Mercurial > repos > vijay > pancancer_apply_weights
view pancancer_apply_weights.xml @ 0:3543d3e66ecb draft default tip
"planemo upload for repository http://github.com/nvk747/papaa/galaxy/ commit 954b283ef7f82f59f55476a4b3a230d655187ac1"
author | vijay |
---|---|
date | Wed, 16 Dec 2020 23:30:39 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="pancancer_apply_weights" name="PAPAA: PanCancer apply weights" version="@VERSION@"> <description>apply weights</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <expand macro="stdio"/> <version_command><![CDATA['papaa_apply_weights.py' --version]]></version_command> <command><![CDATA[ mkdir 'classifier' && ln -s '${pancan_classifier_summary}' 'classifier/classifier_summary.txt' && ln -s '${pancan_classifier_coefficients}' 'classifier/classifier_coefficients.tsv' && papaa_apply_weights.py --classifier_summary 'classifier' @INPUTS_BASIC@ @INPUTS_COPY_NUMBER_CLASS_FILE_CONDITIONAL@ > '${log}' ]]></command> <inputs> <expand macro="inputs_basic"/> <expand macro="inputs_copy_number_class_file_conditional"/> <param argument="--classifier_summary" label="pancancer classifier summary" name="pancan_classifier_summary" optional="false" type="data" format="txt" help="classifer_summary.txt"/> <param label="pancancer classifier coefficients" name="pancan_classifier_coefficients" optional="false" type="data" format="tabular" help="classifier_coefficients.tsv"/> </inputs> <outputs> <data format="txt" name="log" label="${tool.name} on ${on_string} (Log)"/> <data format="tabular" name="classifier_decisions" label="${tool.name} on ${on_string} (classifier_decisions.tsv)" from_work_dir="classifier/classifier_decisions.tsv"/> </outputs> <tests> <test> <param name="x_matrix" value="pancan_rnaseq_freeze_t1p.tsv.gz" ftype="tabular"/> <param name="filename_mut" value="pancan_mutation_freeze_t1p.tsv.gz" ftype="tabular"/> <param name="filename_mut_burden" value="mutation_burden_freeze.tsv" ftype="tabular"/> <param name="filename_sample" value="sample_freeze.tsv" ftype="tabular"/> <param name="copy_number" value="yes"/> <param name="filename_copy_loss" value="copy_number_loss_status_t10p.tsv.gz" ftype="tabular"/> <param name="filename_copy_gain" value="copy_number_gain_status_t10p.tsv.gz" ftype="tabular"/> <param name="filename_cancer_gene_classification" value="cosmic_cancer_classification.tsv" ftype="tabular"/> <param name="pancan_classifier_summary" value="classifier_summary.txt" ftype="txt"/> <param name="pancan_classifier_coefficients" value="classifier_coefficients.tsv" ftype="tabular"/> <output name="log" file="apply_weights_Log.txt"/> <output name="classifier_decisions"> <assert_contents> <has_line line="SAMPLE_BARCODE	log10_mut	total_status	weight	AKT1	AKT1_gain	ERBB2	ERBB2_gain	KRAS	KRAS_gain	PIK3CA	PIK3CA_gain	PATIENT_BARCODE	DISEASE	SUBTYPE	hypermutated	include" /> <has_n_columns n="17" /> <has_n_lines n="90" /> </assert_contents> </output> </test> </tests> <help><![CDATA[ **Pancancer_Aberrant_Pathway_Activity_Analysis scripts/papaa_apply_weights.py:** **Inputs:** --classifier_summary String of the location of classifier_summary.txt file --copy_number Supplement Y matrix with copy number events --x_matrix Filename of features to use in model --filename_mut_burden Filename of sample/gene mutations to use in model --filename_mut_burden Filename of sample mutation burden to use in model --filename_sample Filename of patient/samples to use in model --filename_copy_loss Filename of copy number loss --filename_copy_gain Filename of copy number gain --filename_cancer_gene_classification Filename of cancer gene classification table **Outputs:** Apply a logit transform on expression values (y = 1/(1+e^(-wX))) to output mutational probabilities. Generates "classifier_decisions.tsv" file which has scores/probabilities and other covariate information. The scores/probabilities will be used for gene ranking and variant specific classification. ]]> </help> <expand macro="citations" /> </tool>