diff dexseq-hts_1.0/src/dexseq_prepare_annotation.py @ 11:cec4b4fb30be draft default tip

DEXSeq version 1.6 added
author vipints <vipin@cbio.mskcc.org>
date Tue, 08 Oct 2013 08:22:45 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/dexseq-hts_1.0/src/dexseq_prepare_annotation.py	Tue Oct 08 08:22:45 2013 -0400
@@ -0,0 +1,131 @@
+import sys, collections, itertools, os.path
+
+if len( sys.argv ) != 3:
+   sys.stderr.write( "Script to prepare annotation for DEXSeq.\n\n" )
+   sys.stderr.write( "Usage: python %s <in.gtf> <out.gff>\n\n" % os.path.basename(sys.argv[0]) )
+   sys.stderr.write( "This script takes an annotation file in Ensembl GTF format\n" )
+   sys.stderr.write( "and outputs a 'flattened' annotation file suitable for use\n" )
+   sys.stderr.write( "with the count_in_exons.py script.\n" )
+   sys.exit(1)
+
+try:
+   import HTSeq
+except ImportError:
+   sys.stderr.write( "Could not import HTSeq. Please install the HTSeq Python framework\n" )   
+   sys.stderr.write( "available from http://www-huber.embl.de/users/anders/HTSeq\n" )   
+   sys.exit(1)
+
+gtf_file = sys.argv[1]
+out_file = sys.argv[2]
+
+## make sure that it can handle GFF files.
+parent_child_map = dict()
+for feature in HTSeq.GFF_Reader( gtf_file ):
+   if feature.type in ['mRNA', 
+      'transcript', 
+      'ncRNA', 
+      'miRNA', 
+      'pseudogenic_transcript', 
+      'rRNA', 
+      'snoRNA', 
+      'snRNA', 
+      'tRNA', 
+      'scRNA']:
+      parent_child_map[feature.attr['ID']] = feature.attr['Parent']
+
+# Step 1: Store all exons with their gene and transcript ID 
+# in a GenomicArrayOfSets
+
+exons = HTSeq.GenomicArrayOfSets( "auto", stranded=True )
+for f in HTSeq.GFF_Reader( gtf_file ):
+   if not f.type in ["exon", "pseudogenic_exon"]:
+      continue
+   if not f.attr.get('gene_id'):
+      f.attr['gene_id'] = parent_child_map[f.attr['Parent']]
+      f.attr['transcript_id'] = f.attr['Parent']
+   f.attr['gene_id'] = f.attr['gene_id'].replace( ":", "_" )
+   exons[f.iv] += ( f.attr['gene_id'], f.attr['transcript_id'] )
+
+# Step 2: Form sets of overlapping genes
+
+# We produce the dict 'gene_sets', whose values are sets of gene IDs. Each set
+# contains IDs of genes that overlap, i.e., share bases (on the same strand).
+# The keys of 'gene_sets' are the IDs of all genes, and each key refers to
+# the set that contains the gene.
+# Each gene set forms an 'aggregate gene'.
+
+gene_sets = collections.defaultdict( lambda: set() )
+for iv, s in exons.steps():
+   # For each step, make a set, 'full_set' of all the gene IDs occuring
+   # in the present step, and also add all those gene IDs, whch have been
+   # seen earlier to co-occur with each of the currently present gene IDs.
+   full_set = set()
+   for gene_id, transcript_id in s:
+      full_set.add( gene_id )
+      full_set |= gene_sets[ gene_id ]
+   # Make sure that all genes that are now in full_set get associated
+   # with full_set, i.e., get to know about their new partners
+   for gene_id in full_set:
+      assert gene_sets[ gene_id ] <= full_set
+      gene_sets[ gene_id ] = full_set
+
+
+# Step 3: Go through the steps again to get the exonic sections. Each step
+# becomes an 'exonic part'. The exonic part is associated with an
+# aggregate gene, i.e., a gene set as determined in the previous step, 
+# and a transcript set, containing all transcripts that occur in the step.
+# The results are stored in the dict 'aggregates', which contains, for each
+# aggregate ID, a list of all its exonic_part features.
+
+aggregates = collections.defaultdict( lambda: list() )
+for iv, s in exons.steps( ):
+   # Skip empty steps
+   if len(s) == 0:
+      continue
+   # Take one of the gene IDs, find the others via gene sets, and
+   # form the aggregate ID from all of them   
+   gene_id = list(s)[0][0]
+   assert set( gene_id for gene_id, transcript_id in s ) <= gene_sets[ gene_id ] 
+   aggregate_id = '+'.join( gene_sets[ gene_id ] )
+   # Make the feature and store it in 'aggregates'
+   f = HTSeq.GenomicFeature( aggregate_id, "exonic_part", iv )   
+   f.source = os.path.basename( sys.argv[1] )
+   f.attr = {}
+   f.attr[ 'gene_id' ] = aggregate_id
+   transcript_set = set( ( transcript_id for gene_id, transcript_id in s ) )
+   f.attr[ 'transcripts' ] = '+'.join( transcript_set )
+   aggregates[ aggregate_id ].append( f )
+
+
+# Step 4: For each aggregate, number the exonic parts
+
+aggregate_features = []
+for l in aggregates.values():
+   for i in xrange( len(l)-1 ):
+      assert l[i].name == l[i+1].name, str(l[i+1]) + " has wrong name"
+      assert l[i].iv.end <= l[i+1].iv.start, str(l[i+1]) + " starts too early"
+      if l[i].iv.chrom != l[i+1].iv.chrom:
+         raise ValueError, "Same name found on two chromosomes: %s, %s" % ( str(l[i]), str(l[i+1]) )
+      if l[i].iv.strand != l[i+1].iv.strand:
+         raise ValueError, "Same name found on two strands: %s, %s" % ( str(l[i]), str(l[i+1]) )
+   aggr_feat = HTSeq.GenomicFeature( l[0].name, "aggregate_gene", 
+      HTSeq.GenomicInterval( l[0].iv.chrom, l[0].iv.start, 
+         l[-1].iv.end, l[0].iv.strand ) )
+   aggr_feat.source = os.path.basename( sys.argv[1] )
+   aggr_feat.attr = { 'gene_id': aggr_feat.name }
+   for i in xrange( len(l) ):
+      l[i].attr['exonic_part_number'] = "%03d" % ( i+1 )
+   aggregate_features.append( aggr_feat )
+      
+      
+# Step 5: Sort the aggregates, then write everything out
+
+aggregate_features.sort( key = lambda f: ( f.iv.chrom, f.iv.start ) )
+
+fout = open( out_file, "w" ) 
+for aggr_feat in aggregate_features:
+   fout.write( aggr_feat.get_gff_line() )
+   for f in aggregates[ aggr_feat.name ]:
+      fout.write( f.get_gff_line() )
+
+fout.close()