPosGroups],collapse="+") + }else{ + currentHumanContrast=paste(unlist(strsplit(opt$firstGroupContrast[iContrast],",")),collapse="+") + } + emptyNegGroups=which(!(negGroup%in%coeffMeaning)) + if(length(emptyNegGroups)>0){ + addComment(c("[WARNING]The group(s)",negGroup[emptyNegGroups],"is/are removed from contrast as it/they is/are empty"),T,opt$log,display=FALSE) + negGroup=negGroup[-emptyNegGroups] + currentHumanContrast=paste(c(currentHumanContrast,unlist(strsplit(opt$secondGroupContrast[iContrast],","))[-emptyNegGroups]),collapse="-") + }else{ + currentHumanContrast=paste(c(currentHumanContrast,unlist(strsplit(opt$secondGroupContrast[iContrast],","))),collapse="-") + } + if(length(posGroup)==0 || length(negGroup)==0 ){ + addComment(c("[WARNING]Contrast",currentHumanContrast,"cannot be estimated due to empty group"),T,opt$log,display=FALSE) + }else{ + if(all(posGroup%in%negGroup) && all(negGroup%in%posGroup)){ + addComment(c("[WARNING]Contrast",currentHumanContrast,"cannot be estimated due to null contrast"),T,opt$log,display=FALSE) + }else{ + #get coefficients required for first group added as positive + positiveCoeffWeights=sampleSizeFactor[posGroup]/sum(sampleSizeFactor[posGroup]) + #positiveCoeffWeights=rep(1,length(posGroup)) + #names(positiveCoeffWeights)=names(sampleSizeFactor[posGroup]) + #get coefficients required for second group added as negative + negativeCoeffWeights=sampleSizeFactor[negGroup]/sum(sampleSizeFactor[negGroup]) + #negativeCoeffWeights=rep(1,length(negGroup)) + #names(negativeCoeffWeights)=names(sampleSizeFactor[negGroup]) + #build the resulting contrast + currentContrast=paste(paste(positiveCoeffWeights[posGroup],posGroup,sep="*"),collapse="+") + currentContrast=paste(c(currentContrast,paste(paste(negativeCoeffWeights[negGroup],negGroup,sep="*"),collapse="-")),collapse="-") + requiredContrasts=c(requiredContrasts,currentContrast) + + #build the human reading contrast + humanReadingContrasts=c(humanReadingContrasts,currentHumanContrast) + if(!is.null(opt$contrastNames) && nchar(opt$contrastNames[iContrast])>0){ + persoContrastName=c(persoContrastName,opt$contrastNames[iContrast]) + }else{ + persoContrastName=c(persoContrastName,"") + } + + addComment(c("[INFO]Contrast added : ",currentHumanContrast),T,opt$log,display=F) + addComment(c("with complete formula ",currentContrast),T,opt$log,display=F) + } + } + } +} + + + #define the true formula with interactions to get interaction coefficients + factorString=c("factorsList[['", names(factorsList)[1],"']]") + for(iFactor in names(factorsList)[-1]){ + factorString=c(factorString," * factorsList[['",iFactor,"']]") + } + + if(!is.null(blockinFactorsList)){ + for(blockingFact in names(blockinFactorsList)){ + factorString=c(factorString," + blockinFactorsList[['",blockingFact,"']]") + } + } + + #should not be null at the end + allFtestMeanSquare=NULL + #to get the F-test values + estimatedInteractions=rownames(anova(lm(as.formula(paste(c("expDataMatrix[1,] ~ ",factorString),collapse=""))))) + estimatedInteractions=c(unlist(lapply(estimatedInteractions[-length(estimatedInteractions)],function(x){temp=unlist(strsplit(x,"[ \" | : ]"));paste(temp[seq(2,length(temp),3)],collapse=":")})),estimatedInteractions[length(estimatedInteractions)]) + #rename estimated interaction terms using renamingDico + estimatedInteractions=c(unlist(lapply(estimatedInteractions[-length(estimatedInteractions)],function(x)paste(renamingDico[unlist(strsplit(x,":")),1],collapse=":"))),estimatedInteractions[length(estimatedInteractions)]) + t <- unlist(apply(expDataMatrix,1,function(x){temp=anova(lm(as.formula(paste(c("x ~ ",factorString),collapse=""))))$`Mean Sq`;temp/temp[length(temp)]})) + allFtestMeanSquare <- t(matrix(t,nrow=length(estimatedInteractions))) + #remove from allFtest rows containing NA + if(length(which(is.na(allFtestMeanSquare[,1])))>0)allFtestMeanSquare=allFtestMeanSquare[-(which(is.na(allFtestMeanSquare[,1]))),] + colnames(allFtestMeanSquare)=estimatedInteractions + + #add contrasts corresponding to interaction terms + if(!is.null(opt$controlGroups)){ + #first load user defined control group for each factor + controlGroup=rep(NA,length(factorsList)) + names(controlGroup)=names(factorsList) + for(iGroup in opt$controlGroups){ + splitGroup=unlist(strsplit(iGroup,":")) + splitGroup[2]=paste(splitGroup[1],splitGroup[2],sep = "_") + #check if defined control group is really a level of the corresponding factor + if(!splitGroup[1]%in%names(controlGroup) || !splitGroup[2]%in%factorsList[[splitGroup[1]]]){ + addComment(c("[ERROR]The factor name",splitGroup[1],"does not exist or group name",splitGroup[2]),T,opt$log) + q( "no", 1, F ) + } + if(!is.na(controlGroup[splitGroup[1]])){ + addComment("[ERROR]Several control groups are defined for the same factor, please select only one control group for each factor if you want to compute interaction contrasts",T,opt$log) + q( "no", 1, F ) + } + controlGroup[splitGroup[1]]=splitGroup[2] + } + + #check if all factor have a defined control group + if(any(is.na(controlGroup))){ + addComment("[ERROR]Missing control group for some factors, please check them if you want to compute interaction contrasts",T,opt$log) + q( "no", 1, F ) + } + + nbFactors=length(factorsList) + interactionContrasts=c() + contrastClass=c() + #initialize list for the first level + newPreviousLoopContrast=list() + for(iFactorA in 1:(nbFactors-1)){ + nameFactorA=names(factorsList)[iFactorA] + compA=c() + for(levelA in setdiff(levels(factorsList[[iFactorA]]),controlGroup[nameFactorA])){ + compA=c(compA,paste(levelA,controlGroup[nameFactorA],sep="-")) + } + newPreviousLoopContrast[[as.character(iFactorA)]]=compA + } + #make a loop for growing interaction set + for(globalIfactor in 1:(nbFactors-1)){ + previousLoopContrast=newPreviousLoopContrast + newPreviousLoopContrast=list() + #factor A reuse contrasts made at previsous loop + for(iFactorA in names(previousLoopContrast)){ + compA=previousLoopContrast[[iFactorA]] + + if(max(as.integer(unlist(strsplit(iFactorA,"\\."))))<nbFactors){ + #factor B is the new factor to include in intreraction set + for(iFactorB in (max(as.integer(unlist(strsplit(iFactorA,"\\."))))+1):nbFactors){ + nameFactorB=names(factorsList)[iFactorB] + #keep contrasts identified trough interacting factors set + newPreviousLoopContrast[[paste(iFactorA,iFactorB,sep=".")]]=c() + for(iCompA in compA){ + for(levelB in setdiff(levels(factorsList[[iFactorB]]),controlGroup[nameFactorB])){ + #decompose the contrast compA to apply the new level of factor B on each term + temp=unlist(strsplit(iCompA,"[ + ]")) + splitCompA=temp[1] + for(iTemp in temp[-1])splitCompA=c(splitCompA,"+",iTemp) + splitCompA=unlist(lapply(splitCompA,function(x){temp=unlist(strsplit(x,"-"));splitCompB=temp[1];for(iTemp in temp[-1])splitCompB=c(splitCompB,"-",iTemp);splitCompB})) + #apply on each contrast term the new level of factor B + firstTerm=paste(unlist(lapply(splitCompA,function(x)if(x!="+" && x!="-"){paste(x,levelB,sep=".")}else{x})),collapse="") + secondTerm=negativeExpression(paste(unlist(lapply(splitCompA,function(x)if(x!="+" && x!="-"){paste(x,controlGroup[nameFactorB],sep=".")}else{x})),collapse="")) + currentContrast=paste(c(firstTerm,secondTerm),collapse="") + + newPreviousLoopContrast[[paste(iFactorA,iFactorB,sep=".")]]=c(newPreviousLoopContrast[[paste(iFactorA,iFactorB,sep=".")]],currentContrast) + } + } + } + } + } + for(iContrast in names(newPreviousLoopContrast)){ + contrastClass=c(contrastClass,rep(iContrast,length(newPreviousLoopContrast[[iContrast]]))) + } + interactionContrasts=c(interactionContrasts,unlist(newPreviousLoopContrast)) + } + #make human title for interactions + names(interactionContrasts)=contrastClass + humanReadingInteraction=unlist(lapply(interactionContrasts,function(x)gsub("\\.",":",unlist(strsplit(x,"[+-]"))[1]))) + + contrastToIgnore=c() + + #complete with control groups and order to match to coeffs + for(iContrast in 1:length(interactionContrasts)){ + missingFactor=setdiff(1:nbFactors,as.integer(unlist(strsplit(names(interactionContrasts[iContrast]),"\\.")))) + #decompose the contrast + temp=unlist(strsplit(interactionContrasts[iContrast],"[ + ]")) + splitContrast=temp[1] + for(iTemp in temp[-1])splitContrast=c(splitContrast,"+",iTemp) + splitContrast=unlist(lapply(splitContrast,function(x){temp=unlist(strsplit(x,"-"));splitCompB=temp[1];for(iTemp in temp[-1])splitCompB=c(splitCompB,"-",iTemp);splitCompB})) + for(iFactor in missingFactor){ + for(iTerm in 1:length(splitContrast)){ + if(splitContrast[iTerm]!="+" && splitContrast[iTerm]!="-"){ + splitTerm=unlist(strsplit(splitContrast[iTerm],"\\.")) + if(iFactor==1)splitContrast[iTerm]=paste(c(controlGroup[names(factorsList)[iFactor]],splitTerm),collapse=".") + if(iFactor==nbFactors)splitContrast[iTerm]=paste(c(splitTerm,controlGroup[names(factorsList)[iFactor]]),collapse=".") + if(iFactor>1 && iFactor<nbFactors)splitContrast[iTerm]=paste(c(splitTerm[1:(iFactor-1)],controlGroup[names(factorsList)[iFactor]],splitTerm[iFactor:length(splitTerm)]),collapse=".") + } + } + } + interactionContrasts[iContrast]=paste(splitContrast,collapse="") + if(all(splitContrast[seq(1,length(splitContrast),2)]%in%coeffMeaning)){ + addComment(c("[INFO]Interaction contrast added : ",humanReadingInteraction[iContrast]),T,opt$log,display=F) + addComment(c("with complete formula ",interactionContrasts[iContrast]),T,opt$log,display=F) + }else{ + contrastToIgnore=c(contrastToIgnore,iContrast) + addComment(c("[WARNING]Interaction contrast",humanReadingInteraction[iContrast],"is removed due to empty group"),T,opt$log,display=F) + } + } + + #add interaction contrasts to global contrast list + if(length(contrastToIgnore)>0){ + requiredContrasts=c(requiredContrasts,interactionContrasts[-contrastToIgnore]) + humanReadingContrasts=c(humanReadingContrasts,humanReadingInteraction[-contrastToIgnore]) + persoContrastName=c(persoContrastName,rep("",length(humanReadingInteraction[-contrastToIgnore]))) + }else{ + requiredContrasts=c(requiredContrasts,interactionContrasts) + humanReadingContrasts=c(humanReadingContrasts,humanReadingInteraction) + persoContrastName=c(persoContrastName,rep("",length(humanReadingInteraction))) + } + }#end of intreaction contrasts + + + #remove from requiredContrasts contrasts that cannot be estimated + toRemove=unique(unlist(lapply(setdiff(coeffMeaning,names(estimatedCoeff)),function(x)grep(x,requiredContrasts)))) + if(length(toRemove)>0){ + addComment(c("[WARNING]",length(toRemove)," contrasts are removed, due to missing coefficients"),T,opt$log,display=FALSE) + requiredContrasts=requiredContrasts[-toRemove] + humanReadingContrasts=humanReadingContrasts[-toRemove] + persoContrastName=persoContrastName[-toRemove] + } + + if(length(requiredContrasts)==0){ + addComment("[ERROR]No contrast to compute, please check your contrast definition.",T,opt$log) + q( "no", 1, F ) + } + + #compute for each contrast mean of coefficients in posGroup and negGroup for FC computation of log(FC) with LSmean as in Partek + meanPosGroup=list() + meanNegGroup=list() + for(iContrast in 1:length(requiredContrasts)){ + #define posGroup and negGroup + #first split contrast + temp=unlist(strsplit(requiredContrasts[iContrast],"[ + ]")) + splitContrast=temp[1] + for(iTemp in temp[-1])splitContrast=c(splitContrast,"+",iTemp) + splitContrast=unlist(lapply(splitContrast,function(x){temp=unlist(strsplit(x,"-"));splitCompB=temp[1];for(iTemp in temp[-1])splitCompB=c(splitCompB,"-",iTemp);splitCompB})) + #and then put each term in good group + posGroup=c() + negGroup=c() + nextIsPos=TRUE + for(iSplit in splitContrast){ + if(iSplit=="+")nextIsPos=TRUE + if(iSplit=="-")nextIsPos=FALSE + if(iSplit!="-" && iSplit!="+"){ + #remove weights of contrast terms + iSplitBis=unlist(strsplit(iSplit,"[*]")) + iSplitBis=iSplitBis[length(iSplitBis)] + if(nextIsPos)posGroup=c(posGroup,iSplitBis) + else negGroup=c(negGroup,iSplitBis) + } + } + #compute means for each group + meanPosGroup[[iContrast]]=apply(as.matrix(data.fit$coefficients[,posGroup],ncol=length(posGroup)),1,mean) + meanNegGroup[[iContrast]]=apply(as.matrix(data.fit$coefficients[,negGroup],ncol=length(negGroup)),1,mean) + } + + + contrast.matrix = makeContrasts(contrasts=requiredContrasts,levels=design) + data.fit.con = contrasts.fit(data.fit,contrast.matrix) + + addComment("[INFO]Contrast definition done",T,opt$log,T,display=FALSE) + + #compute LIMMA statistics + data.fit.eb = eBayes(data.fit.con) + + addComment("[INFO]Estimation done",T,opt$log,T,display=FALSE) + + #adjust p.value through FDR + data.fit.eb$adj_p.value=data.fit.eb$p.value + for(iComparison in 1:ncol(data.fit.eb$adj_p.value)){ + data.fit.eb$adj_p.value[,iComparison]=p.adjust(data.fit.eb$p.value[,iComparison],"fdr") + } + + #add a new field based on LS-means for each contrast instead of global mean like they were calculated in coefficients field + data.fit.eb$coefficientsLS=data.fit.eb$coefficients + if(ncol(data.fit.eb$coefficients)!=length(meanPosGroup)){ + addComment("[ERROR]Estimated contrasts number unexpected",T,opt$log) + q( "no", 1, F ) + } + for(iContrast in 1:length(meanPosGroup)){ + data.fit.eb$coefficientsLS[,iContrast]=meanPosGroup[[iContrast]][rownames(data.fit.eb$coefficientsLS)]-meanNegGroup[[iContrast]][rownames(data.fit.eb$coefficientsLS)] + } + + #if requested replace coefficient computed as global mean by LS-means values + if(useLSmean)data.fit.eb$coefficients=data.fit.eb$coefficientsLS + +addComment("[INFO]Core treatment done",T,opt$log,T,display=FALSE) + + +##convert humanReadingContrasts with namingDictionary to create humanReadingContrastsRenamed and keep original humanReadingContrasts names for file names +humanReadingContrastsRenamed=rep("",length(humanReadingContrasts)) +for(iContrast in 1:length(humanReadingContrasts)){ + if(persoContrastName[iContrast]==""){ + #if(verbose)addComment(humanReadingContrasts[iContrast]) + specialCharacters=str_extract_all(humanReadingContrasts[iContrast],"[+|*|_|:|-]")[[1]] + #if(verbose)addComment(specialCharacters) + nameConverted=unlist(lapply(strsplit(humanReadingContrasts[iContrast],"[+|*|_|:|-]")[[1]],function(x)renamingDico[x,1])) + #if(verbose)addComment(nameConverted) + humanReadingContrastsRenamed[iContrast]=paste(nameConverted,specialCharacters,collapse="",sep="") + #if(verbose)addComment(humanReadingContrastsRenamed[iContrast]) + humanReadingContrastsRenamed[iContrast]=substr(humanReadingContrastsRenamed[iContrast],1,nchar(humanReadingContrastsRenamed[iContrast])-1) + }else{ + humanReadingContrastsRenamed[iContrast]=persoContrastName[iContrast] + } +} + +#write correspondances between plot file names (humanReadingContrasts) and displayed names in figure legends (humanReadingContrastsRenamed), usefull to define html items in xml file +correspondanceTable=matrix("",ncol=2,nrow=ncol(data.fit.eb$p.value)) +correspondanceTable[,1]=unlist(lapply(humanReadingContrasts,function(x)gsub(":","_INT_",gsub("\\+","_PLUS_",gsub("\\*","_AND_",x))))) +correspondanceTable[,2]=humanReadingContrastsRenamed +rownames(correspondanceTable)=correspondanceTable[,2] +write.table(correspondanceTable,file=file.path(getwd(), "correspondanceFileNames.csv"),quote=FALSE,sep="\t",col.names = F,row.names = F) + +#plot nominal p-val histograms for selected comparisons +histogramPerPage=6 +if (!is.null(opt$histo)) { + iToPlot=1 + plotVector=list() + nbComparisons=ncol(data.fit.eb$p.value) + for (iComparison in 1:nbComparisons){ + dataToPlot=data.frame(pval=data.fit.eb$p.value[,iComparison],id=rownames(data.fit.eb$p.value)) + p <- ggplot(data=dataToPlot, aes(x=pval)) + geom_histogram(colour="red", fill="salmon") + + theme_bw() + ggtitle(humanReadingContrastsRenamed[iComparison]) + ylab(label="Frequencies") + xlab(label="Nominal p-val") + + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5)) + plotVector[[length(plotVector)+1]]=p + + pp <- ggplotly(p) + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$histo,"_",correspondanceTable[humanReadingContrastsRenamed[iComparison],1],".html"),collapse=""),selfcontained = F) + + if(iComparison==nbComparisons || length(plotVector)==histogramPerPage){ + #plot and close the actual plot + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$histo,iToPlot,".pdf"),collapse=""))}else{ + png(paste(c("./plotDir/",opt$histo,iToPlot,".png"),collapse="")) + } + multiplot(plotlist=plotVector,cols=2) + dev.off() + if(iComparison<nbComparisons){ + #prepare for a new plotting file if necessary + plotVector=list() + iToPlot=iToPlot+1 + } + } + } + addComment("[INFO]Histograms drawn",T,opt$log,T,display=FALSE) + +} + +#plot F-test sum square barplot +if(!is.null(allFtestMeanSquare)){ + dataToPlot=data.frame(Fratio=apply(allFtestMeanSquare,2,mean),Factors=factor(colnames(allFtestMeanSquare),levels = colnames(allFtestMeanSquare))) + + p <- ggplot(data=dataToPlot, aes(x=Factors, y=Fratio, fill=Factors)) + + geom_bar(stat="identity") + scale_fill_manual(values = colorRampPalette(brewer.pal(9,"Set1"))(ncol(allFtestMeanSquare))[sample(ncol(allFtestMeanSquare))]) + ylab(label="mean F-ratio") + + theme_bw() + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5)) + ggtitle("Source of variation") + + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$fratioFile,".pdf"),collapse=""))}else{ + png(paste(c("./plotDir/",opt$fratioFile,".png"),collapse="")) + } + plot(p) + dev.off() + + pp <- ggplotly(p) + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$fratioFile,".html"),collapse=""),selfcontained = F) + + addComment("[INFO]SumSquareTest drawn",T,opt$log,T,display=FALSE) +} + +#plot VOLCANO plot +#volcanoplot(data.fit.eb,coef=1,highlight=10) +volcanoPerPage=1 +logFCthreshold=log2(opt$thresholdFC) +if (!is.null(opt$volcano)) { + iToPlot=1 + plotVector=list() + nbComparisons=ncol(data.fit.eb$adj_p.value) + for (iComparison in 1:nbComparisons){ + + #define the log10(p-val) threshold corresponding to FDR threshold fixed by user + probeWithLowFDR=-log10(data.fit.eb$p.value[which(data.fit.eb$adj_p.value[,iComparison]<=opt$fdrThreshold),iComparison]) + pvalThresholdFDR=NULL + if(length(probeWithLowFDR)>0)pvalThresholdFDR=min(probeWithLowFDR) + + #get significant points over FC and FDR thresholds + significativePoints=intersect(which(abs(data.fit.eb$coefficients[,iComparison])>=logFCthreshold),which(data.fit.eb$adj_p.value[,iComparison]<=opt$fdrThreshold)) + + #to reduce size of html plot, we keep 20000 points maximum sampled amongst genes with pval>=33%(pval) and abs(log2(FC))<=66%(abs(log2(FC))) + htmlPointsToRemove=intersect(which(abs(data.fit.eb$coefficients[,iComparison])<=quantile(abs(data.fit.eb$coefficients[,iComparison]),c(0.66))),which(data.fit.eb$p.value[,iComparison]>=quantile(abs(data.fit.eb$p.value[,iComparison]),c(0.33)))) + if(length(htmlPointsToRemove)>20000){ + htmlPointsToRemove=setdiff(htmlPointsToRemove,sample(htmlPointsToRemove,20000)) + }else{ + htmlPointsToRemove=c() + } + + xMinLimPlot=min(data.fit.eb$coefficients[,iComparison])-0.2 + xMaxLimPlot=max(data.fit.eb$coefficients[,iComparison])+0.2 + yMaxLimPlot= max(-log10(data.fit.eb$p.value[,iComparison]))+0.2 + + if(length(significativePoints)>0){ + dataSignifToPlot=data.frame(pval=-log10(data.fit.eb$p.value[significativePoints,iComparison]),FC=data.fit.eb$coefficients[significativePoints,iComparison],description=paste(names(data.fit.eb$coefficients[significativePoints,iComparison]),"\n","FC: " , round(2^data.fit.eb$coefficients[significativePoints,iComparison],2) , " | FDR p-val: ",prettyNum(data.fit.eb$adj_p.value[significativePoints,iComparison],digits=4), sep="")) + #to test if remains any normal points to draw + if(length(significativePoints)<nrow(data.fit.eb$p.value)){ + dataToPlot=data.frame(pval=-log10(data.fit.eb$p.value[-significativePoints,iComparison]),FC=data.fit.eb$coefficients[-significativePoints,iComparison],description=paste("FC: " , round(2^data.fit.eb$coefficients[-significativePoints,iComparison],2) , " | FDR p-val: ",prettyNum(data.fit.eb$adj_p.value[-significativePoints,iComparison],digits=4), sep="")) + }else{ + dataToPlot=data.frame(pval=0,FC=0,description="null") + } + }else{ + dataToPlot=data.frame(pval=-log10(data.fit.eb$p.value[,iComparison]),FC=data.fit.eb$coefficients[,iComparison],description=paste("FC: " , round(2^data.fit.eb$coefficients[,iComparison],2) , " | FDR p-val: ",prettyNum(data.fit.eb$adj_p.value[,iComparison],digits=4), sep="")) + } + + ##traditional plot + p <- ggplot(data=dataToPlot, aes(x=FC, y=pval)) + geom_point() + + theme_bw() + ggtitle(humanReadingContrastsRenamed[iComparison]) + ylab(label="-log10(p-val)") + xlab(label="Log2 Fold Change") + + theme(panel.border=element_blank(),plot.title = element_text(hjust = 0.5),legend.position="none") + if(logFCthreshold!=0) p <- p + geom_vline(xintercept=-logFCthreshold, color="salmon",linetype="dotted", size=1) + geom_vline(xintercept=logFCthreshold, color="salmon",linetype="dotted", size=1) + geom_text(data.frame(text=c(paste(c("log2(1/FC=",opt$thresholdFC,")"),collapse=""),paste(c("log2(FC=",opt$thresholdFC,")"),collapse="")),x=c(-logFCthreshold,logFCthreshold),y=c(0,0)),mapping=aes(x=x, y=y, label=text), size=4, angle=90, vjust=-0.4, hjust=0, color="salmon") + if(!is.null(pvalThresholdFDR)) p <- p + geom_hline(yintercept=pvalThresholdFDR, color="skyblue1",linetype="dotted", size=0.5) + geom_text(data.frame(text=c(paste(c("FDR pval limit(",opt$fdrThreshold,")"),collapse="")),x=c(xMinLimPlot),y=c(pvalThresholdFDR)),mapping=aes(x=x, y=y, label=text), size=4, vjust=0, hjust=0, color="skyblue3") + if(length(significativePoints)>0)p <- p + geom_point(data=dataSignifToPlot,aes(colour=description)) + + ##interactive plot + if(length(htmlPointsToRemove)>0){ + pointToRemove=union(htmlPointsToRemove,significativePoints) + #to test if remains any normal points to draw + if(length(pointToRemove)<nrow(data.fit.eb$p.value)){ + dataToPlot=data.frame(pval=-log10(data.fit.eb$p.value[-pointToRemove,iComparison]),FC=data.fit.eb$coefficients[-pointToRemove,iComparison],description=paste("FC: " , round(2^data.fit.eb$coefficients[-pointToRemove,iComparison],2) , " | FDR p-val: ", prettyNum(data.fit.eb$adj_p.value[-pointToRemove,iComparison],digits=4), sep="")) + }else{ + dataToPlot=data.frame(pval=0,FC=0,description="null") + } + } + + if((nrow(dataToPlot)+nrow(dataSignifToPlot))>40000)addComment(c("[WARNING]For",humanReadingContrastsRenamed[iComparison],"volcano, numerous points to plot(",nrow(dataToPlot)+nrow(dataSignifToPlot),"), resulting volcano could be heavy, using more stringent thresholds could be helpful."),T,opt$log) + + phtml <- plot_ly(data=dataToPlot, x=~FC, y=~pval,type="scatter", mode="markers",showlegend = FALSE, marker = list(color="gray",opacity=0.5), text=~description, hoverinfo="text") %>% + layout(title = humanReadingContrastsRenamed[iComparison],xaxis=list(title="Log2 Fold Change",showgrid=TRUE, zeroline=FALSE),yaxis=list(title="-log10(p-val)", showgrid=TRUE, zeroline=FALSE)) + if(length(significativePoints)>0) phtml=add_markers(phtml,data=dataSignifToPlot, x=~FC, y=~pval, mode="markers" , marker=list( color=log10(abs(dataSignifToPlot$FC)*dataSignifToPlot$pval),colorscale='Rainbow'), text=~description, hoverinfo="text", inherit = FALSE) %>% hide_colorbar() + if(logFCthreshold!=0){ + phtml=add_trace(phtml,x=c(-logFCthreshold,-logFCthreshold), y=c(0,yMaxLimPlot), type="scatter", mode = "lines", line=list(color="coral",dash="dash"), hoverinfo='none', showlegend = FALSE,inherit = FALSE) + phtml=add_annotations(phtml,x=-logFCthreshold,y=0,xref = "x",yref = "y",text = paste(c("log2(1/FC=",opt$thresholdFC,")"),collapse=""),xanchor = 'right',showarrow = F,textangle=270,font=list(color="coral")) + phtml=add_trace(phtml,x=c(logFCthreshold,logFCthreshold), y=c(0, yMaxLimPlot), type="scatter", mode = "lines", line=list(color="coral",dash="dash"), hoverinfo='none', showlegend = FALSE,inherit = FALSE) + phtml=add_annotations(phtml,x=logFCthreshold,y=0,xref = "x",yref = "y",text = paste(c("log2(FC=",opt$thresholdFC,")"),collapse=""),xanchor = 'right',showarrow = F,textangle=270,font=list(color="coral")) + } + if(!is.null(pvalThresholdFDR)){ + phtml=add_trace(phtml,x=c(xMinLimPlot,xMaxLimPlot), y=c(pvalThresholdFDR,pvalThresholdFDR), type="scatter", mode = "lines", line=list(color="cornflowerblue",dash="dash"), hoverinfo='none', showlegend = FALSE,inherit = FALSE) + phtml=add_annotations(phtml,x=xMinLimPlot,y=pvalThresholdFDR+0.1,xref = "x",yref = "y",text = paste(c("FDR pval limit(",opt$fdrThreshold,")"),collapse=""),xanchor = 'left',showarrow = F,font=list(color="cornflowerblue")) + } + plotVector[[length(plotVector)+1]]=p + + #save plotly files + pp <- ggplotly(phtml) + htmlwidgets::saveWidget(as_widget(pp), paste(c(file.path(getwd(), "plotLyDir"),"/",opt$volcano,"_",correspondanceTable[humanReadingContrastsRenamed[iComparison],1],".html"),collapse=""),selfcontained = F) + + + if(iComparison==nbComparisons || length(plotVector)==volcanoPerPage){ + #plot and close the actual plot + if(opt$format=="pdf"){ + pdf(paste(c("./plotDir/",opt$volcano,"_",correspondanceTable[humanReadingContrastsRenamed[iComparison],1],".pdf"),collapse=""))}else{ + png(paste(c("./plotDir/",opt$volcano,"_",correspondanceTable[humanReadingContrastsRenamed[iComparison],1],".png"),collapse="")) + } + multiplot(plotlist=plotVector,cols=1) + dev.off() + if(iComparison<nbComparisons){ + #prepare for a new ploting file if necessary + plotVector=list() + iToPlot=iToPlot+1 + } + } + } + remove(dataToPlot,dataSignifToPlot) + addComment("[INFO]Volcanos drawn",T,opt$log,T,display=FALSE) +} + +rowItemInfo=NULL +if(!is.null(opt$rowNameType) && !is.null(opt$organismID)){ +##get gene information from BioMart +#if(!require("biomaRt")){ +# source("https://bioconductor.org/biocLite.R") +# biocLite("biomaRt") +#} + +ensembl_hs_mart <- useMart(biomart="ensembl", dataset=opt$organismID) +ensembl_df <- getBM(attributes=c(opt$rowNameType,"description"),mart=ensembl_hs_mart) +rowItemInfo=ensembl_df[which(ensembl_df[,1]!=""),2] +rowItemInfo=unlist(lapply(rowItemInfo,function(x)substr(unlist(strsplit(x," \\[Source"))[1],1,30))) +names(rowItemInfo)=ensembl_df[which(ensembl_df[,1]!=""),1] +} + +#write(unlist(dimnames(data.fit.eb$adj_p.value)),opt$log,append = T) + +#prepare additional output containing df informations +dfMatrix=matrix(0,ncol=3,nrow = nrow(data.fit.eb$coefficients),dimnames = list(rownames(data.fit.eb$coefficients),c("df.residual","df.prior","df.total"))) +dfMatrix[,"df.residual"]=data.fit.eb$df.residual +dfMatrix[,"df.prior"]=data.fit.eb$df.prior +dfMatrix[,"df.total"]=data.fit.eb$df.total + +#filter out genes with higher p-values for all comparisons +genesToKeep=names(which(apply(data.fit.eb$adj_p.value,1,function(x)length(which(x<=opt$fdrThreshold))>0))) +#filter out genes with lower FC for all comparisons +genesToKeep=intersect(genesToKeep,names(which(apply(data.fit.eb$coefficients,1,function(x)length(which(abs(x)>=logFCthreshold))>0)))) + +if(length(genesToKeep)>0){ + data.fit.eb$adj_p.value=matrix(data.fit.eb$adj_p.value[genesToKeep,],ncol=ncol(data.fit.eb$adj_p.value)) + rownames(data.fit.eb$adj_p.value)=genesToKeep + colnames(data.fit.eb$adj_p.value)=colnames(data.fit.eb$p.value) + + data.fit.eb$p.value=matrix(data.fit.eb$p.value[genesToKeep,],ncol=ncol(data.fit.eb$p.value)) + rownames(data.fit.eb$p.value)=genesToKeep + colnames(data.fit.eb$p.value)=colnames(data.fit.eb$adj_p.value) + + data.fit.eb$coefficients=matrix(data.fit.eb$coefficients[genesToKeep,],ncol=ncol(data.fit.eb$coefficients)) + rownames(data.fit.eb$coefficients)=genesToKeep + colnames(data.fit.eb$coefficients)=colnames(data.fit.eb$adj_p.value) + + data.fit.eb$t=matrix(data.fit.eb$t[genesToKeep,],ncol=ncol(data.fit.eb$t)) + rownames(data.fit.eb$t)=genesToKeep + colnames(data.fit.eb$t)=colnames(data.fit.eb$adj_p.value) + + dfMatrix=dfMatrix[genesToKeep,,drop=FALSE] + +}else{ + addComment(c("[WARNING]No significative genes considering the given FDR threshold : ",opt$fdrThreshold),T,opt$log,display=FALSE) +} + +addComment("[INFO]Significant genes filtering done",T,opt$log,T,display=FALSE) + + +#plot VennDiagramm for genes below threshold between comparisons +#t=apply(data.fit.eb$adj_p.value[,1:4],2,function(x)names(which(x<=opt$threshold))) +#get.venn.partitions(t) +#vennCounts(data.fit.eb$adj_p.value[,1:4]<=opt$threshold) + +#make a simple sort genes based only on the first comparison +#newOrder=order(data.fit.eb$adj_p.value[,1]) +#data.fit.eb$adj_p.value=data.fit.eb$adj_p.value[newOrder,] + +#alternative sorting strategy based on the mean gene rank over all comparisons +if(length(genesToKeep)>1){ + currentRank=rep(0,nrow(data.fit.eb$adj_p.value)) + for(iComparison in 1:ncol(data.fit.eb$adj_p.value)){ + currentRank=currentRank+rank(data.fit.eb$adj_p.value[,iComparison]) + } + currentRank=currentRank/ncol(data.fit.eb$adj_p.value) + newOrder=order(currentRank) + + data.fit.eb$adj_p.value=matrix(data.fit.eb$adj_p.value[newOrder,],ncol=ncol(data.fit.eb$adj_p.value)) + rownames(data.fit.eb$adj_p.value)=rownames(data.fit.eb$p.value)[newOrder] + colnames(data.fit.eb$adj_p.value)=colnames(data.fit.eb$p.value) + + data.fit.eb$p.value=matrix(data.fit.eb$p.value[newOrder,],ncol=ncol(data.fit.eb$p.value)) + rownames(data.fit.eb$p.value)=rownames(data.fit.eb$adj_p.value) + colnames(data.fit.eb$p.value)=colnames(data.fit.eb$adj_p.value) + + data.fit.eb$coefficients=matrix(data.fit.eb$coefficients[newOrder,],ncol=ncol(data.fit.eb$coefficients)) + rownames(data.fit.eb$coefficients)=rownames(data.fit.eb$adj_p.value) + colnames(data.fit.eb$coefficients)=colnames(data.fit.eb$adj_p.value) + + data.fit.eb$t=matrix(data.fit.eb$t[newOrder,],ncol=ncol(data.fit.eb$t)) + rownames(data.fit.eb$t)=rownames(data.fit.eb$adj_p.value) + colnames(data.fit.eb$t)=colnames(data.fit.eb$adj_p.value) + + dfMatrix=dfMatrix[newOrder,,drop=FALSE] +} + + +#formating output matrices depending on genes to keep +if(length(genesToKeep)==0){ + outputData=matrix(0,ncol=ncol(data.fit.eb$adj_p.value)*5+2,nrow=3) + outputData[1,]=c("X","X",rep(humanReadingContrastsRenamed,each=5)) + outputData[2,]=c("X","X",rep(c("p-val","FDR.p-val","FC","log2(FC)","t-stat"),ncol(data.fit.eb$adj_p.value))) + outputData[,1]=c("LIMMA","Gene","noGene") + outputData[,2]=c("Comparison","Info","noInfo") + + outputDfData=matrix(0,ncol=3+1,nrow=2) + outputDfData[1,]=c("X","df.residual","df.prior","df.total") + outputDfData[,1]=c("Statistics","noGene") +}else{ + if(length(genesToKeep)==1){ + outputData=matrix(0,ncol=ncol(data.fit.eb$adj_p.value)*5+2,nrow=3) + outputData[1,]=c("X","X",rep(humanReadingContrastsRenamed,each=5)) + outputData[2,]=c("X","X",rep(c("p-val","FDR.p-val","FC","log2(FC)","t-stat"),ncol(data.fit.eb$adj_p.value))) + outputData[,1]=c("LIMMA","Gene",genesToKeep) + outputData[,2]=c("Comparison","Info","na") + if(!is.null(rowItemInfo))outputData[3,2]=rowItemInfo[genesToKeep] + outputData[3,seq(3,ncol(outputData),5)]=prettyNum(data.fit.eb$p.value,digits=4) + outputData[3,seq(4,ncol(outputData),5)]=prettyNum(data.fit.eb$adj_p.value,digits=4) + outputData[3,seq(5,ncol(outputData),5)]=prettyNum(2^data.fit.eb$coefficients,digits=4) + outputData[3,seq(6,ncol(outputData),5)]=prettyNum(data.fit.eb$coefficients,digits=4) + outputData[3,seq(7,ncol(outputData),5)]=prettyNum(data.fit.eb$t,digits=4) + + outputDfData=matrix(0,ncol=3+1,nrow=1+nrow(dfMatrix)) + outputDfData[1,]=c("Statistics","df.residual","df.prior","df.total") + outputDfData[2,]=c(rownames(dfMatrix),prettyNum(dfMatrix[,c("df.residual","df.prior","df.total")],digits=4)) + }else{ + #format matrix to be correctly read by galaxy (move headers in first column and row) + outputData=matrix(0,ncol=ncol(data.fit.eb$adj_p.value)*5+2,nrow=nrow(data.fit.eb$adj_p.value)+2) + outputData[1,]=c("X","X",rep(humanReadingContrastsRenamed,each=5)) + outputData[2,]=c("X","X",rep(c("p-val","FDR.p-val","FC","log2(FC)","t-stat"),ncol(data.fit.eb$adj_p.value))) + outputData[,1]=c("LIMMA","Gene",rownames(data.fit.eb$adj_p.value)) + outputData[,2]=c("Comparison","Info",rep("na",nrow(data.fit.eb$adj_p.value))) + if(!is.null(rowItemInfo))outputData[3:nrow(outputData),2]=rowItemInfo[rownames(data.fit.eb$adj_p.value)] + outputData[3:nrow(outputData),seq(3,ncol(outputData),5)]=prettyNum(data.fit.eb$p.value,digits=4) + outputData[3:nrow(outputData),seq(4,ncol(outputData),5)]=prettyNum(data.fit.eb$adj_p.value,digits=4) + outputData[3:nrow(outputData),seq(5,ncol(outputData),5)]=prettyNum(2^data.fit.eb$coefficients,digits=4) + outputData[3:nrow(outputData),seq(6,ncol(outputData),5)]=prettyNum(data.fit.eb$coefficients,digits=4) + outputData[3:nrow(outputData),seq(7,ncol(outputData),5)]=prettyNum(data.fit.eb$t,digits=4) + + outputDfData=matrix(0,ncol=3+1,nrow=1+nrow(dfMatrix)) + outputDfData[1,]=c("Statistics","df.residual","df.prior","df.total") + outputDfData[2:(1+nrow(dfMatrix)),]=cbind(rownames(dfMatrix),prettyNum(dfMatrix[,c("df.residual")],digits=4),prettyNum(dfMatrix[,c("df.prior")],digits=4),prettyNum(dfMatrix[,c("df.total")],digits=4)) + } +} +addComment("[INFO]Formated output",T,opt$log,display=FALSE) + +#write output results +write.table(outputData,file=opt$outputFile,quote=FALSE,sep="\t",col.names = F,row.names = F) + +#write df info file +write.table(outputDfData,file=opt$outputDfFile,quote=FALSE,sep="\t",col.names = F,row.names = F) + +end.time <- Sys.time() +addComment(c("[INFO]Total execution time for R script:",as.numeric(end.time - start.time,units="mins"),"mins"),T,opt$log,display=FALSE) + +addComment("[INFO]End of R script",T,opt$log,display=FALSE) + +printSessionInfo(opt$log) +#sessionInfo() + + +