changeset 10:c42c69aa81f8

fixed manually the upload of version 2.1.0 - deleted accidentally added files to the repo
author vipints <vipin@cbio.mskcc.org>
date Thu, 23 Apr 2015 18:01:45 -0400
parents 7d67331368f3
children 5c6f33e20fcc
files GFFParser.py README.md bed_to_gff.py bed_to_gff.xml gbk_to_gff.py gbk_to_gff.xml gff_to_bed.py gff_to_bed.xml gff_to_gtf.py gff_to_gtf.xml gtf_to_gff.py gtf_to_gff.xml helper.py tool_conf.xml.sample tool_dependencies.xml
diffstat 15 files changed, 1944 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/GFFParser.py	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,496 @@
+#!/usr/bin/env python
+"""
+Extract genome annotation from a GFF (a tab delimited format for storing sequence features and annotations) file.
+
+Requirements: 
+    Numpy :- http://numpy.org/ 
+
+Copyright (C)	
+
+2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany. 
+2012-2015 Memorial Sloan Kettering Cancer Center, New York City, USA.
+"""
+
+import re
+import os
+import sys
+import urllib
+import numpy as np
+import helper as utils 
+from collections import defaultdict
+
+def attribute_tags(col9):
+    """ 
+    Split the key-value tags from the attribute column, it takes column number 9 from GTF/GFF file 
+
+    @args col9: attribute column from GFF file 
+    @type col9: str
+    """
+    info = defaultdict(list)
+    is_gff = False
+    
+    if not col9:
+        return is_gff, info
+        
+    # trim the line ending semi-colon  ucsc may have some white-space  
+    col9 = col9.rstrip(';| ')
+    # attributes from 9th column 
+    atbs = col9.split(" ; ")
+    if len(atbs) == 1:
+        atbs = col9.split("; ")
+        if len(atbs) == 1:
+            atbs = col9.split(";")
+    # check the GFF3 pattern which has key value pairs like:
+    gff3_pat = re.compile("\w+=")
+    # sometime GTF have: gene_id uc002zkg.1;
+    gtf_pat = re.compile("\s?\w+\s")
+
+    key_vals = []
+
+    if gff3_pat.match(atbs[0]): # gff3 pattern 
+        is_gff = True
+        key_vals = [at.split('=') for at in atbs]
+    elif gtf_pat.match(atbs[0]): # gtf pattern
+        for at in atbs:
+            key_vals.append(at.strip().split(" ",1))
+    else:
+        # to handle attribute column has only single value 
+        key_vals.append(['ID', atbs[0]])
+    # get key, val items 
+    for item in key_vals:
+        key, val = item
+        # replace the double qoutes from feature identifier 
+        val = re.sub('"', '', val)
+        # replace the web formating place holders to plain text format 
+        info[key].extend([urllib.unquote(v) for v in val.split(',') if v])
+
+    return is_gff, info
+                
+def spec_features_keywd(gff_parts):
+    """
+    Specify the feature key word according to the GFF specifications
+
+    @args gff_parts: attribute field key 
+    @type gff_parts: str 
+    """
+    for t_id in ["transcript_id", "transcriptId", "proteinId"]:
+        try:
+            gff_parts["info"]["Parent"] = gff_parts["info"][t_id]
+            break
+        except KeyError:
+            pass
+    for g_id in ["gene_id", "geneid", "geneId", "name", "gene_name", "genename"]:
+        try:
+            gff_parts["info"]["GParent"] = gff_parts["info"][g_id]
+            break
+        except KeyError:
+            pass
+    ## TODO key words
+    for flat_name in ["Transcript", "CDS"]:
+        if gff_parts["info"].has_key(flat_name):
+            # parents
+            if gff_parts['type'] in [flat_name] or re.search(r'transcript', gff_parts['type'], re.IGNORECASE):
+                if not gff_parts['id']:
+                    gff_parts['id'] = gff_parts['info'][flat_name][0]
+                    #gff_parts["info"]["ID"] = [gff_parts["id"]]
+            # children 
+            elif gff_parts["type"] in ["intron", "exon", "three_prime_UTR",
+                        "coding_exon", "five_prime_UTR", "CDS", "stop_codon",
+                        "start_codon"]:
+                gff_parts["info"]["Parent"] = gff_parts["info"][flat_name]
+            break
+    return gff_parts
+
+def Parse(ga_file):
+    """
+    Parsing GFF/GTF file based on feature relationship, it takes the input file.
+
+    @args ga_file: input file name 
+    @type ga_file: str 
+    """
+    child_map = defaultdict(list)
+    parent_map = dict()
+
+    ga_handle = utils.open_file(ga_file)
+
+    for rec in ga_handle:
+        rec = rec.strip('\n\r')
+        
+        # skip empty line fasta identifier and commented line
+        if not rec or rec[0] in  ['#', '>']:
+            continue
+        # skip the genome sequence 
+        if not re.search('\t', rec):
+            continue
+
+        parts = rec.split('\t')
+        assert len(parts) >= 8, rec
+
+        # process the attribute column (9th column)
+        ftype, tags = attribute_tags(parts[-1])
+        if not tags: # skip the line if no attribute column.
+	        continue 
+
+        # extract fields  
+        if parts[1]:
+            tags["source"] = parts[1]
+        if parts[7]:
+            tags["phase"] = parts[7]
+
+        gff_info = dict()
+        gff_info['info'] = dict(tags)
+        gff_info["is_gff3"] = ftype
+        gff_info['chr'] = parts[0]
+        gff_info['score'] = parts[5]
+
+        if parts[3] and parts[4]:
+            gff_info['location'] = [int(parts[3]) ,
+                        int(parts[4])]
+            gff_info['type'] = parts[2]
+            gff_info['id'] = tags.get('ID', [''])[0]
+            if parts[6] in ['?', '.']:
+                parts[6] = None 
+            gff_info['strand'] = parts[6]
+
+            # key word according to the GFF spec.
+            # is_gff3 flag is false check this condition and get the attribute fields 
+            if not ftype:
+                gff_info = spec_features_keywd(gff_info)
+            
+            # link the feature relationships
+            if gff_info['info'].has_key('Parent'): 
+                for p in gff_info['info']['Parent']:
+                    if p == gff_info['id']:
+                        gff_info['id'] = ''
+                        break
+                rec_category = 'child'
+            elif gff_info['id']:
+                rec_category = 'parent'
+            else:
+                rec_category = 'record'
+
+            # depends on the record category organize the features
+            if rec_category == 'child':
+                for p in gff_info['info']['Parent']:
+                    # create the data structure based on source and feature id 
+                    child_map[(gff_info['chr'], gff_info['info']['source'], p)].append(
+                                            dict( type = gff_info['type'], 
+                                            location =  gff_info['location'], 
+                                            strand = gff_info['strand'], 
+                                            score = gff_info['score'], 
+                                            ID = gff_info['id'],
+                                            gene_id = gff_info['info'].get('GParent', '') 
+                                            ))
+            elif rec_category == 'parent':
+                parent_map[(gff_info['chr'], gff_info['info']['source'], gff_info['id'])] = dict( 
+                                            type = gff_info['type'], 
+                                            location = gff_info['location'],
+                                            strand = gff_info['strand'],
+                                            score = gff_info['score'], 
+                                            name = tags.get('Name', [''])[0])
+            elif rec_category == 'record':
+                #TODO how to handle plain records?
+                c = 1 
+    ga_handle.close()
+
+    # depends on file type create parent feature  
+    if not ftype:
+        parent_map, child_map = create_missing_feature_type(parent_map, child_map)    
+    
+    # connecting parent child relations  
+    # essentially the parent child features are here from any type of GTF/GFF2/GFF3 file
+    gene_mat = format_gene_models(parent_map, child_map) 
+
+    return gene_mat 
+    
+def format_gene_models(parent_nf_map, child_nf_map): 
+    """
+    Genarate GeneObject based on the parsed file contents
+
+    @args parent_nf_map: parent features with source and chromosome information 
+    @type parent_nf_map: collections defaultdict
+    @args child_nf_map: transctipt and exon information are encoded 
+    @type child_nf_map: collections defaultdict
+    """
+
+    g_cnt = 0 
+    gene = np.zeros((len(parent_nf_map),), dtype = utils.init_gene())
+
+    for pkey, pdet in parent_nf_map.items():
+        # considering only gene features 
+        #if not re.search(r'gene', pdet.get('type', '')):
+        #    continue 
+
+        # infer the gene start and stop if not there in the 
+        if not pdet.get('location', []):
+            GNS, GNE = [], []
+            # multiple number of transcripts 
+            for L1 in child_nf_map[pkey]:
+                GNS.append(L1.get('location', [])[0]) 
+                GNE.append(L1.get('location', [])[1]) 
+            GNS.sort()
+            GNE.sort()
+            pdet['location'] = [GNS[0], GNE[-1]]
+
+        orient = pdet.get('strand', '')
+        gene[g_cnt]['id'] = g_cnt +1 
+        gene[g_cnt]['chr'] = pkey[0]
+        gene[g_cnt]['source'] = pkey[1]
+        gene[g_cnt]['name'] = pkey[-1]
+        gene[g_cnt]['start'] = pdet.get('location', [])[0]
+        gene[g_cnt]['stop'] = pdet.get('location', [])[1]
+        gene[g_cnt]['strand'] = orient  
+        gene[g_cnt]['score'] = pdet.get('score','')
+
+        # default value 
+        gene[g_cnt]['is_alt_spliced'] = gene[g_cnt]['is_alt'] = 0
+        if len(child_nf_map[pkey]) > 1:
+            gene[g_cnt]['is_alt_spliced'] = gene[g_cnt]['is_alt'] = 1
+
+        # complete sub-feature for all transcripts 
+        dim = len(child_nf_map[pkey])
+        TRS = np.zeros((dim,), dtype=np.object)
+        TR_TYP = np.zeros((dim,), dtype=np.object)
+        EXON = np.zeros((dim,), dtype=np.object)
+        UTR5 = np.zeros((dim,), dtype=np.object)
+        UTR3 = np.zeros((dim,), dtype=np.object)
+        CDS = np.zeros((dim,), dtype=np.object)
+        TISc = np.zeros((dim,), dtype=np.object)
+        TSSc = np.zeros((dim,), dtype=np.object)
+        CLV = np.zeros((dim,), dtype=np.object)
+        CSTOP = np.zeros((dim,), dtype=np.object)
+        TSTAT = np.zeros((dim,), dtype=np.object)
+        TSCORE = np.zeros((dim,), dtype=np.object)
+
+        # fetching corresponding transcripts 
+        for xq, Lv1 in enumerate(child_nf_map[pkey]):
+
+            TID = Lv1.get('ID', '')
+            TRS[xq]= np.array([TID])
+
+            TYPE = Lv1.get('type', '')
+            TR_TYP[xq] = np.array('')
+            TR_TYP[xq] = np.array(TYPE) if TYPE else TR_TYP[xq]
+
+            orient = Lv1.get('strand', '')
+            tr_score = Lv1.get('score', '')
+
+            # fetching different sub-features 
+            child_feat = defaultdict(list)
+            for Lv2 in child_nf_map[(pkey[0], pkey[1], TID)]:
+                E_TYP = Lv2.get('type', '')
+                child_feat[E_TYP].append(Lv2.get('location'))
+            
+            # make general ascending order of coordinates 
+            if orient == '-':
+                for etype, excod in child_feat.items():
+                    if len(excod) > 1:
+                        if excod[0][0] > excod[-1][0]:
+                            excod.reverse()
+                            child_feat[etype] = excod
+
+            # make exon coordinate from cds and utr regions 
+            if not child_feat.get('exon'):  
+                if child_feat.get('CDS'):
+                    exon_cod = utils.make_Exon_cod( orient, 
+                                NonetoemptyList(child_feat.get('five_prime_UTR')), 
+                                NonetoemptyList(child_feat.get('CDS')),
+                                NonetoemptyList(child_feat.get('three_prime_UTR')))
+                    child_feat['exon'] = exon_cod 
+                else: 
+                    # TODO only UTR's
+                    # searching through keys to find a pattern describing exon feature 
+                    ex_key_pattern = [k for k in child_feat if k.endswith("exon")]
+                    if ex_key_pattern:
+                        child_feat['exon'] = child_feat[ex_key_pattern[0]]
+
+            # stop_codon are seperated from CDS, add the coordinates based on strand
+            if child_feat.get('stop_codon'):
+                if orient == '+':
+                    if child_feat.get('stop_codon')[0][0] - child_feat.get('CDS')[-1][1] == 1:
+                        child_feat['CDS'][-1] = [child_feat.get('CDS')[-1][0], child_feat.get('stop_codon')[0][1]]
+                    else:
+                        child_feat['CDS'].append(child_feat.get('stop_codon')[0])
+                elif orient == '-':
+                    if child_feat.get('CDS')[0][0] - child_feat.get('stop_codon')[0][1] == 1:
+                        child_feat['CDS'][0] = [child_feat.get('stop_codon')[0][0], child_feat.get('CDS')[0][1]]
+                    else:
+                        child_feat['CDS'].insert(0, child_feat.get('stop_codon')[0])
+
+            # transcript signal sites 
+            TIS, cdsStop, TSS, cleave = [], [], [], []
+            cds_status, exon_status, utr_status = 0, 0, 0
+
+            if child_feat.get('exon'):
+                TSS = [child_feat.get('exon')[-1][1]]
+                TSS = [child_feat.get('exon')[0][0]] if orient == '+' else TSS 
+                cleave = [child_feat.get('exon')[0][0]]
+                cleave = [child_feat.get('exon')[-1][1]] if orient == '+' else cleave
+                exon_status = 1
+
+            if child_feat.get('CDS'):
+                if orient == '+': 
+                    TIS = [child_feat.get('CDS')[0][0]]
+                    cdsStop = [child_feat.get('CDS')[-1][1]-3]
+                else:
+                    TIS = [child_feat.get('CDS')[-1][1]]
+                    cdsStop = [child_feat.get('CDS')[0][0]+3]
+                cds_status = 1 
+                # cds phase calculation 
+                child_feat['CDS'] = utils.add_CDS_phase(orient, child_feat.get('CDS'))
+            
+            # sub-feature status 
+            if child_feat.get('three_prime_UTR') or child_feat.get('five_prime_UTR'):
+                utr_status =1 
+            
+            if utr_status == cds_status == exon_status == 1: 
+                t_status = 1
+            else:
+                t_status = 0
+            
+            # add sub-feature # make array for export to different out
+            TSTAT[xq] = t_status
+            EXON[xq] = np.array(child_feat.get('exon'), np.float64)
+            UTR5[xq] = np.array(NonetoemptyList(child_feat.get('five_prime_UTR')))
+            UTR3[xq] = np.array(NonetoemptyList(child_feat.get('three_prime_UTR')))
+            CDS[xq] = np.array(NonetoemptyList(child_feat.get('CDS')))
+            TISc[xq] = np.array(TIS)
+            CSTOP[xq] = np.array(cdsStop)
+            TSSc[xq] = np.array(TSS)
+            CLV[xq] = np.array(cleave)
+            TSCORE[xq] = tr_score 
+            
+        # add sub-features to the parent gene feature
+        gene[g_cnt]['transcript_status'] = TSTAT
+        gene[g_cnt]['transcripts'] = TRS 
+        gene[g_cnt]['exons'] = EXON
+        gene[g_cnt]['utr5_exons'] = UTR5 
+        gene[g_cnt]['cds_exons'] = CDS 
+        gene[g_cnt]['utr3_exons'] = UTR3 
+        gene[g_cnt]['transcript_type'] = TR_TYP
+        gene[g_cnt]['tis'] = TISc
+        gene[g_cnt]['cdsStop'] = CSTOP
+        gene[g_cnt]['tss'] = TSSc
+        gene[g_cnt]['cleave'] = CLV
+        gene[g_cnt]['transcript_score'] = TSCORE
+
+        gene[g_cnt]['gene_info'] = dict( ID = pkey[-1], 
+                                Name = pdet.get('name'), 
+                                Source = pkey[1]) 
+        # few empty fields // TODO fill this:
+        gene[g_cnt]['anno_id'] = []
+        gene[g_cnt]['confgenes_id'] = []
+        gene[g_cnt]['alias'] = ''
+        gene[g_cnt]['name2'] = []
+        gene[g_cnt]['chr_num'] = []
+        gene[g_cnt]['paralogs'] = []
+        gene[g_cnt]['transcript_valid'] = []
+        gene[g_cnt]['exons_confirmed'] = []
+        gene[g_cnt]['tis_conf'] = []
+        gene[g_cnt]['tis_info'] = []
+        gene[g_cnt]['cdsStop_conf'] = []
+        gene[g_cnt]['cdsStop_info'] = []
+        gene[g_cnt]['tss_info'] = []
+        gene[g_cnt]['tss_conf'] = []
+        gene[g_cnt]['cleave_info'] = []
+        gene[g_cnt]['cleave_conf'] = []
+        gene[g_cnt]['polya_info'] = []
+        gene[g_cnt]['polya_conf'] = []
+        gene[g_cnt]['is_valid'] = []
+        gene[g_cnt]['transcript_complete'] = []
+        gene[g_cnt]['is_complete'] = []
+        gene[g_cnt]['is_correctly_gff3_referenced'] = ''
+        gene[g_cnt]['splicegraph'] = []
+        g_cnt += 1 
+
+    ## deleting empty gene records from the main array
+    XPFLG=0
+    for XP, ens in enumerate(gene):
+        if ens[0]==0:
+            XPFLG=1
+            break
+    
+    if XPFLG==1:
+        XQC = range(XP, len(gene)+1)
+        gene = np.delete(gene, XQC)
+
+    return gene 
+
+def NonetoemptyList(XS):
+    """
+    Convert a None type to empty list 
+
+    @args XS: None type 
+    @type XS: str 
+    """
+    return [] if XS is None else XS 
+
+def create_missing_feature_type(p_feat, c_feat):
+    """
+    GFF/GTF file defines only child features. This function tries to create 
+    the parent feature from the information provided in the attribute column. 
+
+    example: 
+    chr21   hg19_knownGene  exon    9690071 9690100 0.000000        +       .       gene_id "uc002zkg.1"; transcript_id "uc002zkg.1"; 
+    chr21   hg19_knownGene  exon    9692178 9692207 0.000000        +       .       gene_id "uc021wgt.1"; transcript_id "uc021wgt.1"; 
+    chr21   hg19_knownGene  exon    9711935 9712038 0.000000        +       .       gene_id "uc011abu.2"; transcript_id "uc011abu.2"; 
+
+    This function gets the parsed feature annotations. 
+    
+    @args p_feat: Parent feature map  
+    @type p_feat: collections defaultdict
+    @args c_feat: Child feature map  
+    @type c_feat: collections defaultdict
+    """
+
+    child_n_map = defaultdict(list)
+    for fid, det in c_feat.items():
+        # get the details from grand child  
+        GID = STRD = SCR = None
+        SPOS, EPOS = [], [] 
+        TYP = dict()
+        for gchild in det:
+            GID = gchild.get('gene_id', [''])[0] 
+            SPOS.append(gchild.get('location', [])[0]) 
+            EPOS.append(gchild.get('location', [])[1]) 
+            STRD = gchild.get('strand', '')
+            SCR = gchild.get('score', '')
+            if gchild.get('type', '') == "gene": ## gencode GTF file has this problem 
+                continue
+            TYP[gchild.get('type', '')] = 1
+        SPOS.sort() 
+        EPOS.sort()
+        
+        # infer transcript type
+        transcript_type = 'transcript'
+        transcript_type = 'mRNA' if TYP.get('CDS', '') or TYP.get('cds', '') else transcript_type
+        
+        # gene id and transcript id are same
+        transcript_id = fid[-1]
+        if GID == transcript_id:
+            transcript_id = 'Transcript:' + str(GID)
+        
+        # level -1 feature type 
+        p_feat[(fid[0], fid[1], GID)] = dict( type = 'gene',
+                                            location = [], ## infer location based on multiple transcripts  
+                                            strand = STRD,
+                                            name = GID )
+        # level -2 feature type 
+        child_n_map[(fid[0], fid[1], GID)].append(
+                                            dict( type = transcript_type,
+                                            location =  [SPOS[0], EPOS[-1]], 
+                                            strand = STRD, 
+                                            score = SCR, 
+                                            ID = transcript_id,
+                                            gene_id = '' ))
+        # reorganizing the grand child
+        for gchild in det:
+            child_n_map[(fid[0], fid[1], transcript_id)].append(
+                                            dict( type = gchild.get('type', ''),
+                                            location =  gchild.get('location'),
+                                            strand = gchild.get('strand'), 
+                                            ID = gchild.get('ID'),
+                                            score = gchild.get('score'),
+                                            gene_id = '' ))
+    return p_feat, child_n_map 
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/README.md	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,71 @@
+GFFtools-GX 
+===========
+
+A collection of tools for converting genome annotation between [GTF](https://genome.ucsc.edu/FAQ/FAQformat.html#format4), [BED](https://genome.ucsc.edu/FAQ/FAQformat.html#format1), [GenBank](http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html) and [GFF](https://genome.ucsc.edu/FAQ/FAQformat.html#format3).
+
+##### INTRODUCTION
+
+Several genome annotation centers provide their data in GTF, BED, GFF and GenBank format. I have few programs, they mainly deals with converting between GTF, BED GenBank and GFF formats. They are extensively tested with files from different centers like [ENSEMBL](http://www.ensembl.org), [UCSC](https://genome.ucsc.edu/), [JGI](http://genome.jgi.doe.gov/) and [NCBI AceView](http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/HelpJan.html). These programs can be easily integrated into your galaxy instance.
+
+##### CONTENTS
+
+Included utilities are: 
+
+    BED-to-GFF: convert data from a 12 column UCSC wiggle BED format to GFF
+    GBK-to-GFF: convert data from genbank format to GFF
+    GFF-to-BED: convert data from GFF to 12 column BED format
+    GFF-to-GTF: convert data from GFF to GTF 
+    GTF-to-GFF: convert data from GTF to valid GFF
+
+test-data: Test data set. (move to your galaxy-root-folder/test-data/)
+    
+    You may need to move the test files into your test-data directory so galaxy can find them. 
+    If you want to run the functional tests eg as: 
+
+    exmaple: 
+    sh run_functional_tests.sh -id fml_gtf2gff
+
+##### REQUIREMENTS
+
+    python2.6 or 2.7 and biopython  
+
+    Galaxy should be able to automatically install biopython via Galaxy toolshed.
+
+##### COMMENTS/QUESTIONS 
+
+I can be reached at vipin [at] cbio.mskcc.org 
+
+##### LICENSE
+
+Copyright (c) 2009-2012, Friedrich Miescher Laboratory of the Max Planck Society
+
+              2013-2015, Memorial Sloan Kettering Cancer Center
+              Vipin T Sreedharan <vipin@cbio.mskcc.org>  
+All rights reserved.
+
+Licensed under the BSD 2-Clause License: <http://opensource.org/licenses/BSD-2-Clause>
+    
+    Redistribution and use in source and binary forms, with or without
+    modification, are permitted provided that the following conditions are met:
+    
+        * Redistributions of source code must retain the above copyright notice,
+          this list of conditions and the following disclaimer.
+    
+        * Redistributions in binary form must reproduce the above copyright notice,
+          this list of conditions and the following disclaimer in the documentation
+          and/or other materials provided with the distribution.
+    
+    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+    OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+##### COURTESY
+
+To the Galaxy Team.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bed_to_gff.py	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,71 @@
+#!/usr/bin/env python
+"""
+Convert genome annotation data in a 12 column BED format to GFF3. 
+
+Usage: 
+    python bed_to_gff.py in.bed > out.gff
+
+Requirement:
+    helper.py : https://github.com/vipints/GFFtools-GX/blob/master/helper.py
+
+Copyright (C) 
+    2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany.
+    2012-2015 Memorial Sloan Kettering Cancer Center New York City, USA.
+"""
+
+import re
+import sys
+import helper 
+
+def __main__():
+    """
+    main function 
+    """
+
+    try:
+        bed_fname = sys.argv[1]
+    except:
+        print __doc__
+        sys.exit(-1)
+
+    bed_fh = helper.open_file(bed_fname)
+
+    for line in bed_fh: 
+        line = line.strip( '\n\r' )
+
+        if not line or line[0] in  ['#']:
+            continue 
+
+        parts = line.split('\t') 
+        assert len(parts) >= 12, line
+
+        rstarts = parts[-1].split(',')
+        rstarts.pop() if rstarts[-1] == '' else rstarts
+
+        exon_lens = parts[-2].split(',')
+        exon_lens.pop() if exon_lens[-1] == '' else exon_lens
+        
+        if len(rstarts) != len(exon_lens):
+            continue # checking the consistency col 11 and col 12 
+
+        if len(rstarts) != int(parts[-3]): 
+            continue # checking the number of exons and block count are same
+        
+        if not parts[5] in ['+', '-']:
+            parts[5] = '.' # replace the unknown strand with '.' 
+
+        # bed2gff result line 
+        sys.stdout.write('%s\tbed2gff\tgene\t%d\t%s\t%s\t%s\t.\tID=Gene:%s;Name=Gene:%s\n' % (parts[0], int(parts[1])+1, parts[2], parts[4], parts[5], parts[3], parts[3]))
+        sys.stdout.write('%s\tbed2gff\ttranscript\t%d\t%s\t%s\t%s\t.\tID=%s;Name=%s;Parent=Gene:%s\n' % (parts[0], int(parts[1])+1, parts[2], parts[4], parts[5], parts[3], parts[3], parts[3]))
+
+        st = int(parts[1])
+        for ex_cnt in range(int(parts[-3])):
+            start = st + int(rstarts[ex_cnt]) + 1
+            stop = start + int(exon_lens[ex_cnt]) - 1
+            sys.stdout.write('%s\tbed2gff\texon\t%d\t%d\t%s\t%s\t.\tParent=%s\n' % (parts[0], start, stop, parts[4], parts[5], parts[3]))
+
+    bed_fh.close()
+
+
+if __name__ == "__main__": 
+    __main__()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bed_to_gff.xml	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,95 @@
+<tool id="fml_bed2gff" name="BED-to-GFF" version="2.1.0">
+	<description>converter</description>
+	<command interpreter="python">bed_to_gff.py $inf_bed  &gt; $gff_format 
+	</command> 
+	<inputs>
+  		<param format="bed" name="inf_bed" type="data" label="Convert this query" help="Provide genome annotation in 12 column BED format."/>
+    </inputs>
+  	<outputs>
+  		<data format="gff" name="gff_format" label="${tool.name} on ${on_string}: Converted" /> 
+  	</outputs>
+	<tests>
+        <test>
+            <param name="inf_bed" value="CCDS30770.bed" />
+            <output name="gff_format" file="CCDS30770.gff" />
+        </test>
+    </tests>
+  	<help>
+
+**What it does**
+
+This tool converts data from a 12 column UCSC wiggle BED format to GFF3 (scroll down for format description).
+
+--------
+
+**Example**
+
+- The following data in UCSC Wiggle BED format::
+
+	chr1    11873   14409   uc001aaa.3      0       +       11873   11873   0       3       354,109,1189,   0,739,1347,
+
+- Will be converted to GFF3::
+
+	##gff-version 3
+	chr1    bed2gff gene    11874   14409   0       +       .       ID=Gene:uc001aaa.3;Name=Gene:uc001aaa.3
+	chr1    bed2gff transcript      11874   14409   0       +       .       ID=uc001aaa.3;Name=uc001aaa.3;Parent=Gene:uc001aaa.3
+	chr1    bed2gff exon    11874   12227   0       +       .       Parent=uc001aaa.3
+	chr1    bed2gff exon    12613   12721   0       +       .       Parent=uc001aaa.3
+	chr1    bed2gff exon    13221   14409   0       +       .       Parent=uc001aaa.3
+
+--------
+
+**Reference**
+
+**BED-to-GFF** is part of oqtans package and cited as [1]_.
+
+.. [1] Sreedharan VT, Schultheiss SJ, Jean G et.al., Oqtans: the RNA-seq workbench in the cloud for complete and reproducible quantitative transcriptome analysis. Bioinformatics (2014). `10.1093/bioinformatics/btt731`_
+
+.. _10.1093/bioinformatics/btt731: http://goo.gl/I75poH
+
+--------
+
+**About file formats**
+
+**BED format** Browser Extensible Data format was designed at UCSC for displaying data tracks in the Genome Browser. It has three required fields and several additional optional ones:
+
+The first three BED fields (required) are::
+
+    1. chrom - The name of the chromosome (e.g. chr1, chrY_random).
+    2. chromStart - The starting position in the chromosome. (The first base in a chromosome is numbered 0.)
+    3. chromEnd - The ending position in the chromosome, plus 1 (i.e., a half-open interval).
+
+The additional BED fields (optional) are::
+
+    4. name - The name of the BED line.
+    5. score - A score between 0 and 1000.
+    6. strand - Defines the strand - either '+' or '-'.
+    7. thickStart - The starting position where the feature is drawn thickly at the Genome Browser.
+    8. thickEnd - The ending position where the feature is drawn thickly at the Genome Browser.
+    9. reserved - This should always be set to zero.
+   10. blockCount - The number of blocks (exons) in the BED line.
+   11. blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.
+   12. blockStarts - A comma-separated list of block starts. All of the blockStart positions should be calculated relative to chromStart. The number of items in this list should correspond to blockCount.
+
+**GFF format** General Feature Format is a format for describing genes and other features associated with DNA, RNA and Protein sequences. GFF lines have nine tab-separated fields::
+
+    1. seqid - Must be a chromosome or scaffold or contig.
+    2. source - The program that generated this feature.
+    3. type - The name of this type of feature. Some examples of standard feature types are "gene", "CDS", "protein", "mRNA", and "exon". 
+    4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    5. stop - The ending position of the feature (inclusive).
+    6. score - A score between 0 and 1000. If there is no score value, enter ".".
+    7. strand - Valid entries include '+', '-', or '.' (for don't know/care).
+    8. phase - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'.
+    9. attributes - All lines with the same group are linked together into a single item.
+
+--------
+
+**Copyright**
+
+BED-to-GFF Wrapper Version 0.6 (Apr 2015)
+
+2009-2015 Max Planck Society, University of Tübingen &amp; Memorial Sloan Kettering Cancer Center
+
+	</help>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gbk_to_gff.py	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,216 @@
+#!/usr/bin/env python
+"""
+Convert data from Genbank format to GFF. 
+
+Usage: 
+python gbk_to_gff.py in.gbk > out.gff 
+
+Requirements:
+    BioPython:- http://biopython.org/
+    helper.py:- https://github.com/vipints/GFFtools-GX/blob/master/helper.py
+
+Copyright (C) 
+    2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany.
+    2012-2015 Memorial Sloan Kettering Cancer Center New York City, USA.
+"""
+
+import os
+import re
+import sys
+import helper 
+import collections
+from Bio import SeqIO
+
+def feature_table(chr_id, source, orient, genes, transcripts, cds, exons, unk):
+    """
+    Write the feature information
+    """
+    for gname, ginfo in genes.items():
+        line = [str(chr_id), 
+                'gbk2gff',
+                ginfo[3],
+                str(ginfo[0]),
+                str(ginfo[1]),
+                '.',
+                ginfo[2],
+                '.',
+                'ID=%s;Name=%s' % (str(gname), str(gname))]
+        sys.stdout.write('\t'.join(line)+"\n") 
+        ## construct the transcript line is not defined in the original file 
+        t_line = [str(chr_id), 'gbk2gff', source, 0, 1, '.', ginfo[2], '.'] 
+
+        if not transcripts:
+            t_line.append('ID=Transcript:%s;Parent=%s' % (str(gname), str(gname)))
+
+            if exons: ## get the entire transcript region  from the defined feature
+                t_line[3] = str(exons[gname][0][0])
+                t_line[4] = str(exons[gname][0][-1])
+            elif cds:
+                t_line[3] = str(cds[gname][0][0])
+                t_line[4] = str(cds[gname][0][-1])
+
+            if not cds:
+                t_line[2] = 'transcript'
+            else:
+                t_line[2] = 'mRNA'
+            sys.stdout.write('\t'.join(t_line)+"\n") 
+
+            if exons:
+                exon_line_print(t_line, exons[gname], 'Transcript:'+str(gname), 'exon')
+
+            if cds:
+                exon_line_print(t_line, cds[gname], 'Transcript:'+str(gname), 'CDS')
+                if not exons:
+                    exon_line_print(t_line, cds[gname], 'Transcript:'+str(gname), 'exon')
+
+        else: ## transcript is defined 
+            for idx in transcripts[gname]: 
+                t_line[2] = idx[3]
+                t_line[3] = str(idx[0])
+                t_line[4] = str(idx[1])
+                t_line.append('ID='+str(idx[2])+';Parent='+str(gname))
+                sys.stdout.write('\t'.join(t_line)+"\n") 
+                
+                ## feature line print call 
+                if exons:
+                    exon_line_print(t_line, exons[gname], str(idx[2]), 'exon')
+                if cds:
+                    exon_line_print(t_line, cds[gname], str(idx[2]), 'CDS')
+                    if not exons:
+                        exon_line_print(t_line, cds[gname], str(idx[2]), 'exon')
+
+    if len(genes) == 0: ## feature entry with fragment information 
+        
+        line = [str(chr_id), 'gbk2gff', source, 0, 1, '.', orient, '.'] 
+        fStart = fStop = None 
+
+        for eid, ex in cds.items(): 
+            fStart = ex[0][0] 
+            fStop = ex[0][-1]
+
+        for eid, ex in exons.items(): 
+            fStart = ex[0][0] 
+            fStop = ex[0][-1]
+
+        if fStart or fStart:
+
+            line[2] = 'gene'
+            line[3] = str(fStart)
+            line[4] = str(fStop)
+            line.append('ID=Unknown_Gene_' + str(unk) + ';Name=Unknown_Gene_' + str(unk))
+            sys.stdout.write('\t'.join(line)+"\n") 
+
+            if not cds:
+                line[2] = 'transcript'
+            else:
+                line[2] = 'mRNA'
+
+            line[8] = 'ID=Unknown_Transcript_' + str(unk) + ';Parent=Unknown_Gene_' + str(unk)
+            sys.stdout.write('\t'.join(line)+"\n") 
+           
+            if exons:
+                exon_line_print(line, cds[None], 'Unknown_Transcript_' + str(unk), 'exon')
+                
+            if cds:
+                exon_line_print(line, cds[None], 'Unknown_Transcript_' + str(unk), 'CDS')
+                if not exons:
+                    exon_line_print(line, cds[None], 'Unknown_Transcript_' + str(unk), 'exon')
+                
+            unk +=1 
+
+    return unk
+
+
+def exon_line_print(temp_line, trx_exons, parent, ftype):
+    """
+    Print the EXON feature line 
+    """
+    for ex in trx_exons:
+        temp_line[2] = ftype
+        temp_line[3] = str(ex[0])
+        temp_line[4] = str(ex[1])
+        temp_line[8] = 'Parent=%s' % parent
+        sys.stdout.write('\t'.join(temp_line)+"\n") 
+
+
+def gbk_parse(fname):
+    """
+    Extract genome annotation recods from genbank format 
+
+    @args fname: gbk file name 
+    @type fname: str
+    """
+    fhand = helper.open_file(gbkfname)
+    unk = 1 
+
+    for record in SeqIO.parse(fhand, "genbank"):
+        gene_tags = dict()
+        tx_tags = collections.defaultdict(list) 
+        exon = collections.defaultdict(list) 
+        cds = collections.defaultdict(list) 
+        mol_type, chr_id = None, None 
+
+        for rec in record.features:
+
+            if rec.type == 'source':
+                try:
+                    mol_type = rec.qualifiers['mol_type'][0]
+                except:
+                    mol_type = '.'
+                    pass 
+                try:
+                    chr_id = rec.qualifiers['chromosome'][0]
+                except:
+                    chr_id = record.name 
+                continue 
+
+            strand='-'
+            strand='+' if rec.strand>0 else strand
+            
+            fid = None 
+            try:
+                fid = rec.qualifiers['gene'][0]
+            except:
+                pass
+
+            transcript_id = None
+            try:
+                transcript_id = rec.qualifiers['transcript_id'][0]
+            except:
+                pass 
+
+            if re.search(r'gene', rec.type):
+                gene_tags[fid] = (rec.location._start.position+1, 
+                                    rec.location._end.position, 
+                                    strand,
+                                    rec.type
+                                    )
+            elif rec.type == 'exon':
+                exon[fid].append((rec.location._start.position+1, 
+                                    rec.location._end.position))
+            elif rec.type=='CDS':
+                cds[fid].append((rec.location._start.position+1, 
+                                    rec.location._end.position))
+            else: 
+                # get all transcripts 
+                if transcript_id: 
+                    tx_tags[fid].append((rec.location._start.position+1,
+                                    rec.location._end.position, 
+                                    transcript_id,
+                                    rec.type))
+        # record extracted, generate feature table
+        unk = feature_table(chr_id, mol_type, strand, gene_tags, tx_tags, cds, exon, unk)
+        
+    fhand.close()
+
+
+if __name__=='__main__': 
+
+    try:
+        gbkfname = sys.argv[1]
+    except:
+        print __doc__
+        sys.exit(-1)
+
+    ## extract gbk records  
+    gbk_parse(gbkfname) 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gbk_to_gff.xml	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,100 @@
+<tool id="fml_gbk2gff" name="GBK-to-GFF" version="2.1.0">
+  <description>converter</description>
+  	<command interpreter="python">gbk_to_gff.py $inf_gbk &gt; $gff_format
+  	</command>
+  	<inputs>
+		<param format="gb,gbk,genbank" name="inf_gbk" type="data" label="Convert this query" help="GenBank flat file format consists of an annotation section and a sequence section."/>
+  	</inputs>
+	<outputs>
+		<data format="gff" name="gff_format" label="${tool.name} on ${on_string}: Converted"/>
+  	</outputs>
+	<tests>
+        <test>
+            <param name="inf_gbk" value="s_cerevisiae_SCU49845.gbk" />
+            <output name="gff_format" file="s_cerevisiae_SCU49845.gff" />
+        </test>
+	</tests>
+  	<help>
+    
+**What it does**
+
+This tool converts data from a GenBank_ flat file format to GFF (scroll down for format description).
+
+.. _GenBank: http://www.ncbi.nlm.nih.gov/genbank/ 
+
+------
+
+**Example**
+
+- The following data in GenBank format::
+	
+    LOCUS       NM_001202705            2406 bp    mRNA    linear   PLN 28-MAY-2011
+    DEFINITION  Arabidopsis thaliana thiamine biosynthesis protein ThiC (THIC)
+                mRNA, complete cds.
+    ACCESSION   NM_001202705
+    VERSION     NM_001202705.1  GI:334184566.........
+    FEATURES             Location/Qualifiers
+         source          1..2406
+                         /organism="Arabidopsis thaliana"
+                         /mol_type="mRNA"
+                         /db_xref="taxon:3702"........
+         gene            1..2406
+                         /gene="THIC"
+                         /locus_tag="AT2G29630"
+                         /gene_synonym="PY; PYRIMIDINE REQUIRING; T27A16.27;........
+    ORIGIN
+        1 aagcctttcg ctttaggctg cattgggccg tgacaatatt cagacgattc aggaggttcg
+        61 ttcctttttt aaaggaccct aatcactctg agtaccactg actcactcag tgtgcgcgat
+        121 tcatttcaaa aacgagccag cctcttcttc cttcgtctac tagatcagat ccaaagcttc
+        181 ctcttccagc tatggctgct tcagtacact gtaccttgat gtccgtcgta tgcaacaaca
+    //
+
+
+- Will be converted to GFF3::
+
+    NM_001202705    gbk2gff chromosome      1       2406    .       +       1       ID=NM_001202705;Alias=2;Dbxref=taxon:3702;Name=NM_001202705
+    NM_001202705    gbk2gff gene    1       2406    .       +       1       ID=AT2G29630;Dbxref=GeneID:817513,TAIR:AT2G29630;Name=THIC
+    NM_001202705    gbk2gff mRNA    192     2126    .       +       1       ID=AT2G29630.t01;Parent=AT2G29630
+    NM_001202705    gbk2gff CDS     192     2126    .       +       1       ID=AT2G29630.p01;Parent=AT2G29630.t01
+    NM_001202705    gbk2gff exon    192     2126    .       +       1       Parent=AT2G29630.t01
+
+------
+
+**Reference**
+
+**GBK-to-GFF** is part of oqtans package and cited as [1]_.
+
+.. [1] Sreedharan VT, Schultheiss SJ, Jean G et.al., Oqtans: the RNA-seq workbench in the cloud for complete and reproducible quantitative transcriptome analysis. Bioinformatics (2014). `10.1093/bioinformatics/btt731`_
+
+.. _10.1093/bioinformatics/btt731: http://goo.gl/I75poH
+
+------
+
+**About file formats** 
+
+**GenBank format** An example of a GenBank record may be viewed here_
+
+.. _here: http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html 
+
+**GFF** Generic Feature Format is a format for describing genes and other features associated with DNA, RNA and Protein sequences. GFF lines have nine tab-separated fields::
+
+    1. seqid - Must be a chromosome or scaffold or contig.
+    2. source - The program that generated this feature.
+    3. type - The name of this type of feature. Some examples of standard feature types are "gene", "CDS", "protein", "mRNA", and "exon".
+    4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    5. stop - The ending position of the feature (inclusive).
+    6. score - A score between 0 and 1000. If there is no score value, enter ".".
+    7. strand - Valid entries include '+', '-', or '.' (for don't know/care).
+    8. phase - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'.
+    9. attributes - All lines with the same group are linked together into a single item.
+
+--------
+
+**Copyright**
+
+GBK-to-GFF Wrapper Version 0.6 (Apr 2015)
+
+2009-2015 Max Planck Society, University of Tübingen &amp; Memorial Sloan Kettering Cancer Center
+
+	</help>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gff_to_bed.py	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,116 @@
+#!/usr/bin/env python
+"""
+Convert genome annotation data in GFF/GTF to a 12 column BED format. 
+BED format typically represents the transcript models. 
+
+Usage: python gff_to_bed.py in.gff > out.bed  
+
+Requirement:
+    GFFParser.py: https://github.com/vipints/GFFtools-GX/blob/master/GFFParser.py    
+
+Copyright (C) 
+    2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany.
+    2012-2015 Memorial Sloan Kettering Cancer Center New York City, USA.
+"""
+
+import re
+import sys
+import GFFParser
+
+def limitBEDWrite(tinfo):
+    """
+    Write a three column BED file 
+    
+    @args tinfo: list of genes 
+    @type tinfo: numpy object  
+    """
+
+    for contig_id, feature in tinfo.items():
+        uns_line = dict()
+        for tid, tloc in feature.items():
+            uns_line[(int(tloc[0])-1, int(tloc[1]))]=1
+        for ele in sorted(uns_line):
+            pline = [contig_id,
+                    str(ele[0]-1),
+                    str(ele[1])]
+
+            sys.stdout.write('\t'.join(pline)+"\n")
+
+
+def writeBED(tinfo):
+    """
+    writing result files in bed format 
+
+    @args tinfo: list of genes 
+    @type tinfo: numpy object  
+    """
+
+    for ent1 in tinfo:
+        child_flag = False  
+
+        for idx, tid in enumerate(ent1['transcripts']):
+            child_flag = True 
+            exon_cnt = len(ent1['exons'][idx])
+            exon_len = ''
+            exon_cod = '' 
+            rel_start = None 
+            rel_stop = None 
+            for idz, ex_cod in enumerate(ent1['exons'][idx]):#check for exons of corresponding transcript  
+                exon_len += '%d,' % (ex_cod[1]-ex_cod[0]+1)
+                if idz == 0: #calculate the relative start position 
+                    exon_cod += '0,'
+                    rel_start = int(ex_cod[0])-1 
+                    rel_stop = int(ex_cod[1])
+                else:
+                    exon_cod += '%d,' % (ex_cod[0]-1-rel_start) ## shifting the coordinates to zero 
+                    rel_stop = int(ex_cod[1])
+            
+            if exon_len:
+                score = 0 
+                score = ent1['transcript_score'][idx] if ent1['transcript_score'].any() else score ## getting the transcript score 
+                out_print = [ent1['chr'],
+                            str(rel_start),
+                            str(rel_stop),
+                            tid[0],
+                            str(score), 
+                            ent1['strand'], 
+                            str(rel_start),
+                            str(rel_stop),
+                            '0',
+                            str(exon_cnt),
+                            exon_len,
+                            exon_cod]
+                sys.stdout.write('\t'.join(out_print)+"\n")
+        
+        if not child_flag: # file just contains only a single parent type i.e, gff3 defines only one feature type 
+            score = 0 
+            score = ent1['transcript_score'][0] if ent1['transcript_score'].any() else score
+
+            out_print = [ent1['chr'], 
+                        '%d' % int(ent1['start'])-1, 
+                        '%d' % int(ent1['stop']),
+                        ent1['name'], 
+                        str(score), 
+                        ent1['strand'],
+                        '%d' % int(ent1['start']), 
+                        '%d' % int(ent1['stop']),
+                        '0',
+                        '1',
+                        '%d,' % (int(ent1['stop'])-int(ent1['start'])+1), 
+                        '0,']
+
+            sys.stdout.write('\t'.join(out_print)+"\n")
+
+    
+def __main__():
+    try:
+        query_file = sys.argv[1]
+    except:
+        print __doc__
+        sys.exit(-1)
+
+    Transcriptdb = GFFParser.Parse(query_file)  
+    writeBED(Transcriptdb)
+
+if __name__ == "__main__": 
+    __main__() 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gff_to_bed.xml	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,96 @@
+<tool id="fml_gff2bed" name="GFF-to-BED" version="2.1.0">
+	<description>converter</description> 
+	<command interpreter="python">gff_to_bed.py $inf_gff &gt; $bed_format 
+	</command> 
+	<inputs>
+  		<param format="gtf,gff,gff3" name="inf_gff" type="data" label="Convert this query" help="Provide genome annotation file in GFF, GTF, GFF3."/>
+    </inputs>
+  	<outputs>
+  		<data format="bed" name="bed_format" label="${tool.name} on ${on_string}: Converted" /> 
+  	</outputs>
+	<tests>
+        <test>
+            <param name="inf_gff" value="MB7_3R.gff3" />
+            <output name="bed_format" file="MB7_3R.bed" />
+        </test>
+    </tests>
+  	<help>
+
+**What it does**
+
+This tool converts gene transcript annotation from GTF or GFF or GFF3 to UCSC wiggle 12 column BED format.
+
+--------
+
+**Example**
+
+- The following data in GFF3::
+
+	##gff-version 3
+	chr1    protein_coding  gene    11874   14409   0       +       .       ID=Gene:uc001aaa.3;Name=Gene:uc001aaa.3
+	chr1    protein_coding  transcript      11874   14409   0       +       .       ID=uc001aaa.3;Name=uc001aaa.3;Parent=Gene:uc001aaa.3
+	chr1    protein_coding  exon    11874   12227   0       +       .       Parent=uc001aaa.3
+	chr1    protein_coding  exon    12613   12721   0       +       .       Parent=uc001aaa.3
+	chr1    protein_coding  exon    13221   14409   0       +       .       Parent=uc001aaa.3
+
+- Will be converted to UCSC Wiggle BED format::
+
+	chr1    11874   14409   uc001aaa.3      0       +       11874   14409   0       3       354,109,1189,   0,739,1347,
+
+--------
+
+**Reference**
+
+**GFF-to-BED** is part of oqtans package and cited as [1]_.
+
+.. [1] Sreedharan VT, Schultheiss SJ, Jean G et.al., Oqtans: the RNA-seq workbench in the cloud for complete and reproducible quantitative transcriptome analysis. Bioinformatics (2014). `10.1093/bioinformatics/btt731`_
+
+.. _10.1093/bioinformatics/btt731: http://goo.gl/I75poH
+
+--------
+
+**About file formats**
+
+**GFF format** General Feature Format is a format for describing genes and other features associated with DNA, RNA and Protein sequences. GFF lines have nine tab-separated fields::
+
+
+    1. seqid - Must be a chromosome or scaffold or contig.
+    2. source - The program that generated this feature.
+    3. type - The name of this type of feature. Some examples of standard feature types are "gene", "CDS", "protein", "mRNA", and "exon". 
+    4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    5. stop - The ending position of the feature (inclusive).
+    6. score - A score between 0 and 1000. If there is no score value, enter ".".
+    7. strand - Valid entries include '+', '-', or '.' (for don't know/care).
+    8. phase - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'.
+    9. attributes - All lines with the same group are linked together into a single item.
+
+**BED format** Browser Extensible Data format was designed at UCSC for displaying data tracks in the Genome Browser. It has three required fields and several additional optional ones:
+
+The first three BED fields (required) are::
+
+    1. chrom - The name of the chromosome (e.g. chr1, chrY_random).
+    2. chromStart - The starting position in the chromosome. (The first base in a chromosome is numbered 0.)
+    3. chromEnd - The ending position in the chromosome, plus 1 (i.e., a half-open interval).
+
+The additional BED fields (optional) are::
+
+    4. name - The name of the BED line.
+    5. score - A score between 0 and 1000.
+    6. strand - Defines the strand - either '+' or '-'.
+    7. thickStart - The starting position where the feature is drawn thickly at the Genome Browser.
+    8. thickEnd - The ending position where the feature is drawn thickly at the Genome Browser.
+    9. reserved - This should always be set to zero.
+   10. blockCount - The number of blocks (exons) in the BED line.
+   11. blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.
+   12. blockStarts - A comma-separated list of block starts. All of the blockStart positions should be calculated relative to chromStart. The number of items in this list should correspond to blockCount.
+
+--------
+
+**Copyright**
+
+GFF-to-BED Wrapper Version 0.6 (Apr 2015)
+
+2009-2015 Max Planck Society, University of Tübingen &amp; Memorial Sloan Kettering Cancer Center
+
+	</help>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gff_to_gtf.py	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,76 @@
+#!/usr/bin/env python 
+"""
+Program to convert data from GFF to GTF 
+
+Usage: python gff_to_gtf.py in.gff > out.gtf 
+
+Requirement:
+    GFFParser.py: https://github.com/vipints/GFFtools-GX/blob/master/GFFParser.py    
+
+Copyright (C) 
+    2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany.
+    2012-2015 Memorial Sloan Kettering Cancer Center New York City, USA.
+"""
+
+import re
+import sys
+import GFFParser
+
+def printGTF(tinfo):
+    """
+    writing result file in GTF format
+
+    @args tinfo: parsed object from gff file
+    @type tinfo: numpy array 
+    """
+
+    for ent1 in tinfo:
+        for idx, tid in enumerate(ent1['transcripts']):
+            
+            exons = ent1['exons'][idx]
+            cds_exons = ent1['cds_exons'][idx]
+
+            stop_codon = start_codon = ()
+
+            if ent1['strand'] == '+':
+                if cds_exons.any():
+                    start_codon = (cds_exons[0][0], cds_exons[0][0]+2) 
+                    stop_codon = (cds_exons[-1][1]-2, cds_exons[-1][1]) 
+            elif ent1['strand'] == '-':
+                if cds_exons.any():
+                    start_codon = (cds_exons[-1][1]-2, cds_exons[-1][1])
+                    stop_codon = (cds_exons[0][0], cds_exons[0][0]+2)
+            else:
+                sys.stdout.write('STRAND information missing - %s, skip the transcript - %s\n' % (ent1['strand'], tid[0]))
+                pass 
+                
+            last_cds_cod = 0 
+            for idz, ex_cod in enumerate(exons):
+
+                sys.stdout.write('%s\t%s\texon\t%d\t%d\t.\t%s\t.\tgene_id "%s"; transcript_id "%s"; exon_number "%d"; gene_name "%s"; \n' % (ent1['chr'], ent1['source'], ex_cod[0], ex_cod[1], ent1['strand'], ent1['name'], tid[0], idz+1, ent1['gene_info']['Name']))
+
+                if cds_exons.any():
+                    try:
+                        sys.stdout.write('%s\t%s\tCDS\t%d\t%d\t.\t%s\t%d\tgene_id "%s"; transcript_id "%s"; exon_number "%d"; gene_name "%s"; \n' % (ent1['chr'], ent1['source'], cds_exons[idz][0], cds_exons[idz][1], ent1['strand'], cds_exons[idz][2], ent1['name'], tid[0], idz+1, ent1['gene_info']['Name']))
+                        last_cds_cod = idz 
+                    except:
+                        pass 
+
+                    if idz == 0:
+                        sys.stdout.write('%s\t%s\tstart_codon\t%d\t%d\t.\t%s\t%d\tgene_id "%s"; transcript_id "%s"; exon_number "%d"; gene_name "%s"; \n' % (ent1['chr'], ent1['source'], start_codon[0], start_codon[1], ent1['strand'], cds_exons[idz][2], ent1['name'], tid[0], idz+1, ent1['gene_info']['Name']))
+
+            if stop_codon:
+                sys.stdout.write('%s\t%s\tstop_codon\t%d\t%d\t.\t%s\t%d\tgene_id "%s"; transcript_id "%s"; exon_number "%d"; gene_name "%s"; \n' % (ent1['chr'], ent1['source'], stop_codon[0], stop_codon[1], ent1['strand'], cds_exons[last_cds_cod][2], ent1['name'], tid[0], idz+1, ent1['gene_info']['Name']))
+
+    
+if __name__ == "__main__": 
+
+    try:
+        gff_fname = sys.argv[1]
+    except:
+        print __doc__
+        sys.exit(-1)
+
+    Transcriptdb = GFFParser.Parse(gff_fname)  
+
+    printGTF(Transcriptdb) 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gff_to_gtf.xml	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,92 @@
+<tool id="fml_gff2gtf" name="GFF-to-GTF" version="2.1.0">
+	<description>converter</description> 
+	<command interpreter="python">gff_to_gtf.py $inf_gff3 &gt; $gtf_format
+	</command> 
+	<inputs>
+  		<param format="gff3,gff" name="inf_gff3" type="data" label="Convert this query" help="Provide genome annotation file in GFF or GFF3."/>
+    </inputs>
+  	<outputs>
+  		<data format="gtf" name="gtf_format" label="${tool.name} on ${on_string}: Converted" /> 
+  	</outputs>
+	<tests>
+        <test>
+            <param name="inf_gff3" value="ens_mm9_chr18.gff3" />
+            <output name="gtf_format" file="ens_mm9_chr18.gtf" />
+        </test>
+    </tests>
+  	<help>
+
+**What it does**
+
+This tool converts data from GFF to GTF file format (scroll down for format description).
+
+--------
+
+**Example**
+
+- The following data in GFF3::
+
+	##gff-version 3
+	17      protein_coding  gene    7255208 7258258 .       +       .       ID=ENSG00000213859;Name=KCTD11
+	17      protein_coding  mRNA    7255208 7258258 .       +       .       ID=ENST00000333751;Name=KCTD11-001;Parent=ENSG00000213859
+	17      protein_coding  protein 7256262 7256960 .       +       .       ID=ENSP00000328352;Name=KCTD11-001;Parent=ENST00000333751
+	17      protein_coding  five_prime_UTR  7255208 7256261 .       +       .       Parent=ENST00000333751
+	17      protein_coding  CDS     7256262 7256960 .       +       0       Name=CDS:KCTD11;Parent=ENST00000333751,ENSP00000328352
+	17      protein_coding  three_prime_UTR 7256961 7258258 .       +       .       Parent=ENST00000333751
+	17      protein_coding  exon    7255208 7258258 .       +       .       Parent=ENST00000333751
+
+- Will be converted to GTF::
+
+	17      protein_coding  exon    7255208 7258258 .       +       .        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001";
+	17      protein_coding  CDS     7256262 7256957 .       +       0        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001"; protein_id "ENSP00000328352";
+	17      protein_coding  start_codon     7256262 7256264 .       +       0        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001";
+	17      protein_coding  stop_codon      7256958 7256960 .       +       0        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001";
+
+--------
+
+**Reference**
+
+**GFF-to-GTF** is part of oqtans package and cited as [1]_.
+
+.. [1] Sreedharan VT, Schultheiss SJ, Jean G et.al., Oqtans: the RNA-seq workbench in the cloud for complete and reproducible quantitative transcriptome analysis. Bioinformatics (2014). `10.1093/bioinformatics/btt731`_
+
+.. _10.1093/bioinformatics/btt731: http://goo.gl/I75poH
+
+--------
+
+**About formats**
+
+**GFF format** General Feature Format is a format for describing genes and other features associated with DNA, RNA and Protein sequences. GFF lines have nine tab-separated fields::
+
+    1. seqid - Must be a chromosome or scaffold.
+    2. source - The program that generated this feature.
+    3. type - The name of this type of feature. Some examples of standard feature types are "gene", "CDS", "protein", "mRNA", and "exon". 
+    4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    5. stop - The ending position of the feature (inclusive).
+    6. score - A score between 0 and 1000. If there is no score value, enter ".".
+    7. strand - Valid entries include '+', '-', or '.' (for don't know/care).
+    8. phase - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'.
+    9. attributes - All lines with the same group are linked together into a single item.
+
+**GTF format** Gene Transfer Format, it borrows from GFF, but has additional structure that warrants a separate definition and format name. GTF lines have nine tab-seaparated fields::
+
+    1. seqname - The name of the sequence.
+    2. source - This indicating where the annotation came from.
+    3. feature - The name of the feature types. The following feature types are required: 'CDS', 'start_codon' and 'stop_codon'
+    4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    5. end - The ending position of the feature (inclusive).
+    6. score - The score field indicates a degree of confidence in the feature's existence and coordinates.
+    7. strand - Valid entries include '+', '-', or '.'
+    8. frame - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base.
+    9. attributes - These attributes are designed for handling multiple transcripts from the same genomic region.
+
+--------
+
+**Copyright**
+
+GFF-to-GTF Wrapper Version 0.6 (Apr 2015)
+
+2009-2015 Max Planck Society, University of Tübingen &amp; Memorial Sloan Kettering Cancer Center
+
+	</help>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gtf_to_gff.py	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,78 @@
+#!/usr/bin/env python
+"""
+Convert Gene Transfer Format [GTF] to Generic Feature Format Version 3 [GFF3].
+
+Usage: python gtf_to_gff.py in.gtf > out.gff3  
+    
+Requirement:
+    GFFParser.py: https://github.com/vipints/GFFtools-GX/blob/master/GFFParser.py    
+    helper.py: https://github.com/vipints/GFFtools-GX/blob/master/helper.py
+    
+Copyright (C) 
+    2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany.
+    2012-2015 Memorial Sloan Kettering Cancer Center New York City, USA.
+"""
+
+import re
+import sys
+import helper
+import GFFParser
+
+def GFFWriter(gtf_content):
+    """
+    write the feature information to GFF format
+
+    @args gtf_content: Parsed object from gtf file 
+    @type gtf_content: numpy array
+    """
+
+    sys.stdout.write('##gff-version 3\n')
+    for ent1 in gtf_content:
+        chr_name = ent1['chr']
+        strand = ent1['strand']
+        start = ent1['start']
+        stop = ent1['stop']
+        source = ent1['source']
+        ID = ent1['name']
+        Name = ent1['gene_info']['Name']
+        Name = ID if not Name else Name 
+
+        sys.stdout.write('%s\t%s\tgene\t%d\t%d\t.\t%s\t.\tID=%s;Name=%s\n' % (chr_name, source, start, stop, strand, ID, Name))
+        for idx, tid in enumerate(ent1['transcripts']):
+
+            t_start = ent1['exons'][idx][0][0]
+            t_stop = ent1['exons'][idx][-1][-1]
+            t_type = ent1['transcript_type'][idx]
+
+            utr5_exons, utr3_exons = [], [] 
+            if ent1['exons'][idx].any() and ent1['cds_exons'][idx].any():
+                utr5_exons, utr3_exons = helper.buildUTR(ent1['cds_exons'][idx], ent1['exons'][idx], strand)
+
+            sys.stdout.write('%s\t%s\t%s\t%d\t%d\t.\t%s\t.\tID=%s;Parent=%s\n' % (chr_name, source, t_type, t_start, t_stop, strand, tid[0], ID))
+            for ex_cod in utr5_exons:
+                sys.stdout.write('%s\t%s\tfive_prime_UTR\t%d\t%d\t.\t%s\t.\tParent=%s\n' % (chr_name, source, ex_cod[0], ex_cod[1], strand, tid[0]))
+
+            for ex_cod in ent1['cds_exons'][idx]:
+                sys.stdout.write('%s\t%s\tCDS\t%d\t%d\t.\t%s\t%d\tParent=%s\n' % (chr_name, source, ex_cod[0], ex_cod[1], strand, ex_cod[2], tid[0]))
+
+            for ex_cod in utr3_exons:
+                sys.stdout.write('%s\t%s\tthree_prime_UTR\t%d\t%d\t.\t%s\t.\tParent=%s\n' % (chr_name, source, ex_cod[0], ex_cod[1], strand, tid[0]))
+
+            for ex_cod in ent1['exons'][idx]:
+                sys.stdout.write('%s\t%s\texon\t%d\t%d\t.\t%s\t.\tParent=%s\n' % (chr_name, source, ex_cod[0], ex_cod[1], strand, tid[0]))
+            
+
+def __main__():
+
+    try:
+        gtf_fname = sys.argv[1]
+    except:
+        print __doc__
+        sys.exit(-1)
+
+    gtf_file_content = GFFParser.Parse(gtf_fname)  
+
+    GFFWriter(gtf_file_content)
+
+if __name__ == "__main__": 
+    __main__()
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gtf_to_gff.xml	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,92 @@
+<tool id="fml_gtf2gff" name="GTF-to-GFF" version="2.1.0">
+	<description>converter</description> 
+	<command interpreter="python">gtf_to_gff.py $inf_gtf &gt; $gff3_format 
+	</command> 
+	<inputs>
+  		<param format="gtf" name="inf_gtf" type="data" label="Convert this query" help="Provide genome annotation file in GTF."/>
+    </inputs>
+  	<outputs>
+  		<data format="gff" name="gff3_format" label="${tool.name} on ${on_string}: Converted" /> 
+  	</outputs>
+	<tests>
+       	<test>
+            <param name="inf_gtf" value="aceview_hs_37.gtf" />
+            <output name="gff3_format" file="aceview_hs_37.gff3" />
+       	</test>
+    </tests>
+  	<help>
+
+**What it does**
+
+This tool converts data from GTF to a valid GFF file (scroll down for format description).
+
+--------
+
+**Example**
+
+- The following data in GTF::
+
+	17      protein_coding  exon    7255208 7258258 .       +       .        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001";
+	17      protein_coding  CDS     7256262 7256957 .       +       0        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001"; protein_id "ENSP00000328352";
+	17      protein_coding  start_codon     7256262 7256264 .       +       0        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001";
+	17      protein_coding  stop_codon      7256958 7256960 .       +       0        gene_id "ENSG00000213859"; transcript_id "ENST00000333751"; exon_number "1"; gene_name "KCTD11"; transcript_name "KCTD11-001";
+
+- Will be converted to GFF3::
+
+	##gff-version 3
+	17      protein_coding  gene    7255208 7258258 .       +       .       ID=ENSG00000213859;Name=KCTD11
+	17      protein_coding  mRNA    7255208 7258258 .       +       .       ID=ENST00000333751;Name=KCTD11-001;Parent=ENSG00000213859
+	17      protein_coding  protein 7256262 7256960 .       +       .       ID=ENSP00000328352;Name=KCTD11-001;Parent=ENST00000333751
+	17      protein_coding  five_prime_UTR  7255208 7256261 .       +       .       Parent=ENST00000333751
+	17      protein_coding  CDS     7256262 7256960 .       +       0       Name=CDS:KCTD11;Parent=ENST00000333751,ENSP00000328352
+	17      protein_coding  three_prime_UTR 7256961 7258258 .       +       .       Parent=ENST00000333751
+	17      protein_coding  exon    7255208 7258258 .       +       .       Parent=ENST00000333751
+
+--------
+
+**Reference**
+
+**GTF-to-GFF** is part of oqtans package and cited as [1]_.
+
+.. [1] Sreedharan VT, Schultheiss SJ, Jean G et.al., Oqtans: the RNA-seq workbench in the cloud for complete and reproducible quantitative transcriptome analysis. Bioinformatics (2014). `10.1093/bioinformatics/btt731`_
+
+.. _10.1093/bioinformatics/btt731: http://goo.gl/I75poH
+
+------
+
+**About formats**
+
+**GTF format** Gene Transfer Format, it borrows from GFF, but has additional structure that warrants a separate definition and format name. GTF lines have nine tab-seaparated fields::
+
+    1. seqname - The name of the sequence.
+    2. source - This indicating where the annotation came from.
+    3. feature - The name of the feature types. The following feature types are required: 'CDS', 'start_codon' and 'stop_codon'
+    4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    5. end - The ending position of the feature (inclusive).
+    6. score - The score field indicates a degree of confidence in the feature's existence and coordinates.
+    7. strand - Valid entries include '+', '-', or '.'
+    8. frame - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base.
+    9. attributes - These attributes are designed for handling multiple transcripts from the same genomic region.
+
+**GFF format** General Feature Format is a format for describing genes and other features associated with DNA, RNA and Protein sequences. GFF lines have nine tab-separated fields::
+
+    1. seqid - Must be a chromosome or scaffold.
+    2. source - The program that generated this feature.
+    3. type - The name of this type of feature. Some examples of standard feature types are "gene", "CDS", "protein", "mRNA", and "exon". 
+    4. start - The starting position of the feature in the sequence. The first base is numbered 1.
+    5. stop - The ending position of the feature (inclusive).
+    6. score - A score between 0 and 1000. If there is no score value, enter ".".
+    7. strand - Valid entries include '+', '-', or '.' (for don't know/care).
+    8. phase - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first base. If the feature is not a coding exon, the value should be '.'.
+    9. attributes - All lines with the same group are linked together into a single item.
+
+--------
+
+**Copyright**
+
+GTF-to-GFF Wrapper Version 0.6 (Apr 2015)
+
+2009-2015 Max Planck Society, University of Tübingen &amp; Memorial Sloan Kettering Cancer Center
+
+	</help>
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/helper.py	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,333 @@
+#!/usr/bin/env python
+"""
+Common utility functions
+"""
+
+import os 
+import re
+import sys 
+import gzip 
+import bz2
+import numpy 
+
+def init_gene():
+    """
+    Initializing the gene structure 
+    """
+
+    gene_det = [('id', 'f8'), 
+            ('anno_id', numpy.dtype), 
+            ('confgenes_id', numpy.dtype),
+            ('name', 'S25'),
+            ('source', 'S25'),
+            ('gene_info', numpy.dtype),
+            ('alias', 'S15'),
+            ('name2', numpy.dtype),
+            ('strand', 'S2'), 
+            ('score', 'S15'), 
+            ('chr', 'S15'), 
+            ('chr_num', numpy.dtype),
+            ('paralogs', numpy.dtype),
+            ('start', 'f8'),
+            ('stop', 'f8'), 
+            ('transcripts', numpy.dtype),
+            ('transcript_type', numpy.dtype),
+            ('transcript_info', numpy.dtype),
+            ('transcript_score', numpy.dtype),
+            ('transcript_status', numpy.dtype),
+            ('transcript_valid', numpy.dtype),
+            ('exons', numpy.dtype),
+            ('exons_confirmed', numpy.dtype),
+            ('cds_exons', numpy.dtype),
+            ('utr5_exons', numpy.dtype),
+            ('utr3_exons', numpy.dtype),
+            ('tis', numpy.dtype),
+            ('tis_conf', numpy.dtype),
+            ('tis_info', numpy.dtype),
+            ('cdsStop', numpy.dtype),
+            ('cdsStop_conf', numpy.dtype),
+            ('cdsStop_info', numpy.dtype),
+            ('tss', numpy.dtype),
+            ('tss_info', numpy.dtype),
+            ('tss_conf', numpy.dtype),
+            ('cleave', numpy.dtype),
+            ('cleave_info', numpy.dtype),
+            ('cleave_conf', numpy.dtype),
+            ('polya', numpy.dtype),
+            ('polya_info', numpy.dtype),
+            ('polya_conf', numpy.dtype),
+            ('is_alt', 'f8'), 
+            ('is_alt_spliced', 'f8'), 
+            ('is_valid',  numpy.dtype),
+            ('transcript_complete', numpy.dtype),
+            ('is_complete', numpy.dtype),
+            ('is_correctly_gff3_referenced', 'S5'),
+            ('splicegraph', numpy.dtype) ]
+
+    return gene_det
+
+def open_file(fname):
+    """
+    Open the file (supports .gz .bz2) and returns the handler
+
+    @args fname: input file name for reading 
+    @type fname: str
+    """
+
+    try:
+        if os.path.splitext(fname)[1] == ".gz":
+            FH = gzip.open(fname, 'rb')
+        elif os.path.splitext(fname)[1] == ".bz2":
+            FH = bz2.BZ2File(fname, 'rb')
+        else:
+            FH = open(fname, 'rU')
+    except Exception as error:
+        sys.exit(error)
+
+    return FH
+
+def add_CDS_phase(strand, cds):
+    """
+    Calculate CDS phase and add to the CDS exons
+
+    @args strand: feature strand information 
+    @type strand: +/- 
+    @args cds: coding exon coordinates 
+    @type cds: numpy array [[int, int, int]]
+    """
+
+    cds_region, cds_flag = [], 0 
+    if strand == '+':
+        for cdspos in cds:
+            if cds_flag == 0:
+                cdspos = (cdspos[0], cdspos[1], 0)
+                diff = (cdspos[1]-(cdspos[0]-1))%3
+            else:
+                xy = 0
+                if diff == 0: 
+                    cdspos = (cdspos[0], cdspos[1], 0)
+                elif diff == 1: 
+                    cdspos = (cdspos[0], cdspos[1], 2)
+                    xy = 2
+                elif diff == 2: 
+                    cdspos = (cdspos[0], cdspos[1], 1)
+                    xy = 1
+                diff = ((cdspos[1]-(cdspos[0]-1))-xy)%3
+            cds_region.append(cdspos)
+            cds_flag = 1 
+    elif strand == '-':
+        cds.reverse()
+        for cdspos in cds: 
+            if cds_flag == 0:
+                cdspos = (cdspos[0], cdspos[1], 0)
+                diff = (cdspos[1]-(cdspos[0]-1))%3
+            else:  
+                xy = 0 
+                if diff == 0: 
+                    cdspos = (cdspos[0], cdspos[1], 0)
+                elif diff == 1:
+                    cdspos = (cdspos[0], cdspos[1], 2)
+                    xy = 2
+                elif diff == 2: 
+                    cdspos = (cdspos[0], cdspos[1], 1)
+                    xy = 1
+                diff = ((cdspos[1]-(cdspos[0]-1))-xy)%3
+            cds_region.append(cdspos)
+            cds_flag = 1
+        cds_region.reverse()
+    return cds_region
+
+def buildUTR(cc, ec, strand):
+    """
+    Build UTR regions from a given set of CDS and exon coordiantes of a gene
+
+    @args cc: coding exon coordinates 
+    @type cc: numpy array [[int, int, int]]
+    @args ec: exon coordinates 
+    @type ec: numpy array [[int, int]]
+    @args strand: feature strand information 
+    @type strand: +/- 
+    """
+
+    utr5 = []
+    utr3 = []
+    if strand == '+':
+        cds_s = cc[0][0]
+        for ex in ec:
+            if ex[0] <= cds_s and cds_s <= ex[1]:
+                if ex[0] != cds_s:utr5.append((ex[0], cds_s-1))
+                break
+            else:
+                utr5.append(ex)
+        cds_e = cc[-1][1]
+        for i in range(len(ec)):
+            i += 1
+            if ec[-i][0] <= cds_e and cds_e <= ec[-i][1]:
+                if ec[-i][1] != cds_e:utr3.append((cds_e +1, ec[-i][1]))
+                break
+            else:
+                utr3.append(ec[-i]) 
+        utr3.reverse()
+    elif strand == '-':
+        cds_s = cc[-1][1]
+        for i in range(len(ec)):
+            i += 1
+            if ec[-i][0] <= cds_s and cds_s <= ec[-i][1]:
+                if ec[-i][1] != cds_s:utr5.append((cds_s+1, ec[-i][1]))
+                break
+            else:
+                utr5.append(ec[-i])
+        utr5.reverse()
+        cds_e = cc[0][0] 
+        for ex in ec:
+            if ex[0] <= cds_e and cds_e <= ex[1]:
+                if ex[0] != cds_e:utr3.append((ex[0], cds_e-1))
+                break
+            else:
+                utr3.append(ex)
+    return utr5, utr3
+
+def make_Exon_cod(strand_p, five_p_utr, cds_cod, three_p_utr):
+    """
+    Create exon cordinates from UTR's and CDS region
+
+    @args strand_p: feature strand information 
+    @type strand_p: +/- 
+    @args five_p_utr: five prime utr exon coordinates 
+    @type five_p_utr: numpy array [[int, int]]
+    @args cds_cod: coding exon coordinates 
+    @type cds_cod: numpy array [[int, int, int]]
+    @args three_p_utr: three prime utr exon coordinates 
+    @type three_p_utr: numpy array [[int, int]]
+    """
+
+    exon_pos = []
+    if strand_p == '+':        
+        utr5_start, utr5_end = 0, 0
+        if five_p_utr != []:
+            utr5_start, utr5_end = five_p_utr[-1][0], five_p_utr[-1][1] 
+        cds_5start, cds_5end = cds_cod[0][0], cds_cod[0][1]
+        jun_exon = []
+        if cds_5start-utr5_end == 0 or cds_5start-utr5_end == 1:
+            jun_exon = [utr5_start, cds_5end]    
+        if len(cds_cod) == 1:
+            five_prime_flag = 0
+            if jun_exon != []:
+                five_p_utr = five_p_utr[:-1]
+                five_prime_flag = 1
+            for utr5 in five_p_utr:
+                exon_pos.append(utr5)
+            jun_exon = []
+            utr3_start, utr3_end = 0, 0
+            if three_p_utr != []: 
+                utr3_start = three_p_utr[0][0]
+                utr3_end = three_p_utr[0][1]
+            if utr3_start-cds_5end == 0 or utr3_start-cds_5end == 1:
+                jun_exon = [cds_5start, utr3_end]
+            three_prime_flag = 0
+            if jun_exon != []: 
+                cds_cod = cds_cod[:-1]
+                three_p_utr = three_p_utr[1:]
+                three_prime_flag = 1
+            if five_prime_flag == 1 and three_prime_flag == 1:
+                exon_pos.append([utr5_start, utr3_end])
+            if five_prime_flag == 1 and three_prime_flag == 0:
+                exon_pos.append([utr5_start, cds_5end])
+                cds_cod = cds_cod[:-1]
+            if five_prime_flag == 0 and three_prime_flag == 1:
+                exon_pos.append([cds_5start, utr3_end])
+            for cds in cds_cod:
+                exon_pos.append(cds)
+            for utr3 in three_p_utr:
+                exon_pos.append(utr3)
+        else:    
+            if jun_exon != []:
+                five_p_utr = five_p_utr[:-1]
+                cds_cod = cds_cod[1:]
+            for utr5 in five_p_utr:
+                exon_pos.append(utr5)
+            exon_pos.append(jun_exon) if jun_exon != [] else ''
+            jun_exon = []
+            utr3_start, utr3_end = 0, 0
+            if three_p_utr != []:
+                utr3_start = three_p_utr[0][0]
+                utr3_end = three_p_utr[0][1]
+            cds_3start = cds_cod[-1][0]
+            cds_3end = cds_cod[-1][1]
+            if utr3_start-cds_3end == 0 or utr3_start-cds_3end == 1:       
+                jun_exon = [cds_3start, utr3_end]
+            if jun_exon != []:
+                cds_cod = cds_cod[:-1]
+                three_p_utr = three_p_utr[1:]
+            for cds in cds_cod:
+                exon_pos.append(cds)
+            exon_pos.append(jun_exon) if jun_exon != [] else ''
+            for utr3 in three_p_utr:
+                exon_pos.append(utr3)
+    elif strand_p == '-':
+        utr3_start, utr3_end = 0, 0        
+        if three_p_utr != []:
+            utr3_start = three_p_utr[-1][0]
+            utr3_end = three_p_utr[-1][1]
+        cds_3start = cds_cod[0][0]
+        cds_3end = cds_cod[0][1]
+        jun_exon = []
+        if cds_3start-utr3_end == 0 or cds_3start-utr3_end == 1:
+            jun_exon = [utr3_start, cds_3end]  
+        if len(cds_cod) == 1:    
+            three_prime_flag = 0
+            if jun_exon != []:
+                three_p_utr = three_p_utr[:-1]
+                three_prime_flag = 1
+            for utr3 in three_p_utr:
+                exon_pos.append(utr3)
+            jun_exon = []
+            (utr5_start, utr5_end) = (0, 0)
+            if five_p_utr != []:
+                utr5_start = five_p_utr[0][0]
+                utr5_end = five_p_utr[0][1]
+            if utr5_start-cds_3end == 0 or utr5_start-cds_3end == 1:
+                jun_exon = [cds_3start, utr5_end]
+            five_prime_flag = 0
+            if jun_exon != []:
+                cds_cod = cds_cod[:-1]
+                five_p_utr = five_p_utr[1:]
+                five_prime_flag = 1
+            if three_prime_flag == 1 and five_prime_flag == 1:
+                exon_pos.append([utr3_start, utr5_end])
+            if three_prime_flag == 1 and five_prime_flag == 0:
+                exon_pos.append([utr3_start, cds_3end])
+                cds_cod = cds_cod[:-1]
+            if three_prime_flag == 0 and five_prime_flag == 1:
+                exon_pos.append([cds_3start, utr5_end])        
+            for cds in cds_cod:
+                exon_pos.append(cds)
+            for utr5 in five_p_utr:
+                exon_pos.append(utr5)
+        else:
+            if jun_exon != []:
+                three_p_utr = three_p_utr[:-1]
+                cds_cod = cds_cod[1:]
+            for utr3 in three_p_utr:
+                exon_pos.append(utr3)   
+            if jun_exon != []:
+                exon_pos.append(jun_exon)
+            jun_exon = []
+            (utr5_start, utr5_end) = (0, 0)
+            if five_p_utr != []:
+                utr5_start = five_p_utr[0][0]
+                utr5_end = five_p_utr[0][1]    
+            cds_5start = cds_cod[-1][0]
+            cds_5end = cds_cod[-1][1]
+            if utr5_start-cds_5end == 0 or utr5_start-cds_5end == 1:
+                jun_exon = [cds_5start, utr5_end]
+            if jun_exon != []:
+                cds_cod = cds_cod[:-1]
+                five_p_utr = five_p_utr[1:]
+            for cds in cds_cod:
+                exon_pos.append(cds)
+            if jun_exon != []:
+                exon_pos.append(jun_exon)    
+            for utr5 in five_p_utr:
+                exon_pos.append(utr5)
+    return exon_pos
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_conf.xml.sample	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,7 @@
+<section name="GFFtools" id="gfftools.web">
+    <tool file="GFFtools-GX/gff_to_bed.xml"/>
+    <tool file="GFFtools-GX/bed_to_gff.xml"/>
+    <tool file="GFFtools-GX/gbk_to_gff.xml"/>
+    <tool file="GFFtools-GX/gff_to_gtf.xml"/>
+    <tool file="GFFtools-GX/gtf_to_gff.xml"/>
+</section>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_dependencies.xml	Thu Apr 23 18:01:45 2015 -0400
@@ -0,0 +1,5 @@
+<tool_dependency>
+     <package name="biopython" version="1.65">
+        <repository name="package_biopython_1_65" owner="biopython" />
+    </package>
+</tool_dependency>