Mercurial > repos > vijay > pancancer_apply_weights
diff pancancer_apply_weights.xml @ 0:3543d3e66ecb draft default tip
"planemo upload for repository http://github.com/nvk747/papaa/galaxy/ commit 954b283ef7f82f59f55476a4b3a230d655187ac1"
author | vijay |
---|---|
date | Wed, 16 Dec 2020 23:30:39 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pancancer_apply_weights.xml Wed Dec 16 23:30:39 2020 +0000 @@ -0,0 +1,70 @@ +<tool id="pancancer_apply_weights" name="PAPAA: PanCancer apply weights" version="@VERSION@"> + <description>apply weights</description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="requirements"/> + <expand macro="stdio"/> + <version_command><![CDATA['papaa_apply_weights.py' --version]]></version_command> + <command><![CDATA[ + mkdir 'classifier' && + ln -s '${pancan_classifier_summary}' 'classifier/classifier_summary.txt' && + ln -s '${pancan_classifier_coefficients}' 'classifier/classifier_coefficients.tsv' && + papaa_apply_weights.py + --classifier_summary 'classifier' + @INPUTS_BASIC@ + @INPUTS_COPY_NUMBER_CLASS_FILE_CONDITIONAL@ + > '${log}' + ]]></command> + <inputs> + <expand macro="inputs_basic"/> + <expand macro="inputs_copy_number_class_file_conditional"/> + <param argument="--classifier_summary" label="pancancer classifier summary" name="pancan_classifier_summary" optional="false" type="data" format="txt" help="classifer_summary.txt"/> + <param label="pancancer classifier coefficients" name="pancan_classifier_coefficients" optional="false" type="data" format="tabular" help="classifier_coefficients.tsv"/> + </inputs> + <outputs> + <data format="txt" name="log" label="${tool.name} on ${on_string} (Log)"/> + <data format="tabular" name="classifier_decisions" label="${tool.name} on ${on_string} (classifier_decisions.tsv)" from_work_dir="classifier/classifier_decisions.tsv"/> + </outputs> + <tests> + <test> + <param name="x_matrix" value="pancan_rnaseq_freeze_t1p.tsv.gz" ftype="tabular"/> + <param name="filename_mut" value="pancan_mutation_freeze_t1p.tsv.gz" ftype="tabular"/> + <param name="filename_mut_burden" value="mutation_burden_freeze.tsv" ftype="tabular"/> + <param name="filename_sample" value="sample_freeze.tsv" ftype="tabular"/> + <param name="copy_number" value="yes"/> + <param name="filename_copy_loss" value="copy_number_loss_status_t10p.tsv.gz" ftype="tabular"/> + <param name="filename_copy_gain" value="copy_number_gain_status_t10p.tsv.gz" ftype="tabular"/> + <param name="filename_cancer_gene_classification" value="cosmic_cancer_classification.tsv" ftype="tabular"/> + <param name="pancan_classifier_summary" value="classifier_summary.txt" ftype="txt"/> + <param name="pancan_classifier_coefficients" value="classifier_coefficients.tsv" ftype="tabular"/> + <output name="log" file="apply_weights_Log.txt"/> + <output name="classifier_decisions"> + <assert_contents> + <has_line line="SAMPLE_BARCODE	log10_mut	total_status	weight	AKT1	AKT1_gain	ERBB2	ERBB2_gain	KRAS	KRAS_gain	PIK3CA	PIK3CA_gain	PATIENT_BARCODE	DISEASE	SUBTYPE	hypermutated	include" /> + <has_n_columns n="17" /> + <has_n_lines n="90" /> + </assert_contents> + </output> + </test> + </tests> + <help><![CDATA[ + + **Pancancer_Aberrant_Pathway_Activity_Analysis scripts/papaa_apply_weights.py:** + + **Inputs:** + --classifier_summary String of the location of classifier_summary.txt file + --copy_number Supplement Y matrix with copy number events + --x_matrix Filename of features to use in model + --filename_mut_burden Filename of sample/gene mutations to use in model + --filename_mut_burden Filename of sample mutation burden to use in model + --filename_sample Filename of patient/samples to use in model + --filename_copy_loss Filename of copy number loss + --filename_copy_gain Filename of copy number gain + --filename_cancer_gene_classification Filename of cancer gene classification table + + **Outputs:** + Apply a logit transform on expression values (y = 1/(1+e^(-wX))) to output mutational probabilities. Generates "classifier_decisions.tsv" file which has scores/probabilities and other covariate information. The scores/probabilities will be used for gene ranking and variant specific classification. ]]> + </help> + <expand macro="citations" /> +</tool>