| 0 | 1 /* | 
|  | 2  * Copyright 1996-2006 Catherine Loader. | 
|  | 3  */ | 
|  | 4 | 
|  | 5 #include "mex.h" | 
|  | 6 /* | 
|  | 7  * Copyright 1996-2006 Catherine Loader. | 
|  | 8  */ | 
|  | 9 /* | 
|  | 10  *   Integration for hazard rate estimation. The functions in this | 
|  | 11  *   file are used to evaluate | 
|  | 12  *      sum int_0^{Ti} W_i(t,x) A()A()' exp( P() ) dt | 
|  | 13  *   for hazard rate models. | 
|  | 14  * | 
|  | 15  *   These routines assume the weight function is supported on [-1,1]. | 
|  | 16  *   hasint_sph multiplies by exp(base(lf,i)), which allows estimating | 
|  | 17  *   the baseline in a proportional hazards model, when the covariate | 
|  | 18  *   effect base(lf,i) is known. | 
|  | 19  * | 
|  | 20  *   TODO: | 
|  | 21  *     hazint_sph, should be able to reduce mint in some cases with | 
|  | 22  *       small integration range. onedint could be used for beta-family | 
|  | 23  *       (RECT,EPAN,BISQ,TRWT) kernels. | 
|  | 24  *     hazint_prod, restrict terms from the sum based on x values. | 
|  | 25  *       I should count obs >= max, and only do that integration once. | 
|  | 26  */ | 
|  | 27 | 
|  | 28 #include "locf.h" | 
|  | 29 | 
|  | 30 static double ilim[2*MXDIM], *ff, tmax; | 
|  | 31 static lfdata *haz_lfd; | 
|  | 32 static smpar  *haz_sp; | 
|  | 33 | 
|  | 34 /* | 
|  | 35  *  hrao returns 0 if integration region is empty. | 
|  | 36  *               1 otherwise. | 
|  | 37  */ | 
|  | 38 int haz_sph_int(dfx,cf,h,r1) | 
|  | 39 double *dfx, *cf, h, *r1; | 
|  | 40 { double s, t0, t1, wt, th; | 
|  | 41   int j, dim, p; | 
|  | 42   s = 0; p = npar(haz_sp); | 
|  | 43   dim = haz_lfd->d; | 
|  | 44   for (j=1; j<dim; j++) s += SQR(dfx[j]/(h*haz_lfd->sca[j])); | 
|  | 45   if (s>1) return(0); | 
|  | 46 | 
|  | 47   setzero(r1,p*p); | 
|  | 48   t1 = sqrt(1-s)*h*haz_lfd->sca[0]; | 
|  | 49   t0 = -t1; | 
|  | 50   if (t0<ilim[0])   t0 = ilim[0]; | 
|  | 51   if (t1>ilim[dim]) t1 = ilim[dim]; | 
|  | 52   if (t1>dfx[0]) t1 = dfx[0]; | 
|  | 53   if (t1<t0) return(0); | 
|  | 54 | 
|  | 55 /*  Numerical integration by Simpson's rule. | 
|  | 56  */ | 
|  | 57   for (j=0; j<=de_mint; j++) | 
|  | 58   { dfx[0] = t0+(t1-t0)*j/de_mint; | 
|  | 59     wt = weight(haz_lfd, haz_sp, dfx, NULL, h, 0, 0.0); | 
|  | 60     fitfun(haz_lfd, haz_sp, dfx,NULL,ff,NULL); | 
|  | 61     th = innerprod(cf,ff,p); | 
|  | 62     if (link(haz_sp)==LLOG) th = exp(th); | 
|  | 63     wt *= 2+2*(j&1)-(j==0)-(j==de_mint); | 
|  | 64     addouter(r1,ff,ff,p,wt*th); | 
|  | 65   } | 
|  | 66   multmatscal(r1,(t1-t0)/(3*de_mint),p*p); | 
|  | 67 | 
|  | 68   return(1); | 
|  | 69 } | 
|  | 70 | 
|  | 71 int hazint_sph(t,resp,r1,cf,h) | 
|  | 72 double *t, *resp, *r1, *cf, h; | 
|  | 73 { int i, j, n, p, st; | 
|  | 74   double dfx[MXDIM], eb, sb; | 
|  | 75   p = npar(haz_sp); | 
|  | 76   setzero(resp,p*p); | 
|  | 77   sb = 0.0; | 
|  | 78 | 
|  | 79   n = haz_lfd->n; | 
|  | 80   for (i=0; i<=n; i++) | 
|  | 81   { | 
|  | 82     if (i==n) | 
|  | 83     { dfx[0] = tmax-t[0]; | 
|  | 84       for (j=1; j<haz_lfd->d; j++) dfx[j] = 0.0; | 
|  | 85       eb = exp(sb/n); | 
|  | 86     } | 
|  | 87     else | 
|  | 88     { eb = exp(base(haz_lfd,i)); sb += base(haz_lfd,i); | 
|  | 89       for (j=0; j<haz_lfd->d; j++) dfx[j] = datum(haz_lfd,j,i)-t[j]; | 
|  | 90     } | 
|  | 91 | 
|  | 92     st = haz_sph_int(dfx,cf,h,r1); | 
|  | 93     if (st) | 
|  | 94       for (j=0; j<p*p; j++) resp[j] += eb*r1[j]; | 
|  | 95   } | 
|  | 96   return(LF_OK); | 
|  | 97 } | 
|  | 98 | 
|  | 99 int hazint_prod(t,resp,x,cf,h) | 
|  | 100 double *t, *resp, *x, *cf, h; | 
|  | 101 { int d, p, i, j, k, st; | 
|  | 102   double dfx[MXDIM], t_prev, | 
|  | 103          hj, hs, ncf[MXDEG], ef, il1; | 
|  | 104   double prod_wk[MXDIM][2*MXDEG+1], eb, sb; | 
|  | 105 | 
|  | 106   p = npar(haz_sp); | 
|  | 107   d = haz_lfd->d; | 
|  | 108   setzero(resp,p*p); | 
|  | 109   hj = hs = h*haz_lfd->sca[0]; | 
|  | 110 | 
|  | 111   ncf[0] = cf[0]; | 
|  | 112   for (i=1; i<=deg(haz_sp); i++) | 
|  | 113   { ncf[i] = hj*cf[(i-1)*d+1]; hj *= hs; | 
|  | 114   } | 
|  | 115 | 
|  | 116 /*   for i=0..n.... | 
|  | 117  *     First we compute prod_wk[j], j=0..d. | 
|  | 118  *     For j=0, this is int_0^T_i (u-t)^k W((u-t)/h) exp(b0*(u-t)) du | 
|  | 119  *     For remaining j,   (x(i,j)-x(j))^k Wj exp(bj*(x..-x.)) | 
|  | 120  * | 
|  | 121  *     Second, we add to the integration (exp(a) incl. in integral) | 
|  | 122  *     with the right factorial denominators. | 
|  | 123  */ | 
|  | 124   t_prev = ilim[0]; sb = 0.0; | 
|  | 125   for (i=0; i<=haz_lfd->n; i++) | 
|  | 126   { if (i==haz_lfd->n) | 
|  | 127     { dfx[0] = tmax-t[0]; | 
|  | 128       for (j=1; j<d; j++) dfx[j] = 0.0; | 
|  | 129       eb = exp(sb/haz_lfd->n); | 
|  | 130     } | 
|  | 131     else | 
|  | 132     { eb = exp(base(haz_lfd,i)); sb += base(haz_lfd,i); | 
|  | 133       for (j=0; j<d; j++) dfx[j] = datum(haz_lfd,j,i)-t[j]; | 
|  | 134     } | 
|  | 135 | 
|  | 136     if (dfx[0]>ilim[0]) /* else it doesn't contribute */ | 
|  | 137     { | 
|  | 138 /* time integral */ | 
|  | 139       il1 = (dfx[0]>ilim[d]) ? ilim[d] : dfx[0]; | 
|  | 140       if (il1 != t_prev) /* don't repeat! */ | 
|  | 141       { st = onedint(haz_sp,ncf,ilim[0]/hs,il1/hs,prod_wk[0]); | 
|  | 142         if (st>0) return(st); | 
|  | 143         hj = eb; | 
|  | 144         for (j=0; j<=2*deg(haz_sp); j++) | 
|  | 145         { hj *= hs; | 
|  | 146           prod_wk[0][j] *= hj; | 
|  | 147         } | 
|  | 148         t_prev = il1; | 
|  | 149       } | 
|  | 150 | 
|  | 151 /* covariate terms */ | 
|  | 152       for (j=1; j<d; j++) | 
|  | 153       { | 
|  | 154         ef = 0.0; | 
|  | 155         for (k=deg(haz_sp); k>0; k--) ef = (ef+dfx[j])*cf[1+(k-1)*d+j]; | 
|  | 156         ef = exp(ef); | 
|  | 157         prod_wk[j][0] = ef * W(dfx[j]/(h*haz_lfd->sca[j]),ker(haz_sp)); | 
|  | 158         for (k=1; k<=2*deg(haz_sp); k++) | 
|  | 159           prod_wk[j][k] = prod_wk[j][k-1] * dfx[j]; | 
|  | 160       } | 
|  | 161 | 
|  | 162 /*  add to the integration.  */ | 
|  | 163       prodintresp(resp,prod_wk,d,deg(haz_sp),p); | 
|  | 164     } /* if dfx0 > ilim0 */ | 
|  | 165   } /* n loop */ | 
|  | 166 | 
|  | 167 /* symmetrize */ | 
|  | 168   for (k=0; k<p; k++) | 
|  | 169     for (j=k; j<p; j++) | 
|  | 170       resp[j*p+k] = resp[k*p+j]; | 
|  | 171   return(LF_OK); | 
|  | 172 } | 
|  | 173 | 
|  | 174 int hazint(t,resp,resp1,cf,h) | 
|  | 175 double *t, *resp, *resp1, *cf, h; | 
|  | 176 { if (haz_lfd->d==1) return(hazint_prod(t,resp,resp1,cf,h)); | 
|  | 177   if (kt(haz_sp)==KPROD) return(hazint_prod(t,resp,resp1,cf,h)); | 
|  | 178 | 
|  | 179   return(hazint_sph(t,resp,resp1,cf,h)); | 
|  | 180 } | 
|  | 181 | 
|  | 182 void haz_init(lfd,des,sp,il) | 
|  | 183 lfdata *lfd; | 
|  | 184 design *des; | 
|  | 185 smpar *sp; | 
|  | 186 double *il; | 
|  | 187 { int i; | 
|  | 188 | 
|  | 189   haz_lfd = lfd; | 
|  | 190   haz_sp  = sp; | 
|  | 191 | 
|  | 192   tmax = datum(lfd,0,0); | 
|  | 193   for (i=1; i<lfd->n; i++) tmax = MAX(tmax,datum(lfd,0,i)); | 
|  | 194   ff = des->xtwx.wk; | 
|  | 195   for (i=0; i<2*lfd->d; i++) ilim[i] = il[i]; | 
|  | 196 } | 
|  | 197 /* | 
|  | 198  * Copyright 1996-2006 Catherine Loader. | 
|  | 199  */ | 
|  | 200 /* | 
|  | 201  * | 
|  | 202  *  Routines for one-dimensional numerical integration | 
|  | 203  *  in density estimation. The entry point is | 
|  | 204  * | 
|  | 205  *  onedint(cf,mi,l0,l1,resp) | 
|  | 206  * | 
|  | 207  *  which evaluates int W(u)u^j exp( P(u) ), j=0..2*deg. | 
|  | 208  *  P(u) = cf[0] + cf[1]u + cf[2]u^2/2 + ... + cf[deg]u^deg/deg! | 
|  | 209  *  l0 and l1 are the integration limits. | 
|  | 210  *  The results are returned through the vector resp. | 
|  | 211  * | 
|  | 212  */ | 
|  | 213 | 
|  | 214 #include "locf.h" | 
|  | 215 | 
|  | 216 static int debug; | 
|  | 217 | 
|  | 218 int exbctay(b,c,n,z) /* n-term taylor series of e^(bx+cx^2) */ | 
|  | 219 double b, c, *z; | 
|  | 220 int n; | 
|  | 221 { double ec[20]; | 
|  | 222   int i, j; | 
|  | 223   z[0] = 1; | 
|  | 224   for (i=1; i<=n; i++) z[i] = z[i-1]*b/i; | 
|  | 225   if (c==0.0) return(n); | 
|  | 226   if (n>=40) | 
|  | 227   { WARN(("exbctay limit to n<40")); | 
|  | 228     n = 39; | 
|  | 229   } | 
|  | 230   ec[0] = 1; | 
|  | 231   for (i=1; 2*i<=n; i++) ec[i] = ec[i-1]*c/i; | 
|  | 232   for (i=n; i>1; i--) | 
|  | 233     for (j=1; 2*j<=i; j++) | 
|  | 234       z[i] += ec[j]*z[i-2*j]; | 
|  | 235   return(n); | 
|  | 236 } | 
|  | 237 | 
|  | 238 double explinjtay(l0,l1,j,cf) | 
|  | 239 /* int_l0^l1 x^j e^(a+bx+cx^2); exbctay aroud l1 */ | 
|  | 240 double l0, l1, *cf; | 
|  | 241 int j; | 
|  | 242 { double tc[40], f, s; | 
|  | 243   int k, n; | 
|  | 244   if ((l0!=0.0) | (l1!=1.0)) WARN(("explinjtay: invalid l0, l1")); | 
|  | 245   n = exbctay(cf[1]+2*cf[2]*l1,cf[2],20,tc); | 
|  | 246   s = tc[0]/(j+1); | 
|  | 247   f = 1/(j+1); | 
|  | 248   for (k=1; k<=n; k++) | 
|  | 249   { f *= -k/(j+k+1.0); | 
|  | 250     s += tc[k]*f; | 
|  | 251   } | 
|  | 252   return(f); | 
|  | 253 } | 
|  | 254 | 
|  | 255 void explint1(l0,l1,cf,I,p) /* int x^j exp(a+bx); j=0..p-1 */ | 
|  | 256 double l0, l1, *cf, *I; | 
|  | 257 int p; | 
|  | 258 { double y0, y1, f; | 
|  | 259   int j, k, k1; | 
|  | 260   y0 = mut_exp(cf[0]+l0*cf[1]); | 
|  | 261   y1 = mut_exp(cf[0]+l1*cf[1]); | 
|  | 262   if (p<2*fabs(cf[1])) k = p; else k = (int)fabs(cf[1]); | 
|  | 263 | 
|  | 264   if (k>0) | 
|  | 265   { I[0] = (y1-y0)/cf[1]; | 
|  | 266     for (j=1; j<k; j++) /* forward steps for small j */ | 
|  | 267     { y1 *= l1; y0 *= l0; | 
|  | 268       I[j] = (y1-y0-j*I[j-1])/cf[1]; | 
|  | 269     } | 
|  | 270     if (k==p) return; | 
|  | 271     y1 *= l1; y0 *= l0; | 
|  | 272   } | 
|  | 273 | 
|  | 274   f = 1; k1 = k; | 
|  | 275   while ((k<50) && (f>1.0e-8)) /* initially Ik = diff(x^{k+1}e^{a+bx}) */ | 
|  | 276   { y1 *= l1; y0 *= l0; | 
|  | 277     I[k] = y1-y0; | 
|  | 278     if (k>=p) f *= fabs(cf[1])/(k+1); | 
|  | 279     k++; | 
|  | 280   } | 
|  | 281   if (k==50) WARN(("explint1: want k>50")); | 
|  | 282   I[k] = 0.0; | 
|  | 283   for (j=k-1; j>=k1; j--) /* now do back step recursion */ | 
|  | 284     I[j] = (I[j]-cf[1]*I[j+1])/(j+1); | 
|  | 285 } | 
|  | 286 | 
|  | 287 void explintyl(l0,l1,cf,I,p) /* small c, use taylor series and explint1 */ | 
|  | 288 double l0, l1, *cf, *I; | 
|  | 289 int p; | 
|  | 290 { int i; | 
|  | 291   double c; | 
|  | 292   explint1(l0,l1,cf,I,p+8); | 
|  | 293   c = cf[2]; | 
|  | 294   for (i=0; i<p; i++) | 
|  | 295     I[i] = (((I[i+8]*c/4+I[i+6])*c/3+I[i+4])*c/2+I[i+2])*c+I[i]; | 
|  | 296 } | 
|  | 297 | 
|  | 298 void solvetrid(X,y,m) | 
|  | 299 double *X, *y; | 
|  | 300 int m; | 
|  | 301 { int i; | 
|  | 302   double s; | 
|  | 303   for (i=1; i<m; i++) | 
|  | 304   { s = X[3*i]/X[3*i-2]; | 
|  | 305     X[3*i] = 0; X[3*i+1] -= s*X[3*i-1]; | 
|  | 306     y[i] -= s*y[i-1]; | 
|  | 307   } | 
|  | 308   for (i=m-2; i>=0; i--) | 
|  | 309   { s = X[3*i+2]/X[3*i+4]; | 
|  | 310     X[3*i+2] = 0; | 
|  | 311     y[i] -= s*y[i+1]; | 
|  | 312   } | 
|  | 313   for (i=0; i<m; i++) y[i] /= X[3*i+1]; | 
|  | 314 } | 
|  | 315 | 
|  | 316 void initi0i1(I,cf,y0,y1,l0,l1) | 
|  | 317 double *I, *cf, y0, y1, l0, l1; | 
|  | 318 { double a0, a1, c, d, bi; | 
|  | 319   d = -cf[1]/(2*cf[2]); c = sqrt(2*fabs(cf[2])); | 
|  | 320   a0 = c*(l0-d); a1 = c*(l1-d); | 
|  | 321   if (cf[2]<0) | 
|  | 322   { bi = mut_exp(cf[0]+cf[1]*d+cf[2]*d*d)/c; | 
|  | 323     if (a0>0) | 
|  | 324     { if (a0>6) I[0] = (y0*ptail(-a0)-y1*ptail(-a1))/c; | 
|  | 325       else I[0] = S2PI*(mut_pnorm(-a0)-mut_pnorm(-a1))*bi; | 
|  | 326     } | 
|  | 327     else | 
|  | 328     { if (a1< -6) I[0] = (y1*ptail(a1)-y0*ptail(a0))/c; | 
|  | 329       else I[0] = S2PI*(mut_pnorm(a1)-mut_pnorm(a0))*bi; | 
|  | 330     } | 
|  | 331   } | 
|  | 332   else | 
|  | 333     I[0] = (y1*mut_daws(a1)-y0*mut_daws(a0))/c; | 
|  | 334   I[1] = (y1-y0)/(2*cf[2])+d*I[0]; | 
|  | 335 } | 
|  | 336 | 
|  | 337 void explinsid(l0,l1,cf,I,p) /* large b; don't use fwd recursion */ | 
|  | 338 double l0, l1, *cf, *I; | 
|  | 339 int p; | 
|  | 340 { int k, k0, k1, k2; | 
|  | 341   double y0, y1, Z[150]; | 
|  | 342 if (debug) mut_printf("side: %8.5f %8.5f %8.5f    limt %8.5f %8.5f  p %2d\n",cf[0],cf[1],cf[2],l0,l1,p); | 
|  | 343 | 
|  | 344   k0 = 2; | 
|  | 345   k1 = (int)(fabs(cf[1])+fabs(2*cf[2])); | 
|  | 346   if (k1<2) k1 = 2; | 
|  | 347   if (k1>p+20) k1 = p+20; | 
|  | 348   k2 = p+20; | 
|  | 349 | 
|  | 350 if (k2>50) { mut_printf("onedint: k2 warning\n"); k2 = 50; } | 
|  | 351   if (debug) mut_printf("k0 %2d  k1 %2d  k2 %2d  p %2d\n",k0,k1,k2,p); | 
|  | 352 | 
|  | 353   y0 = mut_exp(cf[0]+l0*(cf[1]+l0*cf[2])); | 
|  | 354   y1 = mut_exp(cf[0]+l1*(cf[1]+l1*cf[2])); | 
|  | 355   initi0i1(I,cf,y0,y1,l0,l1); | 
|  | 356 if (debug) mut_printf("i0 %8.5f  i1 %8.5f\n",I[0],I[1]); | 
|  | 357 | 
|  | 358   y1 *= l1; y0 *= l0; /* should be x^(k1)*exp(..) */ | 
|  | 359   if (k0<k1) /* center steps; initially x^k*exp(...) */ | 
|  | 360     for (k=k0; k<k1; k++) | 
|  | 361     { y1 *= l1; y0 *= l0; | 
|  | 362       I[k] = y1-y0; | 
|  | 363       Z[3*k] = k; Z[3*k+1] = cf[1]; Z[3*k+2] = 2*cf[2]; | 
|  | 364     } | 
|  | 365 | 
|  | 366   y1 *= l1; y0 *= l0; /* should be x^(k1)*exp(..) */ | 
|  | 367 if (debug) mut_printf("k1 %2d  y0 %8.5f  y1 %8.5f\n",k1,y0,y1); | 
|  | 368   for (k=k1; k<k2; k++) | 
|  | 369   { y1 *= l1; y0 *= l0; | 
|  | 370     I[k] = y1-y0; | 
|  | 371   } | 
|  | 372   I[k2] = I[k2+1] = 0.0; | 
|  | 373   for (k=k2-1; k>=k1; k--) | 
|  | 374     I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); | 
|  | 375 | 
|  | 376   if (k0<k1) | 
|  | 377   { I[k0] -= k0*I[k0-1]; | 
|  | 378     I[k1-1] -= 2*cf[2]*I[k1]; | 
|  | 379     Z[3*k0] = Z[3*k1-1] = 0; | 
|  | 380     solvetrid(&Z[3*k0],&I[k0],k1-k0); | 
|  | 381   } | 
|  | 382 if (debug) | 
|  | 383 { mut_printf("explinsid:\n"); | 
|  | 384   for (k=0; k<p; k++) mut_printf("  %8.5f\n",I[k]); | 
|  | 385 } | 
|  | 386 } | 
|  | 387 | 
|  | 388 void explinbkr(l0,l1,cf,I,p) /* small b,c; use back recursion */ | 
|  | 389 double l0, l1, *cf, *I; | 
|  | 390 int p; | 
|  | 391 { int k, km; | 
|  | 392   double y0, y1; | 
|  | 393   y0 = mut_exp(cf[0]+l0*(cf[1]+cf[2]*l0)); | 
|  | 394   y1 = mut_exp(cf[0]+l1*(cf[1]+cf[2]*l1)); | 
|  | 395   km = p+10; | 
|  | 396   for (k=0; k<=km; k++) | 
|  | 397   { y1 *= l1; y0 *= l0; | 
|  | 398     I[k] = y1-y0; | 
|  | 399   } | 
|  | 400   I[km+1] = I[km+2] = 0; | 
|  | 401   for (k=km; k>=0; k--) | 
|  | 402     I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); | 
|  | 403 } | 
|  | 404 | 
|  | 405 void explinfbk0(l0,l1,cf,I,p) /* fwd and bac recur; b=0; c<0 */ | 
|  | 406 double l0, l1, *cf, *I; | 
|  | 407 int p; | 
|  | 408 { double y0, y1, f1, f2, f, ml2; | 
|  | 409   int k, ks; | 
|  | 410 | 
|  | 411   y0 = mut_exp(cf[0]+l0*l0*cf[2]); | 
|  | 412   y1 = mut_exp(cf[0]+l1*l1*cf[2]); | 
|  | 413   initi0i1(I,cf,y0,y1,l0,l1); | 
|  | 414 | 
|  | 415   ml2 = MAX(l0*l0,l1*l1); | 
|  | 416   ks = 1+(int)(2*fabs(cf[2])*ml2); | 
|  | 417   if (ks<2) ks = 2; | 
|  | 418   if (ks>p-3) ks = p; | 
|  | 419 | 
|  | 420   /* forward recursion for k < ks */ | 
|  | 421   for (k=2; k<ks; k++) | 
|  | 422   { y1 *= l1; y0 *= l0; | 
|  | 423     I[k] = (y1-y0-(k-1)*I[k-2])/(2*cf[2]); | 
|  | 424   } | 
|  | 425   if (ks==p) return; | 
|  | 426 | 
|  | 427   y1 *= l1*l1; y0 *= l0*l0; | 
|  | 428   for (k=ks; k<p; k++) /* set I[k] = x^{k+1}e^(a+cx^2) | {l0,l1} */ | 
|  | 429   { y1 *= l1; y0 *= l0; | 
|  | 430     I[k] = y1-y0; | 
|  | 431   } | 
|  | 432 | 
|  | 433   /* initialize I[p-2] and I[p-1] */ | 
|  | 434   f1 = 1.0/p; f2 = 1.0/(p-1); | 
|  | 435   I[p-1] *= f1; I[p-2] *= f2; | 
|  | 436   k = p; f = 1.0; | 
|  | 437   while (f>1.0e-8) | 
|  | 438   { y1 *= l1; y0 *= l0; | 
|  | 439     if ((k-p)%2==0) /* add to I[p-2] */ | 
|  | 440     { f2 *= -2*cf[2]/(k+1); | 
|  | 441       I[p-2] += (y1-y0)*f2; | 
|  | 442     } | 
|  | 443     else /* add to I[p-1] */ | 
|  | 444     { f1 *= -2*cf[2]/(k+1); | 
|  | 445       I[p-1] += (y1-y0)*f1; | 
|  | 446       f *= 2*fabs(cf[2])*ml2/(k+1); | 
|  | 447     } | 
|  | 448     k++; | 
|  | 449   } | 
|  | 450 | 
|  | 451   /* use back recursion for I[ks..(p-3)] */ | 
|  | 452   for (k=p-3; k>=ks; k--) | 
|  | 453     I[k] = (I[k]-2*cf[2]*I[k+2])/(k+1); | 
|  | 454 } | 
|  | 455 | 
|  | 456 void explinfbk(l0,l1,cf,I,p) /* fwd and bac recur; b not too large */ | 
|  | 457 double l0, l1, *cf, *I; | 
|  | 458 int p; | 
|  | 459 { double y0, y1; | 
|  | 460   int k, ks, km; | 
|  | 461 | 
|  | 462   y0 = mut_exp(cf[0]+l0*(cf[1]+l0*cf[2])); | 
|  | 463   y1 = mut_exp(cf[0]+l1*(cf[1]+l1*cf[2])); | 
|  | 464   initi0i1(I,cf,y0,y1,l0,l1); | 
|  | 465 | 
|  | 466   ks = (int)(3*fabs(cf[2])); | 
|  | 467   if (ks<3) ks = 3; | 
|  | 468   if (ks>0.75*p) ks = p; /* stretch the forward recurs as far as poss. */ | 
|  | 469   /* forward recursion for k < ks */ | 
|  | 470   for (k=2; k<ks; k++) | 
|  | 471   { y1 *= l1; y0 *= l0; | 
|  | 472     I[k] = (y1-y0-cf[1]*I[k-1]-(k-1)*I[k-2])/(2*cf[2]); | 
|  | 473   } | 
|  | 474   if (ks==p) return; | 
|  | 475 | 
|  | 476   km = p+15; | 
|  | 477   y1 *= l1*l1; y0 *= l0*l0; | 
|  | 478   for (k=ks; k<=km; k++) | 
|  | 479   { y1 *= l1; y0 *= l0; | 
|  | 480     I[k] = y1-y0; | 
|  | 481   } | 
|  | 482   I[km+1] = I[km+2] = 0.0; | 
|  | 483   for (k=km; k>=ks; k--) | 
|  | 484     I[k] = (I[k]-cf[1]*I[k+1]-2*cf[2]*I[k+2])/(k+1); | 
|  | 485 } | 
|  | 486 | 
|  | 487 void recent(I,resp,wt,p,s,x) | 
|  | 488 double *I, *resp, *wt, x; | 
|  | 489 int p, s; | 
|  | 490 { int i, j; | 
|  | 491 | 
|  | 492   /* first, use W taylor series I -> resp */ | 
|  | 493   for (i=0; i<=p; i++) | 
|  | 494   { resp[i] = 0.0; | 
|  | 495     for (j=0; j<s; j++) resp[i] += wt[j]*I[i+j]; | 
|  | 496   } | 
|  | 497 | 
|  | 498   /* now, recenter x -> 0 */ | 
|  | 499   if (x==0) return; | 
|  | 500   for (j=0; j<=p; j++) for (i=p; i>j; i--) resp[i] += x*resp[i-1]; | 
|  | 501 } | 
|  | 502 | 
|  | 503 void recurint(l0,l2,cf,resp,p,ker) | 
|  | 504 double l0, l2, *cf, *resp; | 
|  | 505 int p, ker; | 
|  | 506 { int i, s; | 
|  | 507   double l1, d0, d1, d2, dl, z0, z1, z2, wt[20], ncf[3], I[50], r1[5], r2[5]; | 
|  | 508 if (debug) mut_printf("\nrecurint: %8.5f %8.5f %8.5f   %8.5f %8.5f\n",cf[0],cf[1],cf[2],l0,l2); | 
|  | 509 | 
|  | 510   if (cf[2]==0) /* go straight to explint1 */ | 
|  | 511   { s = wtaylor(wt,0.0,ker); | 
|  | 512 if (debug) mut_printf("case 1\n"); | 
|  | 513     explint1(l0,l2,cf,I,p+s); | 
|  | 514     recent(I,resp,wt,p,s,0.0); | 
|  | 515     return; | 
|  | 516   } | 
|  | 517 | 
|  | 518   dl = l2-l0; | 
|  | 519   d0 = cf[1]+2*l0*cf[2]; | 
|  | 520   d2 = cf[1]+2*l2*cf[2]; | 
|  | 521   z0 = cf[0]+l0*(cf[1]+l0*cf[2]); | 
|  | 522   z2 = cf[0]+l2*(cf[1]+l2*cf[2]); | 
|  | 523 | 
|  | 524   if ((fabs(cf[1]*dl)<1) && (fabs(cf[2]*dl*dl)<1)) | 
|  | 525   { ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | 
|  | 526 if (debug) mut_printf("case 2\n"); | 
|  | 527     s = wtaylor(wt,l0,ker); | 
|  | 528     explinbkr(0.0,dl,ncf,I,p+s); | 
|  | 529     recent(I,resp,wt,p,s,l0); | 
|  | 530     return; | 
|  | 531   } | 
|  | 532 | 
|  | 533   if (fabs(cf[2]*dl*dl)<0.001) /* small c, use explint1+tay.ser */ | 
|  | 534   { ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | 
|  | 535 if (debug) mut_printf("case small c\n"); | 
|  | 536     s = wtaylor(wt,l0,ker); | 
|  | 537     explintyl(0.0,l2-l0,ncf,I,p+s); | 
|  | 538     recent(I,resp,wt,p,s,l0); | 
|  | 539     return; | 
|  | 540   } | 
|  | 541 | 
|  | 542   if (d0*d2<=0) /* max/min in [l0,l2] */ | 
|  | 543   { l1 = -cf[1]/(2*cf[2]); | 
|  | 544     z1 = cf[0]+l1*(cf[1]+l1*cf[2]); | 
|  | 545     d1 = 0.0; | 
|  | 546     if (cf[2]<0) /* peak, integrate around l1 */ | 
|  | 547     { s = wtaylor(wt,l1,ker); | 
|  | 548       ncf[0] = z1; ncf[1] = 0.0; ncf[2] = cf[2]; | 
|  | 549 if (debug) mut_printf("case peak  p %2d  s %2d\n",p,s); | 
|  | 550       explinfbk0(l0-l1,l2-l1,ncf,I,p+s); | 
|  | 551       recent(I,resp,wt,p,s,l1); | 
|  | 552       return; | 
|  | 553     } | 
|  | 554   } | 
|  | 555 | 
|  | 556   if ((d0-2*cf[2]*dl)*(d2+2*cf[2]*dl)<0) /* max/min is close to [l0,l2] */ | 
|  | 557   { l1 = -cf[1]/(2*cf[2]); | 
|  | 558     z1 = cf[0]+l1*(cf[1]+l1*cf[2]); | 
|  | 559     if (l1<l0) { l1 = l0; z1 = z0; } | 
|  | 560     if (l1>l2) { l1 = l2; z1 = z2; } | 
|  | 561 | 
|  | 562     if ((z1>=z0) & (z1>=z2)) /* peak; integrate around l1 */ | 
|  | 563     { s = wtaylor(wt,l1,ker); | 
|  | 564 if (debug) mut_printf("case 4\n"); | 
|  | 565       d1 = cf[1]+2*l1*cf[2]; | 
|  | 566       ncf[0] = z1; ncf[1] = d1; ncf[2] = cf[2]; | 
|  | 567       explinfbk(l0-l1,l2-l1,ncf,I,p+s); | 
|  | 568       recent(I,resp,wt,p,s,l1); | 
|  | 569       return; | 
|  | 570     } | 
|  | 571 | 
|  | 572     /* trough; integrate [l0,l1] and [l1,l2] */ | 
|  | 573     for (i=0; i<=p; i++) r1[i] = r2[i] = 0.0; | 
|  | 574     if (l0<l1) | 
|  | 575     { s = wtaylor(wt,l0,ker); | 
|  | 576 if (debug) mut_printf("case 5\n"); | 
|  | 577       ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | 
|  | 578       explinfbk(0.0,l1-l0,ncf,I,p+s); | 
|  | 579       recent(I,r1,wt,p,s,l0); | 
|  | 580     } | 
|  | 581     if (l1<l2) | 
|  | 582     { s = wtaylor(wt,l2,ker); | 
|  | 583 if (debug) mut_printf("case 6\n"); | 
|  | 584       ncf[0] = z2; ncf[1] = d2; ncf[2] = cf[2]; | 
|  | 585       explinfbk(l1-l2,0.0,ncf,I,p+s); | 
|  | 586       recent(I,r2,wt,p,s,l2); | 
|  | 587     } | 
|  | 588     for (i=0; i<=p; i++) resp[i] = r1[i]+r2[i]; | 
|  | 589     return; | 
|  | 590   } | 
|  | 591 | 
|  | 592   /* Now, quadratic is monotone on [l0,l2]; big b; moderate c */ | 
|  | 593   if (z2>z0+3) /* steep increase, expand around l2 */ | 
|  | 594   { s = wtaylor(wt,l2,ker); | 
|  | 595 if (debug) mut_printf("case 7\n"); | 
|  | 596 | 
|  | 597 | 
|  | 598     ncf[0] = z2; ncf[1] = d2; ncf[2] = cf[2]; | 
|  | 599     explinsid(l0-l2,0.0,ncf,I,p+s); | 
|  | 600     recent(I,resp,wt,p,s,l2); | 
|  | 601 if (debug) mut_printf("7 resp: %8.5f %8.5f %8.5f %8.5f\n",resp[0],resp[1],resp[2],resp[3]); | 
|  | 602     return; | 
|  | 603   } | 
|  | 604 | 
|  | 605   /* bias towards expansion around l0, because it's often 0 */ | 
|  | 606 if (debug) mut_printf("case 8\n"); | 
|  | 607   s = wtaylor(wt,l0,ker); | 
|  | 608   ncf[0] = z0; ncf[1] = d0; ncf[2] = cf[2]; | 
|  | 609   explinsid(0.0,l2-l0,ncf,I,p+s); | 
|  | 610   recent(I,resp,wt,p,s,l0); | 
|  | 611   return; | 
|  | 612 } | 
|  | 613 | 
|  | 614 int onedexpl(cf,deg,resp) | 
|  | 615 double *cf, *resp; | 
|  | 616 int deg; | 
|  | 617 { int i; | 
|  | 618   double f0, fr, fl; | 
|  | 619   if (deg>=2) LERR(("onedexpl only valid for deg=0,1")); | 
|  | 620   if (fabs(cf[1])>=EFACT) return(LF_BADP); | 
|  | 621 | 
|  | 622   f0 = exp(cf[0]); fl = fr = 1.0; | 
|  | 623   for (i=0; i<=2*deg; i++) | 
|  | 624   { f0 *= i+1; | 
|  | 625     fl /=-(EFACT+cf[1]); | 
|  | 626     fr /=  EFACT-cf[1]; | 
|  | 627     resp[i] = f0*(fr-fl); | 
|  | 628   } | 
|  | 629   return(LF_OK); | 
|  | 630 } | 
|  | 631 | 
|  | 632 int onedgaus(cf,deg,resp) | 
|  | 633 double *cf, *resp; | 
|  | 634 int deg; | 
|  | 635 { int i; | 
|  | 636   double f0, mu, s2; | 
|  | 637   if (deg==3) | 
|  | 638   { LERR(("onedgaus only valid for deg=0,1,2")); | 
|  | 639     return(LF_ERR); | 
|  | 640   } | 
|  | 641   if (2*cf[2]>=GFACT*GFACT) return(LF_BADP); | 
|  | 642 | 
|  | 643   s2 = 1/(GFACT*GFACT-2*cf[2]); | 
|  | 644   mu = cf[1]*s2; | 
|  | 645   resp[0] = 1.0; | 
|  | 646   if (deg>=1) | 
|  | 647   { resp[1] = mu; | 
|  | 648     resp[2] = s2+mu*mu; | 
|  | 649     if (deg==2) | 
|  | 650     { resp[3] = mu*(3*s2+mu*mu); | 
|  | 651       resp[4] = 3*s2*s2 + mu*mu*(6*s2+mu*mu); | 
|  | 652     } | 
|  | 653   } | 
|  | 654   f0 = S2PI * exp(cf[0]+mu*mu/(2*s2))*sqrt(s2); | 
|  | 655   for (i=0; i<=2*deg; i++) resp[i] *= f0; | 
|  | 656   return(LF_OK); | 
|  | 657 } | 
|  | 658 | 
|  | 659 int onedint(sp,cf,l0,l1,resp) /* int W(u)u^j exp(..), j=0..2*deg */ | 
|  | 660 smpar *sp; | 
|  | 661 double *cf, l0, l1, *resp; | 
|  | 662 { double u, uj, y, ncf[4], rr[5]; | 
|  | 663   int i, j; | 
|  | 664 | 
|  | 665 if (debug) mut_printf("onedint: %f %f %f   %f %f\n",cf[0],cf[1],cf[2],l0,l1); | 
|  | 666 | 
|  | 667   if (deg(sp)<=2) | 
|  | 668   { for (i=0; i<3; i++) ncf[i] = (i>deg(sp)) ? 0.0 : cf[i]; | 
|  | 669     ncf[2] /= 2; | 
|  | 670 | 
|  | 671     if (ker(sp)==WEXPL) return(onedexpl(ncf,deg(sp),resp)); | 
|  | 672     if (ker(sp)==WGAUS) return(onedgaus(ncf,deg(sp),resp)); | 
|  | 673 | 
|  | 674     if (l1>0) | 
|  | 675       recurint(MAX(l0,0.0),l1,ncf,resp,2*deg(sp),ker(sp)); | 
|  | 676     else for (i=0; i<=2*deg(sp); i++) resp[i] = 0; | 
|  | 677 | 
|  | 678     if (l0<0) | 
|  | 679     { ncf[1] = -ncf[1]; | 
|  | 680       l0 = -l0; l1 = -l1; | 
|  | 681       recurint(MAX(l1,0.0),l0,ncf,rr,2*deg(sp),ker(sp)); | 
|  | 682     } | 
|  | 683     else for (i=0; i<=2*deg(sp); i++) rr[i] = 0.0; | 
|  | 684 | 
|  | 685     for (i=0; i<=2*deg(sp); i++) | 
|  | 686       resp[i] += (i%2==0) ? rr[i] : -rr[i]; | 
|  | 687 | 
|  | 688     return(LF_OK); | 
|  | 689   } | 
|  | 690 | 
|  | 691   /* For degree >= 3, we use Simpson's rule. */ | 
|  | 692   for (j=0; j<=2*deg(sp); j++) resp[j] = 0.0; | 
|  | 693   for (i=0; i<=de_mint; i++) | 
|  | 694   { u = l0+(l1-l0)*i/de_mint; | 
|  | 695     y = cf[0]; uj = 1; | 
|  | 696     for (j=1; j<=deg(sp); j++) | 
|  | 697     { uj *= u; | 
|  | 698       y += cf[j]*uj/fact[j]; | 
|  | 699     } | 
|  | 700     y = (4-2*(i%2==0)-(i==0)-(i==de_mint)) * | 
|  | 701           W(fabs(u),ker(sp))*exp(MIN(y,300.0)); | 
|  | 702     for (j=0; j<=2*deg(sp); j++) | 
|  | 703     { resp[j] += y; | 
|  | 704       y *= u; | 
|  | 705     } | 
|  | 706   } | 
|  | 707   for (j=0; j<=2*deg(sp); j++) resp[j] = resp[j]*(l1-l0)/(3*de_mint); | 
|  | 708   return(LF_OK); | 
|  | 709 } | 
|  | 710 /* | 
|  | 711  * Copyright 1996-2006 Catherine Loader. | 
|  | 712  */ | 
|  | 713 #include "locf.h" | 
|  | 714 | 
|  | 715 extern int lf_status; | 
|  | 716 static double u[MXDIM], ilim[2*MXDIM], *ff, hh, *cff; | 
|  | 717 static lfdata *den_lfd; | 
|  | 718 static design *den_des; | 
|  | 719 static smpar *den_sp; | 
|  | 720 int fact[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}; | 
|  | 721 int de_mint  = 20; | 
|  | 722 int de_itype = IDEFA; | 
|  | 723 int de_renorm= 0; | 
|  | 724 | 
|  | 725 int multint(), prodint(), gausint(), mlinint(); | 
|  | 726 | 
|  | 727 #define NITYPE 7 | 
|  | 728 static char *itype[NITYPE] = { "default", "multi", "product", "mlinear", | 
|  | 729                           "hazard",  "sphere", "monte" }; | 
|  | 730 static int   ivals[NITYPE] = | 
|  | 731    { IDEFA, IMULT, IPROD, IMLIN, IHAZD, ISPHR, IMONT }; | 
|  | 732 int deitype(char *z) | 
|  | 733 { return(pmatch(z, itype, ivals, NITYPE, IDEFA)); | 
|  | 734 } | 
|  | 735 | 
|  | 736 void prresp(coef,resp,p) | 
|  | 737 double *coef, *resp; | 
|  | 738 int p; | 
|  | 739 { int i, j; | 
|  | 740   mut_printf("Coefficients:\n"); | 
|  | 741   for (i=0; i<p; i++) mut_printf("%8.5f ",coef[i]); | 
|  | 742   mut_printf("\n"); | 
|  | 743   mut_printf("Response matrix:\n"); | 
|  | 744   for (i=0; i<p; i++) | 
|  | 745   { for (j=0; j<p; j++) mut_printf("%9.6f, ",resp[i+j*p]); | 
|  | 746     mut_printf("\n"); | 
|  | 747   } | 
|  | 748 } | 
|  | 749 | 
|  | 750 int mif(u,d,resp,M) | 
|  | 751 double *u, *resp, *M; | 
|  | 752 int d; | 
|  | 753 { double wt; | 
|  | 754   int i, j, p; | 
|  | 755 | 
|  | 756   p = den_des->p; | 
|  | 757   wt = weight(den_lfd, den_sp, u, NULL, hh, 0, 0.0); | 
|  | 758   if (wt==0) | 
|  | 759   { setzero(resp,p*p); | 
|  | 760     return(p*p); | 
|  | 761   } | 
|  | 762 | 
|  | 763   fitfun(den_lfd, den_sp, u,NULL,ff,NULL); | 
|  | 764   if (link(den_sp)==LLOG) | 
|  | 765     wt *= mut_exp(innerprod(ff,cff,p)); | 
|  | 766   for (i=0; i<p; i++) | 
|  | 767     for (j=0; j<p; j++) | 
|  | 768       resp[i*p+j] = wt*ff[i]*ff[j]; | 
|  | 769   return(p*p); | 
|  | 770 } | 
|  | 771 | 
|  | 772 int multint(t,resp1,resp2,cf,h) | 
|  | 773 double *t, *resp1, *resp2, *cf, h; | 
|  | 774 { int d, i, mg[MXDIM]; | 
|  | 775 | 
|  | 776   if (ker(den_sp)==WGAUS) return(gausint(t,resp1,resp2,cf,h,den_lfd->sca)); | 
|  | 777 | 
|  | 778   d = den_lfd->d; | 
|  | 779   for (i=0; i<d; i++) mg[i] = de_mint; | 
|  | 780 | 
|  | 781   hh = h; | 
|  | 782   cff= cf; | 
|  | 783   simpsonm(mif,ilim,&ilim[d],d,resp1,mg,resp2); | 
|  | 784   return(LF_OK); | 
|  | 785 } | 
|  | 786 | 
|  | 787 int mlinint(t,resp1,resp2,cf,h) | 
|  | 788 double *t, *resp1, *resp2, *cf, h; | 
|  | 789 { | 
|  | 790   double hd, nb, wt, wu, g[4], w0, w1, v, *sca; | 
|  | 791   int d, p, i, j, jmax, k, l, z, jj[2]; | 
|  | 792 | 
|  | 793   d = den_lfd->d; p = den_des->p; sca = den_lfd->sca; | 
|  | 794   hd = 1; | 
|  | 795   for (i=0; i<d; i++) hd *= h*sca[i]; | 
|  | 796 | 
|  | 797   if (link(den_sp)==LIDENT) | 
|  | 798   { setzero(resp1,p*p); | 
|  | 799     resp1[0] = wint(d,NULL,0,ker(den_sp))*hd; | 
|  | 800     if (deg(den_sp)==0) return(LF_OK); | 
|  | 801     jj[0] = 2; w0 = wint(d,jj,1,ker(den_sp))*hd*h*h; | 
|  | 802     for (i=0; i<d; i++) resp1[(i+1)*p+i+1] = w0*sca[i]*sca[i]; | 
|  | 803     if (deg(den_sp)==1) return(LF_OK); | 
|  | 804     for (i=0; i<d; i++) | 
|  | 805     { j = p-(d-i)*(d-i+1)/2; | 
|  | 806       resp1[j] = resp1[p*j] = w0*sca[i]*sca[i]/2; | 
|  | 807     } | 
|  | 808     if (d>1) | 
|  | 809     { jj[1] = 2; | 
|  | 810       w0 = wint(d,jj,2,ker(den_sp)) * hd*h*h*h*h; | 
|  | 811     } | 
|  | 812     jj[0] = 4; | 
|  | 813     w1 = wint(d,jj,1,ker(den_sp)) * hd*h*h*h*h/4; | 
|  | 814     z = d+1; | 
|  | 815     for (i=0; i<d; i++) | 
|  | 816     { k = p-(d-i)*(d-i+1)/2; | 
|  | 817       for (j=i; j<d; j++) | 
|  | 818       { l = p-(d-j)*(d-j+1)/2; | 
|  | 819         if (i==j) resp1[z*p+z] = w1*SQR(sca[i])*SQR(sca[i]); | 
|  | 820         else | 
|  | 821         { resp1[z*p+z] = w0*SQR(sca[i])*SQR(sca[j]); | 
|  | 822           resp1[k*p+l] = resp1[k+p*l] = w0/4*SQR(sca[i])*SQR(sca[j]); | 
|  | 823         } | 
|  | 824         z++; | 
|  | 825     } } | 
|  | 826     return(LF_OK); | 
|  | 827   } | 
|  | 828   switch(deg(den_sp)) | 
|  | 829   { case 0: | 
|  | 830       resp1[0] = mut_exp(cf[0])*wint(d,NULL,0,ker(den_sp))*hd; | 
|  | 831       return(LF_OK); | 
|  | 832     case 1: | 
|  | 833       nb = 0.0; | 
|  | 834       for (i=1; i<=d; i++) | 
|  | 835       { v = h*cf[i]*sca[i-1]; | 
|  | 836         nb += v*v; | 
|  | 837       } | 
|  | 838       if (ker(den_sp)==WGAUS) | 
|  | 839       { w0 = 1/(GFACT*GFACT); | 
|  | 840         g[0] = mut_exp(cf[0]+w0*nb/2+d*log(S2PI/2.5)); | 
|  | 841         g[1] = g[3] = g[0]*w0; | 
|  | 842         g[2] = g[0]*w0*w0; | 
|  | 843       } | 
|  | 844       else | 
|  | 845       { wt = wu = mut_exp(cf[0]); | 
|  | 846         w0 = wint(d,NULL,0,ker(den_sp)); g[0] = wt*w0; | 
|  | 847         g[1] = g[2] = g[3] = 0.0; | 
|  | 848         j = 0; jmax = (d+2)*de_mint; | 
|  | 849         while ((j<jmax) && (wt*w0/g[0]>1.0e-8)) | 
|  | 850         { j++; | 
|  | 851           jj[0] = 2*j; w0 = wint(d,jj,1,ker(den_sp)); | 
|  | 852           if (d==1) g[3] += wt * w0; | 
|  | 853           else | 
|  | 854           { jj[0] = 2; jj[1] = 2*j-2; w1 = wint(d,jj,2,ker(den_sp)); | 
|  | 855             g[3] += wt*w1; | 
|  | 856             g[2] += wu*(w0-w1); | 
|  | 857           } | 
|  | 858           wt /= (2*j-1.0); g[1] += wt*w0; | 
|  | 859           wt *= nb/(2*j); g[0] += wt*w0; | 
|  | 860           wu /= (2*j-1.0)*(2*j); | 
|  | 861           if (j>1) wu *= nb; | 
|  | 862         } | 
|  | 863         if (j==jmax) WARN(("mlinint: series not converged")); | 
|  | 864       } | 
|  | 865       g[0] *= hd; g[1] *= hd; | 
|  | 866       g[2] *= hd; g[3] *= hd; | 
|  | 867       resp1[0] = g[0]; | 
|  | 868       for (i=1; i<=d; i++) | 
|  | 869       { resp1[i] = resp1[(d+1)*i] = cf[i]*SQR(h*sca[i-1])*g[1]; | 
|  | 870         for (j=1; j<=d; j++) | 
|  | 871         { resp1[(d+1)*i+j] = (i==j) ? g[3]*SQR(h*sca[i-1]) : 0; | 
|  | 872           resp1[(d+1)*i+j] += g[2]*SQR(h*h*sca[i-1]*sca[j-1])*cf[i]*cf[j]; | 
|  | 873         } | 
|  | 874       } | 
|  | 875       return(LF_OK); | 
|  | 876   } | 
|  | 877   LERR(("mlinint: deg=0,1 only")); | 
|  | 878   return(LF_ERR); | 
|  | 879 } | 
|  | 880 | 
|  | 881 void prodintresp(resp,prod_wk,dim,deg,p) | 
|  | 882 double *resp, prod_wk[MXDIM][2*MXDEG+1]; | 
|  | 883 int dim, deg, p; | 
|  | 884 { double prod; | 
|  | 885   int i, j, k, j1, k1; | 
|  | 886 | 
|  | 887   prod = 1.0; | 
|  | 888   for (i=0; i<dim; i++) prod *= prod_wk[i][0]; | 
|  | 889   resp[0] += prod; | 
|  | 890   if (deg==0) return; | 
|  | 891 | 
|  | 892   for (j1=1; j1<=deg; j1++) | 
|  | 893   { for (j=0; j<dim; j++) | 
|  | 894     { prod = 1.0; | 
|  | 895       for (i=0; i<dim; i++) prod *= prod_wk[i][j1*(j==i)]; | 
|  | 896       prod /= fact[j1]; | 
|  | 897       resp[1 + (j1-1)*dim +j] += prod; | 
|  | 898     } | 
|  | 899   } | 
|  | 900 | 
|  | 901   for (k1=1; k1<=deg; k1++) | 
|  | 902     for (j1=k1; j1<=deg; j1++) | 
|  | 903     { for (k=0; k<dim; k++) | 
|  | 904         for (j=0; j<dim; j++) | 
|  | 905         { prod = 1.0; | 
|  | 906           for (i=0; i<dim; i++) prod *= prod_wk[i][k1*(k==i) + j1*(j==i)]; | 
|  | 907           prod /= fact[k1]*fact[j1]; | 
|  | 908           resp[ (1+(k1-1)*dim+k)*p + 1+(j1-1)*dim+j] += prod; | 
|  | 909         } | 
|  | 910     } | 
|  | 911 } | 
|  | 912 | 
|  | 913 int prodint(t,resp,resp2,coef,h) | 
|  | 914 double *t, *resp, *resp2, *coef, h; | 
|  | 915 { int dim, p, i, j, k, st; | 
|  | 916   double cf[MXDEG+1], hj, hs, prod_wk[MXDIM][2*MXDEG+1]; | 
|  | 917 | 
|  | 918   dim = den_lfd->d; | 
|  | 919   p = den_des->p; | 
|  | 920   for (i=0; i<p*p; i++) resp[i] = 0.0; | 
|  | 921   cf[0] = coef[0]; | 
|  | 922 | 
|  | 923 /*  compute the one dimensional terms | 
|  | 924  */ | 
|  | 925   for (i=0; i<dim; i++) | 
|  | 926   { hj = 1; hs = h*den_lfd->sca[i]; | 
|  | 927     for (j=0; j<deg(den_sp); j++) | 
|  | 928     { hj *= hs; | 
|  | 929       cf[j+1] = hj*coef[ j*dim+i+1 ]; | 
|  | 930     } | 
|  | 931     st = onedint(den_sp,cf,ilim[i]/hs,ilim[i+dim]/hs,prod_wk[i]); | 
|  | 932     if (st==LF_BADP) return(st); | 
|  | 933     hj = 1; | 
|  | 934     for (j=0; j<=2*deg(den_sp); j++) | 
|  | 935     { hj *= hs; | 
|  | 936       prod_wk[i][j] *= hj; | 
|  | 937     } | 
|  | 938     cf[0] = 0.0; /* so we only include it once, when d>=2 */ | 
|  | 939   } | 
|  | 940 | 
|  | 941 /*  transfer to the resp array | 
|  | 942  */ | 
|  | 943   prodintresp(resp,prod_wk,dim,deg(den_sp),p); | 
|  | 944 | 
|  | 945 /* Symmetrize. | 
|  | 946 */ | 
|  | 947   for (k=0; k<p; k++) | 
|  | 948     for (j=k; j<p; j++) | 
|  | 949       resp[j*p+k] = resp[k*p+j]; | 
|  | 950 | 
|  | 951   return(st); | 
|  | 952 } | 
|  | 953 | 
|  | 954 int gausint(t,resp,C,cf,h,sca) | 
|  | 955 double *t, *resp, *C, *cf, h, *sca; | 
|  | 956 { double nb, det, z, *P; | 
|  | 957   int d, p, i, j, k, l, m1, m2, f; | 
|  | 958   d = den_lfd->d; p = den_des->p; | 
|  | 959   m1 = d+1; nb = 0; | 
|  | 960   P = &C[d*d]; | 
|  | 961   resp[0] = 1; | 
|  | 962   for (i=0; i<d; i++) | 
|  | 963   { C[i*d+i] = SQR(GFACT/(h*sca[i]))-cf[m1++]; | 
|  | 964     for (j=i+1; j<d; j++) C[i*d+j] = C[j*d+i] = -cf[m1++]; | 
|  | 965   } | 
|  | 966   eig_dec(C,P,d); | 
|  | 967   det = 1; | 
|  | 968   for (i=1; i<=d; i++) | 
|  | 969   { det *= C[(i-1)*(d+1)]; | 
|  | 970     if (det <= 0) return(LF_BADP); | 
|  | 971     resp[i] = cf[i]; | 
|  | 972     for (j=1; j<=d; j++) resp[j+i*p] = 0; | 
|  | 973     resp[i+i*p] = 1; | 
|  | 974     svdsolve(&resp[i*p+1],u,P,C,P,d,0.0); | 
|  | 975   } | 
|  | 976   svdsolve(&resp[1],u,P,C,P,d,0.0); | 
|  | 977   det = sqrt(det); | 
|  | 978   for (i=1; i<=d; i++) | 
|  | 979   { nb += cf[i]*resp[i]; | 
|  | 980     resp[i*p] = resp[i]; | 
|  | 981     for (j=1; j<=d; j++) | 
|  | 982       resp[i+p*j] += resp[i]*resp[j]; | 
|  | 983   } | 
|  | 984   m1 = d; | 
|  | 985   for (i=1; i<=d; i++) | 
|  | 986     for (j=i; j<=d; j++) | 
|  | 987     { m1++; f = 1+(i==j); | 
|  | 988       resp[m1] = resp[m1*p] = resp[i*p+j]/f; | 
|  | 989       m2 = d; | 
|  | 990       for (k=1; k<=d; k++) | 
|  | 991       { resp[m1+k*p] = resp[k+m1*p] = | 
|  | 992         ( resp[i]*resp[j*p+k] + resp[j]*resp[i*p+k] | 
|  | 993         + resp[k]*resp[i*p+j] - 2*resp[i]*resp[j]*resp[k] )/f; | 
|  | 994         for (l=k; l<=d; l++) | 
|  | 995         { m2++; f = (1+(i==j))*(1+(k==l)); | 
|  | 996           resp[m1+m2*p] = resp[m2+m1*p] = ( resp[i+j*p]*resp[k+l*p] | 
|  | 997             + resp[i+k*p]*resp[j+l*p] + resp[i+l*p]*resp[j+k*p] | 
|  | 998             - 2*resp[i]*resp[j]*resp[k]*resp[l] )/f; | 
|  | 999     } } } | 
|  | 1000   z = mut_exp(d*0.918938533+cf[0]+nb/2)/det; | 
|  | 1001   multmatscal(resp,z,p*p); | 
|  | 1002   return(LF_OK); | 
|  | 1003 } | 
|  | 1004 | 
|  | 1005 int likeden(coef, lk0, f1, A) | 
|  | 1006 double *coef, *lk0, *f1, *A; | 
|  | 1007 { double lk, r; | 
|  | 1008   int i, j, p, rstat; | 
|  | 1009 | 
|  | 1010   lf_status = LF_OK; | 
|  | 1011   p = den_des->p; | 
|  | 1012   if ((link(den_sp)==LIDENT) && (coef[0] != 0.0)) return(NR_BREAK); | 
|  | 1013   lf_status = (den_des->itype)(den_des->xev,A,den_des->xtwx.Q,coef,den_des->h); | 
|  | 1014   if (lf_error) lf_status = LF_ERR; | 
|  | 1015   if (lf_status==LF_BADP) | 
|  | 1016   { *lk0 = -1.0e300; | 
|  | 1017     return(NR_REDUCE); | 
|  | 1018   } | 
|  | 1019   if (lf_status!=LF_OK) return(NR_BREAK); | 
|  | 1020   if (lf_debug>2) prresp(coef,A,p); | 
|  | 1021 | 
|  | 1022   den_des->xtwx.p = p; | 
|  | 1023   rstat = NR_OK; | 
|  | 1024   switch(link(den_sp)) | 
|  | 1025   { case LLOG: | 
|  | 1026       r = den_des->ss[0]/A[0]; | 
|  | 1027       coef[0] += log(r); | 
|  | 1028       multmatscal(A,r,p*p); | 
|  | 1029       A[0] = den_des->ss[0]; | 
|  | 1030       lk = -A[0]; | 
|  | 1031       if (fabs(coef[0]) > 700) | 
|  | 1032       { lf_status = LF_OOB; | 
|  | 1033         rstat = NR_REDUCE; | 
|  | 1034       } | 
|  | 1035       for (i=0; i<p; i++) | 
|  | 1036       { lk += coef[i]*den_des->ss[i]; | 
|  | 1037         f1[i] = den_des->ss[i]-A[i]; | 
|  | 1038       } | 
|  | 1039       break; | 
|  | 1040     case LIDENT: | 
|  | 1041       lk = 0.0; | 
|  | 1042       for (i=0; i<p; i++) | 
|  | 1043       { f1[i] = den_des->ss[i]; | 
|  | 1044         for (j=0; j<p; j++) | 
|  | 1045           den_des->res[i] -= A[i*p+j]*coef[j]; | 
|  | 1046       } | 
|  | 1047       break; | 
|  | 1048   } | 
|  | 1049   *lk0 = den_des->llk = lk; | 
|  | 1050 | 
|  | 1051   return(rstat); | 
|  | 1052 } | 
|  | 1053 | 
|  | 1054 int inre(x,bound,d) | 
|  | 1055 double *x, *bound; | 
|  | 1056 int d; | 
|  | 1057 { int i, z; | 
|  | 1058   z = 1; | 
|  | 1059   for (i=0; i<d; i++) | 
|  | 1060     if (bound[i]<bound[i+d]) | 
|  | 1061       z &= (x[i]>=bound[i]) & (x[i]<=bound[i+d]); | 
|  | 1062   return(z); | 
|  | 1063 } | 
|  | 1064 | 
|  | 1065 int setintlimits(lfd, x, h, ang, lset) | 
|  | 1066 lfdata *lfd; | 
|  | 1067 int *ang, *lset; | 
|  | 1068 double *x, h; | 
|  | 1069 { int d, i; | 
|  | 1070   d = lfd->d; | 
|  | 1071   *ang = *lset = 0; | 
|  | 1072   for (i=0; i<d; i++) | 
|  | 1073   { if (lfd->sty[i]==STANGL) | 
|  | 1074     { ilim[i+d] = ((h<2) ? 2*asin(h/2) : PI)*lfd->sca[i]; | 
|  | 1075       ilim[i] = -ilim[i+d]; | 
|  | 1076       *ang = 1; | 
|  | 1077     } | 
|  | 1078     else | 
|  | 1079     { ilim[i+d] = h*lfd->sca[i]; | 
|  | 1080       ilim[i] = -ilim[i+d]; | 
|  | 1081 | 
|  | 1082       if (lfd->sty[i]==STLEFT) { ilim[i+d] = 0; *lset = 1; } | 
|  | 1083       if (lfd->sty[i]==STRIGH) { ilim[i] = 0;   *lset = 1; } | 
|  | 1084 | 
|  | 1085       if (lfd->xl[i]<lfd->xl[i+d]) /* user limits for this variable */ | 
|  | 1086       { if (lfd->xl[i]-x[i]> ilim[i]) | 
|  | 1087         { ilim[i] = lfd->xl[i]-x[i]; *lset=1; } | 
|  | 1088         if (lfd->xl[i+d]-x[i]< ilim[i+d]) | 
|  | 1089         { ilim[i+d] = lfd->xl[i+d]-x[i]; *lset=1; } | 
|  | 1090       } | 
|  | 1091     } | 
|  | 1092     if (ilim[i]==ilim[i+d]) return(LF_DEMP); /* empty integration */ | 
|  | 1093   } | 
|  | 1094   return(LF_OK); | 
|  | 1095 } | 
|  | 1096 | 
|  | 1097 int selectintmeth(itype,lset,ang) | 
|  | 1098 int itype, lset, ang; | 
|  | 1099 { | 
|  | 1100   if (itype==IDEFA) /* select the default method */ | 
|  | 1101   { if (fam(den_sp)==THAZ) | 
|  | 1102     { if (ang) return(IDEFA); | 
|  | 1103       return( IHAZD ); | 
|  | 1104     } | 
|  | 1105 | 
|  | 1106     if (ubas(den_sp)) return(IMULT); | 
|  | 1107 | 
|  | 1108     if (ang) return(IMULT); | 
|  | 1109 | 
|  | 1110     if (iscompact(ker(den_sp))) | 
|  | 1111     { if (kt(den_sp)==KPROD) return(IPROD); | 
|  | 1112       if (lset) | 
|  | 1113         return( (den_lfd->d==1) ? IPROD : IMULT ); | 
|  | 1114       if (deg(den_sp)<=1) return(IMLIN); | 
|  | 1115       if (den_lfd->d==1) return(IPROD); | 
|  | 1116       return(IMULT); | 
|  | 1117     } | 
|  | 1118 | 
|  | 1119     if (ker(den_sp)==WGAUS) | 
|  | 1120     { if (lset) WARN(("Integration for Gaussian weights ignores limits")); | 
|  | 1121       if ((den_lfd->d==1)|(kt(den_sp)==KPROD)) return(IPROD); | 
|  | 1122       if (deg(den_sp)<=1) return(IMLIN); | 
|  | 1123       if (deg(den_sp)==2) return(IMULT); | 
|  | 1124     } | 
|  | 1125 | 
|  | 1126     return(IDEFA); | 
|  | 1127   } | 
|  | 1128 | 
|  | 1129   /* user provided an integration method, check it is valid */ | 
|  | 1130 | 
|  | 1131   if (fam(den_sp)==THAZ) | 
|  | 1132   { if (ang) return(INVLD); | 
|  | 1133     if (!iscompact(ker(den_sp))) return(INVLD); | 
|  | 1134     return( ((kt(den_sp)==KPROD) | (kt(den_sp)==KSPH)) ? IHAZD : INVLD ); | 
|  | 1135   } | 
|  | 1136 | 
|  | 1137   if ((ang) && (itype != IMULT)) return(INVLD); | 
|  | 1138 | 
|  | 1139   switch(itype) | 
|  | 1140   { case IMULT: | 
|  | 1141       if (ker(den_sp)==WGAUS) return(deg(den_sp)==2); | 
|  | 1142       return( iscompact(ker(den_sp)) ? IMULT : INVLD ); | 
|  | 1143     case IPROD: return( ((den_lfd->d==1) | (kt(den_sp)==KPROD)) ? IPROD : INVLD ); | 
|  | 1144     case IMLIN: return( ((kt(den_sp)==KSPH) && (!lset) && | 
|  | 1145       (deg(den_sp)<=1)) ? IMLIN : INVLD ); | 
|  | 1146   } | 
|  | 1147 | 
|  | 1148   return(INVLD); | 
|  | 1149 } | 
|  | 1150 | 
|  | 1151 extern double lf_tol; | 
|  | 1152 | 
|  | 1153 int densinit(lfd,des,sp) | 
|  | 1154 lfdata *lfd; | 
|  | 1155 design *des; | 
|  | 1156 smpar *sp; | 
|  | 1157 { int p, i, ii, j, nnz, rnz, ang, lset, status; | 
|  | 1158   double w, *cf; | 
|  | 1159 | 
|  | 1160   den_lfd = lfd; | 
|  | 1161   den_des = des; | 
|  | 1162   den_sp  = sp; | 
|  | 1163   cf = des->cf; | 
|  | 1164 | 
|  | 1165   lf_tol = (link(sp)==LLOG) ? 1.0e-6 : 0.0; | 
|  | 1166 | 
|  | 1167   p = des->p; | 
|  | 1168   ff = des->xtwx.wk; | 
|  | 1169   cf[0] = NOSLN; | 
|  | 1170   for (i=1; i<p; i++) cf[i] = 0.0; | 
|  | 1171 | 
|  | 1172   if (!inre(des->xev,lfd->xl,lfd->d)) return(LF_XOOR); | 
|  | 1173 | 
|  | 1174   status = setintlimits(lfd,des->xev,des->h,&ang,&lset); | 
|  | 1175   if (status != LF_OK) return(status); | 
|  | 1176 | 
|  | 1177   switch(selectintmeth(de_itype,lset,ang)) | 
|  | 1178   { case IMULT: des->itype = multint; break; | 
|  | 1179     case IPROD: des->itype = prodint; break; | 
|  | 1180     case IMLIN: des->itype = mlinint; break; | 
|  | 1181     case IHAZD: des->itype = hazint; break; | 
|  | 1182     case INVLD: LERR(("Invalid integration method %d",de_itype)); | 
|  | 1183                 break; | 
|  | 1184     case IDEFA: LERR(("No integration type available for this model")); | 
|  | 1185                 break; | 
|  | 1186     default: LERR(("densinit: unknown integral type")); | 
|  | 1187   } | 
|  | 1188 | 
|  | 1189   switch(deg(den_sp)) | 
|  | 1190   { case 0: rnz = 1; break; | 
|  | 1191     case 1: rnz = 1; break; | 
|  | 1192     case 2: rnz = lfd->d+1; break; | 
|  | 1193     case 3: rnz = lfd->d+2; break; | 
|  | 1194     default: LERR(("densinit: invalid degree %d",deg(den_sp))); | 
|  | 1195   } | 
|  | 1196   if (lf_error) return(LF_ERR); | 
|  | 1197 | 
|  | 1198   setzero(des->ss,p); | 
|  | 1199   nnz = 0; | 
|  | 1200   for (i=0; i<des->n; i++) | 
|  | 1201   { ii = des->ind[i]; | 
|  | 1202     if (!cens(lfd,ii)) | 
|  | 1203     { w = wght(des,ii)*prwt(lfd,ii); | 
|  | 1204       for (j=0; j<p; j++) des->ss[j] += d_xij(des,ii,j)*w; | 
|  | 1205       if (wght(des,ii)>0.00001) nnz++; | 
|  | 1206   } } | 
|  | 1207 | 
|  | 1208   if (fam(den_sp)==THAZ) haz_init(lfd,des,sp,ilim); | 
|  | 1209 /* this should really only be done once. Not sure how to enforce that, | 
|  | 1210  * esp. when locfit() has been called directly. | 
|  | 1211  */ | 
|  | 1212   if (fam(den_sp)==TDEN) | 
|  | 1213     des->smwt = (lfd->w==NULL) ? lfd->n : vecsum(lfd->w,lfd->n); | 
|  | 1214 | 
|  | 1215   if (lf_debug>2) | 
|  | 1216   { mut_printf("    LHS: "); | 
|  | 1217     for (i=0; i<p; i++) mut_printf(" %8.5f",des->ss[i]); | 
|  | 1218     mut_printf("\n"); | 
|  | 1219   } | 
|  | 1220 | 
|  | 1221   switch(link(den_sp)) | 
|  | 1222   { case LIDENT: | 
|  | 1223       cf[0] = 0.0; | 
|  | 1224       return(LF_OK); | 
|  | 1225     case LLOG: | 
|  | 1226       if (nnz<rnz) { cf[0] = -1000; return(LF_DNOP); } | 
|  | 1227       cf[0] = 0.0; | 
|  | 1228       return(LF_OK); | 
|  | 1229     default: | 
|  | 1230       LERR(("unknown link in densinit")); | 
|  | 1231       return(LF_ERR); | 
|  | 1232   } | 
|  | 1233 } | 
|  | 1234 /* | 
|  | 1235  * Copyright 1996-2006 Catherine Loader. | 
|  | 1236  */ | 
|  | 1237 #include "locf.h" | 
|  | 1238 | 
|  | 1239 int bino_vallink(link) | 
|  | 1240 int link; | 
|  | 1241 { return((link==LLOGIT) | (link==LIDENT) | (link==LASIN)); | 
|  | 1242 } | 
|  | 1243 | 
|  | 1244 int bino_fam(y,p,th,link,res,cens,w) | 
|  | 1245 double y, p, th, *res, w; | 
|  | 1246 int link, cens; | 
|  | 1247 { double wp; | 
|  | 1248   if (link==LINIT) | 
|  | 1249   { if (y<0) y = 0; | 
|  | 1250     if (y>w) y = w; | 
|  | 1251     res[ZDLL] = y; | 
|  | 1252     return(LF_OK); | 
|  | 1253   } | 
|  | 1254   wp = w*p; | 
|  | 1255   if (link==LIDENT) | 
|  | 1256   { if ((p<=0) && (y>0)) return(LF_BADP); | 
|  | 1257     if ((p>=1) && (y<w)) return(LF_BADP); | 
|  | 1258     res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | 
|  | 1259     if (y>0) | 
|  | 1260     { res[ZLIK] += y*log(wp/y); | 
|  | 1261       res[ZDLL] += y/p; | 
|  | 1262       res[ZDDLL]+= y/(p*p); | 
|  | 1263     } | 
|  | 1264     if (y<w) | 
|  | 1265     { res[ZLIK] += (w-y)*log((w-wp)/(w-y)); | 
|  | 1266       res[ZDLL] -= (w-y)/(1-p); | 
|  | 1267       res[ZDDLL]+= (w-y)/SQR(1-p); | 
|  | 1268     } | 
|  | 1269     return(LF_OK); | 
|  | 1270   } | 
|  | 1271   if (link==LLOGIT) | 
|  | 1272   { if ((y<0) | (y>w)) /* goon observation; delete it */ | 
|  | 1273     { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | 
|  | 1274       return(LF_OK); | 
|  | 1275     } | 
|  | 1276     res[ZLIK] = (th<0) ? th*y-w*log(1+exp(th)) : th*(y-w)-w*log(1+exp(-th)); | 
|  | 1277     if (y>0) res[ZLIK] -= y*log(y/w); | 
|  | 1278     if (y<w) res[ZLIK] -= (w-y)*log(1-y/w); | 
|  | 1279     res[ZDLL] = (y-wp); | 
|  | 1280     res[ZDDLL]= wp*(1-p); | 
|  | 1281     return(LF_OK); | 
|  | 1282   } | 
|  | 1283   if (link==LASIN) | 
|  | 1284   { if ((p<=0) && (y>0)) return(LF_BADP); | 
|  | 1285     if ((p>=1) && (y<w)) return(LF_BADP); | 
|  | 1286     if ((th<0) | (th>PI/2)) return(LF_BADP); | 
|  | 1287     res[ZDLL] = res[ZDDLL] = res[ZLIK] = 0; | 
|  | 1288     if (y>0) | 
|  | 1289     { res[ZDLL] += 2*y*sqrt((1-p)/p); | 
|  | 1290       res[ZLIK] += y*log(wp/y); | 
|  | 1291     } | 
|  | 1292     if (y<w) | 
|  | 1293     { res[ZDLL] -= 2*(w-y)*sqrt(p/(1-p)); | 
|  | 1294       res[ZLIK] += (w-y)*log((w-wp)/(w-y)); | 
|  | 1295     } | 
|  | 1296     res[ZDDLL] = 4*w; | 
|  | 1297     return(LF_OK); | 
|  | 1298   } | 
|  | 1299   LERR(("link %d invalid for binomial family",link)); | 
|  | 1300   return(LF_LNK); | 
|  | 1301 } | 
|  | 1302 | 
|  | 1303 int bino_check(sp,des,lfd) | 
|  | 1304 smpar *sp; | 
|  | 1305 design *des; | 
|  | 1306 lfdata *lfd; | 
|  | 1307 { int i, ii; | 
|  | 1308   double t0, t1; | 
|  | 1309 | 
|  | 1310   if (fabs(des->cf[0])>700) return(LF_OOB); | 
|  | 1311 | 
|  | 1312   /* check for separation. | 
|  | 1313    * this won't detect separation if there's boundary points with | 
|  | 1314    *   both 0 and 1 responses. | 
|  | 1315    */ | 
|  | 1316   t0 = -1e100; t1 = 1e100; | 
|  | 1317   for (i=0; i<des->n; i++) | 
|  | 1318   { ii = des->ind[i]; | 
|  | 1319     if ((resp(lfd,ii)<prwt(lfd,ii)) && (fitv(des,ii) > t0)) t0 = fitv(des,ii); | 
|  | 1320     if ((resp(lfd,ii)>0) && (fitv(des,ii) < t1)) t1 = fitv(des,ii); | 
|  | 1321     if (t1 <= t0) return(LF_OK); | 
|  | 1322   } | 
|  | 1323   mut_printf("separated %8.5f %8.5f\n",t0,t1); | 
|  | 1324   return(LF_NSLN); | 
|  | 1325 } | 
|  | 1326 | 
|  | 1327 void setfbino(fam) | 
|  | 1328 family *fam; | 
|  | 1329 { fam->deflink = LLOGIT; | 
|  | 1330   fam->canlink = LLOGIT; | 
|  | 1331   fam->vallink = bino_vallink; | 
|  | 1332   fam->family  = bino_fam; | 
|  | 1333   fam->pcheck  = bino_check; | 
|  | 1334 } | 
|  | 1335 | 
|  | 1336 int rbin_vallink(link) | 
|  | 1337 int link; | 
|  | 1338 { return(link==LLOGIT); | 
|  | 1339 } | 
|  | 1340 | 
|  | 1341 int rbin_fam(y,p,th,link,res,cens,w) | 
|  | 1342 double y, p, th, *res, w; | 
|  | 1343 int link, cens; | 
|  | 1344 { double s2y; | 
|  | 1345   if (link==LINIT) | 
|  | 1346   { res[ZDLL] = y; | 
|  | 1347     return(LF_OK); | 
|  | 1348   } | 
|  | 1349   if ((y<0) | (y>w)) /* goon observation; delete it */ | 
|  | 1350   { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | 
|  | 1351     return(LF_OK); | 
|  | 1352   } | 
|  | 1353   res[ZLIK] = (th<0) ? th*y-w*log(1+exp(th)) : th*(y-w)-w*log(1+exp(-th)); | 
|  | 1354   if (y>0) res[ZLIK] -= y*log(y/w); | 
|  | 1355   if (y<w) res[ZLIK] -= (w-y)*log(1-y/w); | 
|  | 1356   res[ZDLL] = (y-w*p); | 
|  | 1357   res[ZDDLL]= w*p*(1-p); | 
|  | 1358   if (-res[ZLIK]>HUBERC*HUBERC/2.0) | 
|  | 1359   { s2y = sqrt(-2*res[ZLIK]); | 
|  | 1360     res[ZLIK] = HUBERC*(HUBERC/2.0-s2y); | 
|  | 1361     res[ZDLL] *= HUBERC/s2y; | 
|  | 1362     res[ZDDLL] = HUBERC/s2y*(res[ZDDLL]-1/(s2y*s2y)*w*p*(1-p)); | 
|  | 1363   } | 
|  | 1364   return(LF_OK); | 
|  | 1365 } | 
|  | 1366 | 
|  | 1367 void setfrbino(fam) | 
|  | 1368 family *fam; | 
|  | 1369 { fam->deflink = LLOGIT; | 
|  | 1370   fam->canlink = LLOGIT; | 
|  | 1371   fam->vallink = rbin_vallink; | 
|  | 1372   fam->family  = rbin_fam; | 
|  | 1373   fam->pcheck  = bino_check; | 
|  | 1374 } | 
|  | 1375 /* | 
|  | 1376  * Copyright 1996-2006 Catherine Loader. | 
|  | 1377  */ | 
|  | 1378 #include "locf.h" | 
|  | 1379 | 
|  | 1380 int circ_vallink(link) | 
|  | 1381 int link; | 
|  | 1382 { return(link==LIDENT); | 
|  | 1383 } | 
|  | 1384 | 
|  | 1385 int circ_fam(y,mean,th,link,res,cens,w) | 
|  | 1386 double y, mean, th, *res, w; | 
|  | 1387 int link, cens; | 
|  | 1388 { if (link==LINIT) | 
|  | 1389   { res[ZDLL] = w*sin(y); | 
|  | 1390     res[ZLIK] = w*cos(y); | 
|  | 1391     return(LF_OK); | 
|  | 1392   } | 
|  | 1393   res[ZDLL] = w*sin(y-mean); | 
|  | 1394   res[ZDDLL]= w*cos(y-mean); | 
|  | 1395   res[ZLIK] = res[ZDDLL]-w; | 
|  | 1396   return(LF_OK); | 
|  | 1397 } | 
|  | 1398 | 
|  | 1399 extern double lf_tol; | 
|  | 1400 int circ_init(lfd,des,sp) | 
|  | 1401 lfdata *lfd; | 
|  | 1402 design *des; | 
|  | 1403 smpar *sp; | 
|  | 1404 { int i, ii; | 
|  | 1405   double s0, s1; | 
|  | 1406   s0 = s1 = 0.0; | 
|  | 1407   for (i=0; i<des->n; i++) | 
|  | 1408   { ii = des->ind[i]; | 
|  | 1409     s0 += wght(des,ii)*prwt(lfd,ii)*sin(resp(lfd,ii)-base(lfd,ii)); | 
|  | 1410     s1 += wght(des,ii)*prwt(lfd,ii)*cos(resp(lfd,ii)-base(lfd,ii)); | 
|  | 1411   } | 
|  | 1412   des->cf[0] = atan2(s0,s1); | 
|  | 1413   for (i=1; i<des->p; i++) des->cf[i] = 0.0; | 
|  | 1414   lf_tol = 1.0e-6; | 
|  | 1415   return(LF_OK); | 
|  | 1416 } | 
|  | 1417 | 
|  | 1418 | 
|  | 1419 void setfcirc(fam) | 
|  | 1420 family *fam; | 
|  | 1421 { fam->deflink = LIDENT; | 
|  | 1422   fam->canlink = LIDENT; | 
|  | 1423   fam->vallink = circ_vallink; | 
|  | 1424   fam->family  = circ_fam; | 
|  | 1425   fam->initial = circ_init; | 
|  | 1426 } | 
|  | 1427 /* | 
|  | 1428  * Copyright 1996-2006 Catherine Loader. | 
|  | 1429  */ | 
|  | 1430 #include "locf.h" | 
|  | 1431 | 
|  | 1432 int dens_vallink(link) | 
|  | 1433 int link; | 
|  | 1434 { return((link==LIDENT) | (link==LLOG)); | 
|  | 1435 } | 
|  | 1436 | 
|  | 1437 int dens_fam(y,mean,th,link,res,cens,w) | 
|  | 1438 double y, mean, th, *res, w; | 
|  | 1439 int link, cens; | 
|  | 1440 { if (cens) | 
|  | 1441     res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | 
|  | 1442   else | 
|  | 1443   { res[ZLIK] = w*th; | 
|  | 1444     res[ZDLL] = res[ZDDLL] = w; | 
|  | 1445   } | 
|  | 1446   return(LF_OK); | 
|  | 1447 } | 
|  | 1448 | 
|  | 1449 void setfdensity(fam) | 
|  | 1450 family *fam; | 
|  | 1451 { fam->deflink = LLOG; | 
|  | 1452   fam->canlink = LLOG; | 
|  | 1453   fam->vallink = dens_vallink; | 
|  | 1454   fam->family  = dens_fam; | 
|  | 1455   fam->initial = densinit; | 
|  | 1456   fam->like = likeden; | 
|  | 1457 } | 
|  | 1458 /* | 
|  | 1459  * Copyright 1996-2006 Catherine Loader. | 
|  | 1460  */ | 
|  | 1461 #include "locf.h" | 
|  | 1462 | 
|  | 1463 int gamma_vallink(link) | 
|  | 1464 int link; | 
|  | 1465 { return((link==LIDENT) | (link==LLOG) | (link==LINVER)); | 
|  | 1466 } | 
|  | 1467 | 
|  | 1468 int gamma_fam(y,mean,th,link,res,cens,w) | 
|  | 1469 double y, mean, th, *res, w; | 
|  | 1470 int link, cens; | 
|  | 1471 { double lb, pt, dg; | 
|  | 1472   if (link==LINIT) | 
|  | 1473   { res[ZDLL] = MAX(y,0.0); | 
|  | 1474     return(LF_OK); | 
|  | 1475   } | 
|  | 1476   res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | 
|  | 1477   if (w==0.0) return(LF_OK); | 
|  | 1478   if ((mean<=0) & (y>0)) return(LF_BADP); | 
|  | 1479   if (link==LIDENT) lb = 1/th; | 
|  | 1480   if (link==LINVER) lb = th; | 
|  | 1481   if (link==LLOG)   lb = mut_exp(-th); | 
|  | 1482   if (cens) | 
|  | 1483   { if (y<=0) return(LF_OK); | 
|  | 1484     pt = 1-igamma(lb*y,w); | 
|  | 1485     dg = dgamma(lb*y,w,1.0,0); | 
|  | 1486     res[ZLIK] = log(pt); | 
|  | 1487     res[ZDLL] = -y*dg/pt; | 
|  | 1488 /* | 
|  | 1489  * res[ZDLL]  = -y*dg/pt * dlb/dth. | 
|  | 1490  * res[ZDDLL] =  y*dg/pt * (d2lb/dth2 + ((w-1)/lb-y)*(dlb/dth)^2) | 
|  | 1491  *              + res[ZDLL]^2. | 
|  | 1492  */ | 
|  | 1493     if (link==LLOG)       /* lambda = exp(-theta) */ | 
|  | 1494     { res[ZDLL] *= -lb; | 
|  | 1495       res[ZDDLL] = dg*y*lb*(w-lb*y)/pt + SQR(res[ZDLL]); | 
|  | 1496       return(LF_OK); | 
|  | 1497     } | 
|  | 1498     if (link==LINVER)     /* lambda = theta */ | 
|  | 1499     { res[ZDLL] *= 1.0; | 
|  | 1500       res[ZDDLL] = dg*y*((w-1)*mean-y)/pt + SQR(res[ZDLL]); | 
|  | 1501       return(LF_OK); | 
|  | 1502     } | 
|  | 1503     if (link==LIDENT)     /* lambda = 1/theta */ | 
|  | 1504     { res[ZDLL] *= -lb*lb; | 
|  | 1505       res[ZDDLL] = dg*y*lb*lb*lb*(1+w-lb*y)/pt + SQR(res[ZDLL]); | 
|  | 1506       return(LF_OK); | 
|  | 1507     } | 
|  | 1508   } | 
|  | 1509   else | 
|  | 1510   { if (y<0) WARN(("Negative Gamma observation")); | 
|  | 1511     if (link==LLOG) | 
|  | 1512     { res[ZLIK] = -lb*y+w*(1-th); | 
|  | 1513       if (y>0) res[ZLIK] += w*log(y/w); | 
|  | 1514       res[ZDLL] = lb*y-w; | 
|  | 1515       res[ZDDLL]= lb*y; | 
|  | 1516       return(LF_OK); | 
|  | 1517     } | 
|  | 1518     if (link==LINVER) | 
|  | 1519     { res[ZLIK] = -lb*y+w-w*log(mean); | 
|  | 1520       if (y>0) res[ZLIK] += w*log(y/w); | 
|  | 1521       res[ZDLL] = -y+w*mean; | 
|  | 1522       res[ZDDLL]= w*mean*mean; | 
|  | 1523       return(LF_OK); | 
|  | 1524     } | 
|  | 1525     if (link==LIDENT) | 
|  | 1526     { res[ZLIK] = -lb*y+w-w*log(mean); | 
|  | 1527       if (y>0) res[ZLIK] += w*log(y/w); | 
|  | 1528       res[ZDLL] = lb*lb*(y-w*mean); | 
|  | 1529       res[ZDDLL]= lb*lb*lb*(2*y-w*mean); | 
|  | 1530       return(LF_OK); | 
|  | 1531     } | 
|  | 1532   } | 
|  | 1533   LERR(("link %d invalid for Gamma family",link)); | 
|  | 1534   return(LF_LNK); | 
|  | 1535 } | 
|  | 1536 | 
|  | 1537 void setfgamma(fam) | 
|  | 1538 family *fam; | 
|  | 1539 { fam->deflink = LLOG; | 
|  | 1540   fam->canlink = LINVER; | 
|  | 1541   fam->vallink = gamma_vallink; | 
|  | 1542   fam->family  = gamma_fam; | 
|  | 1543 } | 
|  | 1544 /* | 
|  | 1545  * Copyright 1996-2006 Catherine Loader. | 
|  | 1546  */ | 
|  | 1547 #include "locf.h" | 
|  | 1548 | 
|  | 1549 int gaus_vallink(link) | 
|  | 1550 int link; | 
|  | 1551 { return((link==LIDENT) | (link==LLOG) | (link==LLOGIT)); | 
|  | 1552 } | 
|  | 1553 | 
|  | 1554 int gaus_fam(y,mean,th,link,res,cens,w) | 
|  | 1555 double y, mean, th, *res, w; | 
|  | 1556 int link, cens; | 
|  | 1557 { double z, pz, dp; | 
|  | 1558   if (link==LINIT) | 
|  | 1559   { res[ZDLL] = w*y; | 
|  | 1560     return(LF_OK); | 
|  | 1561   } | 
|  | 1562   z = y-mean; | 
|  | 1563   if (cens) | 
|  | 1564   { if (link!=LIDENT) | 
|  | 1565     { LERR(("Link invalid for censored Gaussian family")); | 
|  | 1566       return(LF_LNK); | 
|  | 1567     } | 
|  | 1568     pz = mut_pnorm(-z); | 
|  | 1569     dp = ((z>6) ? ptail(-z) : exp(-z*z/2)/pz)/2.5066283; | 
|  | 1570     res[ZLIK] = w*log(pz); | 
|  | 1571     res[ZDLL] = w*dp; | 
|  | 1572     res[ZDDLL]= w*dp*(dp-z); | 
|  | 1573     return(LF_OK); | 
|  | 1574   } | 
|  | 1575   res[ZLIK] = -w*z*z/2; | 
|  | 1576   switch(link) | 
|  | 1577   { case LIDENT: | 
|  | 1578       res[ZDLL] = w*z; | 
|  | 1579       res[ZDDLL]= w; | 
|  | 1580       break; | 
|  | 1581     case LLOG: | 
|  | 1582       res[ZDLL] = w*z*mean; | 
|  | 1583       res[ZDDLL]= w*mean*mean; | 
|  | 1584       break; | 
|  | 1585     case LLOGIT: | 
|  | 1586       res[ZDLL] = w*z*mean*(1-mean); | 
|  | 1587       res[ZDDLL]= w*mean*mean*(1-mean)*(1-mean); | 
|  | 1588       break; | 
|  | 1589     default: | 
|  | 1590       LERR(("Invalid link for Gaussian family")); | 
|  | 1591       return(LF_LNK); | 
|  | 1592   } | 
|  | 1593   return(LF_OK); | 
|  | 1594 } | 
|  | 1595 | 
|  | 1596 int gaus_check(sp,des,lfd) | 
|  | 1597 smpar *sp; | 
|  | 1598 design *des; | 
|  | 1599 lfdata *lfd; | 
|  | 1600 { int i, ii; | 
|  | 1601   if (fami(sp)->robust) return(LF_OK); | 
|  | 1602   if (link(sp)==LIDENT) | 
|  | 1603   { for (i=0; i<des->n; i++) | 
|  | 1604     { ii = des->ind[i]; | 
|  | 1605       if (cens(lfd,ii)) return(LF_OK); | 
|  | 1606     } | 
|  | 1607     return(LF_DONE); | 
|  | 1608   } | 
|  | 1609   return(LF_OK); | 
|  | 1610 } | 
|  | 1611 | 
|  | 1612 void setfgauss(fam) | 
|  | 1613 family *fam; | 
|  | 1614 { fam->deflink = LIDENT; | 
|  | 1615   fam->canlink = LIDENT; | 
|  | 1616   fam->vallink = gaus_vallink; | 
|  | 1617   fam->family  = gaus_fam; | 
|  | 1618   fam->pcheck  = gaus_check; | 
|  | 1619 } | 
|  | 1620 /* | 
|  | 1621  * Copyright 1996-2006 Catherine Loader. | 
|  | 1622  */ | 
|  | 1623 #include "locf.h" | 
|  | 1624 | 
|  | 1625 int geom_vallink(link) | 
|  | 1626 int link; | 
|  | 1627 { return((link==LIDENT) | (link==LLOG)); | 
|  | 1628 } | 
|  | 1629 | 
|  | 1630 int geom_fam(y,mean,th,link,res,cens,w) | 
|  | 1631 double y, mean, th, *res, w; | 
|  | 1632 int link, cens; | 
|  | 1633 { double p, pt, dp, p1; | 
|  | 1634   if (link==LINIT) | 
|  | 1635   { res[ZDLL] = MAX(y,0.0); | 
|  | 1636     return(LF_OK); | 
|  | 1637   } | 
|  | 1638   p = 1/(1+mean); | 
|  | 1639   if (cens) /* censored observation */ | 
|  | 1640   { if (y<=0) | 
|  | 1641     { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0; | 
|  | 1642       return(LF_OK); | 
|  | 1643     } | 
|  | 1644     p1 = (link==LIDENT) ? -p*p : -p*(1-p); | 
|  | 1645     pt = 1-ibeta(p,w,y); | 
|  | 1646     dp = dbeta(p,w,y,0)/pt; | 
|  | 1647     res[ZLIK] = log(pt); | 
|  | 1648     res[ZDLL] = -dp*p1; | 
|  | 1649     res[ZDDLL] = dp*dp*p1*p1; | 
|  | 1650     if (link==LIDENT) | 
|  | 1651       res[ZDDLL] += dp*p*p*p*(1+w*(1-p)-p*y)/(1-p); | 
|  | 1652     else | 
|  | 1653       res[ZDDLL] += dp*p*(1-p)*(w*(1-p)-p*y); | 
|  | 1654     return(LF_OK); | 
|  | 1655   } | 
|  | 1656   else | 
|  | 1657   { res[ZLIK] = (y+w)*log((y/w+1)/(mean+1)); | 
|  | 1658     if (y>0) res[ZLIK] += y*log(w*mean/y); | 
|  | 1659     if (link==LLOG) | 
|  | 1660     { res[ZDLL] = (y-w*mean)*p; | 
|  | 1661       res[ZDDLL]= (y+w)*p*(1-p); | 
|  | 1662       return(LF_OK); | 
|  | 1663     } | 
|  | 1664     if (link==LIDENT) | 
|  | 1665     { res[ZDLL] = (y-w*mean)/(mean*(1+mean)); | 
|  | 1666       res[ZDDLL]= w/(mean*(1+mean)); | 
|  | 1667       return(LF_OK); | 
|  | 1668     } | 
|  | 1669   } | 
|  | 1670   LERR(("link %d invalid for geometric family",link)); | 
|  | 1671   return(LF_LNK); | 
|  | 1672 } | 
|  | 1673 | 
|  | 1674 void setfgeom(fam) | 
|  | 1675 family *fam; | 
|  | 1676 { fam->deflink = LLOG; | 
|  | 1677   fam->canlink = LIDENT; /* this isn't correct. I haven't prog. canon */ | 
|  | 1678   fam->vallink = geom_vallink; | 
|  | 1679   fam->family  = geom_fam; | 
|  | 1680 } | 
|  | 1681 /* | 
|  | 1682  * Copyright 1996-2006 Catherine Loader. | 
|  | 1683  */ | 
|  | 1684 #include "locf.h" | 
|  | 1685 | 
|  | 1686 #define HUBERC 2.0 | 
|  | 1687 | 
|  | 1688 double links_rs; | 
|  | 1689 int inllmix=0; | 
|  | 1690 | 
|  | 1691 /* | 
|  | 1692  * lffamily("name") converts family names into a numeric value. | 
|  | 1693  * typical usage is  fam(&lf->sp) = lffamily("gaussian"); | 
|  | 1694  * Note that family can be preceded by q and/or r for quasi, robust. | 
|  | 1695  * | 
|  | 1696  * link(&lf->sp) = lflink("log") does the same for the link function. | 
|  | 1697  */ | 
|  | 1698 #define NFAMILY 18 | 
|  | 1699 static char *famil[NFAMILY] = | 
|  | 1700   { "density", "ate",   "hazard",    "gaussian", "binomial", | 
|  | 1701     "poisson", "gamma", "geometric", "circular", "obust", "huber", | 
|  | 1702     "weibull", "cauchy","probab",    "logistic", "nbinomial", | 
|  | 1703     "vonmises", "quant" }; | 
|  | 1704 static int   fvals[NFAMILY] = | 
|  | 1705   { TDEN,  TRAT,  THAZ,  TGAUS, TLOGT, | 
|  | 1706     TPOIS, TGAMM, TGEOM, TCIRC, TROBT, TROBT, | 
|  | 1707     TWEIB, TCAUC, TPROB, TLOGT, TGEOM, TCIRC, TQUANT }; | 
|  | 1708 int lffamily(z) | 
|  | 1709 char *z; | 
|  | 1710 { int quasi, robu, f; | 
|  | 1711   quasi = robu = 0; | 
|  | 1712   while ((z[0]=='q') | (z[0]=='r')) | 
|  | 1713   { quasi |= (z[0]=='q'); | 
|  | 1714     robu  |= (z[0]=='r'); | 
|  | 1715     z++; | 
|  | 1716   } | 
|  | 1717   z[0] = tolower(z[0]); | 
|  | 1718   f = pmatch(z,famil,fvals,NFAMILY,-1); | 
|  | 1719   if ((z[0]=='o') | (z[0]=='a')) robu = 0; | 
|  | 1720   if (f==-1) | 
|  | 1721   { WARN(("unknown family %s",z)); | 
|  | 1722     f = TGAUS; | 
|  | 1723   } | 
|  | 1724   if (quasi) f += 64; | 
|  | 1725   if (robu)  f += 128; | 
|  | 1726   return(f); | 
|  | 1727 } | 
|  | 1728 | 
|  | 1729 #define NLINKS 8 | 
|  | 1730 static char *ltype[NLINKS] = { "default", "canonical", "identity", "log", | 
|  | 1731                           "logi",    "inverse",   "sqrt",     "arcsin" }; | 
|  | 1732 static int   lvals[NLINKS] = { LDEFAU, LCANON, LIDENT, LLOG, | 
|  | 1733                           LLOGIT, LINVER, LSQRT,  LASIN }; | 
|  | 1734 int lflink(char *z) | 
|  | 1735 { int f; | 
|  | 1736   if (z==NULL) return(LDEFAU); | 
|  | 1737   z[0] = tolower(z[0]); | 
|  | 1738   f = pmatch(z, ltype, lvals, NLINKS, -1); | 
|  | 1739   if (f==-1) | 
|  | 1740   { WARN(("unknown link %s",z)); | 
|  | 1741     f = LDEFAU; | 
|  | 1742   } | 
|  | 1743   return(f); | 
|  | 1744 } | 
|  | 1745 | 
|  | 1746 int defaultlink(link,fam) | 
|  | 1747 int link; | 
|  | 1748 family *fam; | 
|  | 1749 { if (link==LDEFAU) return(fam->deflink); | 
|  | 1750   if (link==LCANON) return(fam->canlink); | 
|  | 1751   return(link); | 
|  | 1752 } | 
|  | 1753 | 
|  | 1754 /* | 
|  | 1755 void robustify(res,rs) | 
|  | 1756 double *res, rs; | 
|  | 1757 { double sc, z; | 
|  | 1758   sc = rs*HUBERC; | 
|  | 1759   if (res[ZLIK] > -sc*sc/2) return; | 
|  | 1760   z = sqrt(-2*res[ZLIK]); | 
|  | 1761   res[ZDDLL]= -sc*res[ZDLL]*res[ZDLL]/(z*z*z)+sc*res[ZDDLL]/z; | 
|  | 1762   res[ZDLL]*= sc/z; | 
|  | 1763   res[ZLIK] = sc*sc/2-sc*z; | 
|  | 1764 } | 
|  | 1765 */ | 
|  | 1766 void robustify(res,rs) | 
|  | 1767 double *res, rs; | 
|  | 1768 { double sc, z; | 
|  | 1769   sc = rs*HUBERC; | 
|  | 1770   if (res[ZLIK] > -sc*sc/2) | 
|  | 1771   { res[ZLIK] /= sc*sc; | 
|  | 1772     res[ZDLL] /= sc*sc; | 
|  | 1773     res[ZDDLL] /= sc*sc; | 
|  | 1774     return; | 
|  | 1775   } | 
|  | 1776   z = sqrt(-2*res[ZLIK]); | 
|  | 1777   res[ZDDLL]= (-sc*res[ZDLL]*res[ZDLL]/(z*z*z)+sc*res[ZDDLL]/z)/(sc*sc); | 
|  | 1778   res[ZDLL]*= 1.0/(z*sc); | 
|  | 1779   res[ZLIK] = 0.5-z/sc; | 
|  | 1780 } | 
|  | 1781 | 
|  | 1782 double lf_link(y,lin) | 
|  | 1783 double y; | 
|  | 1784 int lin; | 
|  | 1785 { switch(lin) | 
|  | 1786   { case LIDENT: return(y); | 
|  | 1787     case LLOG:   return(log(y)); | 
|  | 1788     case LLOGIT: return(logit(y)); | 
|  | 1789     case LINVER: return(1/y); | 
|  | 1790     case LSQRT:  return(sqrt(fabs(y))); | 
|  | 1791     case LASIN:  return(asin(sqrt(y))); | 
|  | 1792   } | 
|  | 1793   LERR(("link: unknown link %d",lin)); | 
|  | 1794   return(0.0); | 
|  | 1795 } | 
|  | 1796 | 
|  | 1797 double invlink(th,lin) | 
|  | 1798 double th; | 
|  | 1799 int lin; | 
|  | 1800 { switch(lin) | 
|  | 1801   { case LIDENT: return(th); | 
|  | 1802     case LLOG:   return(mut_exp(th)); | 
|  | 1803     case LLOGIT: return(expit(th)); | 
|  | 1804     case LINVER: return(1/th); | 
|  | 1805     case LSQRT:  return(th*fabs(th)); | 
|  | 1806     case LASIN:  return(sin(th)*sin(th)); | 
|  | 1807     case LINIT:  return(0.0); | 
|  | 1808   } | 
|  | 1809   LERR(("invlink: unknown link %d",lin)); | 
|  | 1810   return(0.0); | 
|  | 1811 } | 
|  | 1812 | 
|  | 1813 /* the link and various related functions */ | 
|  | 1814 int links(th,y,fam,link,res,c,w,rs) | 
|  | 1815 double th, y, *res, w, rs; | 
|  | 1816 int link, c; | 
|  | 1817 family *fam; | 
|  | 1818 { double mean; | 
|  | 1819   int st; | 
|  | 1820 | 
|  | 1821   mean = res[ZMEAN] = invlink(th,link); | 
|  | 1822   if (lf_error) return(LF_LNK); | 
|  | 1823   links_rs = rs; | 
|  | 1824 /*  mut_printf("links: rs %8.5f\n",rs); */ | 
|  | 1825 | 
|  | 1826   st = fam->family(y,mean,th,link,res,c,w); | 
|  | 1827 | 
|  | 1828   if (st!=LF_OK) return(st); | 
|  | 1829   if (link==LINIT) return(st); | 
|  | 1830   if (isrobust(fam)) robustify(res,rs); | 
|  | 1831   return(st); | 
|  | 1832 } | 
|  | 1833 | 
|  | 1834 /* | 
|  | 1835   stdlinks is a version of links when family, link, response e.t.c | 
|  | 1836   all come from the standard places. | 
|  | 1837 */ | 
|  | 1838 int stdlinks(res,lfd,sp,i,th,rs) | 
|  | 1839 lfdata *lfd; | 
|  | 1840 smpar *sp; | 
|  | 1841 double th, rs, *res; | 
|  | 1842 int i; | 
|  | 1843 { | 
|  | 1844   return(links(th,resp(lfd,i),fami(sp),link(sp),res,cens(lfd,i),prwt(lfd,i),rs)); | 
|  | 1845 } | 
|  | 1846 | 
|  | 1847 /* | 
|  | 1848  *  functions used in variance, skewness, kurtosis calculations | 
|  | 1849  *  in scb corrections. | 
|  | 1850  */ | 
|  | 1851 | 
|  | 1852 double b2(th,tg,w) | 
|  | 1853 double th, w; | 
|  | 1854 int tg; | 
|  | 1855 { double y; | 
|  | 1856   switch(tg&63) | 
|  | 1857   { case TGAUS: return(w); | 
|  | 1858     case TPOIS: return(w*mut_exp(th)); | 
|  | 1859     case TLOGT: | 
|  | 1860       y = expit(th); | 
|  | 1861       return(w*y*(1-y)); | 
|  | 1862   } | 
|  | 1863   LERR(("b2: invalid family %d",tg)); | 
|  | 1864   return(0.0); | 
|  | 1865 } | 
|  | 1866 | 
|  | 1867 double b3(th,tg,w) | 
|  | 1868 double th, w; | 
|  | 1869 int tg; | 
|  | 1870 { double y; | 
|  | 1871   switch(tg&63) | 
|  | 1872   { case TGAUS: return(0.0); | 
|  | 1873     case TPOIS: return(w*mut_exp(th)); | 
|  | 1874     case TLOGT: | 
|  | 1875       y = expit(th); | 
|  | 1876       return(w*y*(1-y)*(1-2*y)); | 
|  | 1877   } | 
|  | 1878   LERR(("b3: invalid family %d",tg)); | 
|  | 1879   return(0.0); | 
|  | 1880 } | 
|  | 1881 | 
|  | 1882 double b4(th,tg,w) | 
|  | 1883 double th, w; | 
|  | 1884 int tg; | 
|  | 1885 { double y; | 
|  | 1886   switch(tg&63) | 
|  | 1887   { case TGAUS: return(0.0); | 
|  | 1888     case TPOIS: return(w*mut_exp(th)); | 
|  | 1889     case TLOGT: | 
|  | 1890       y = expit(th); y = y*(1-y); | 
|  | 1891       return(w*y*(1-6*y)); | 
|  | 1892   } | 
|  | 1893   LERR(("b4: invalid family %d",tg)); | 
|  | 1894   return(0.0); | 
|  | 1895 } | 
|  | 1896 | 
|  | 1897 int def_check(sp,des,lfd) | 
|  | 1898 smpar *sp; | 
|  | 1899 design *des; | 
|  | 1900 lfdata *lfd; | 
|  | 1901 { switch(link(sp)) | 
|  | 1902   { case LLOG: if (des->cf[0]>700) return(LF_OOB); | 
|  | 1903                break; | 
|  | 1904   } | 
|  | 1905   return(LF_OK); | 
|  | 1906 } | 
|  | 1907 extern void setfdensity(), setfgauss(), setfbino(), setfpoisson(); | 
|  | 1908 extern void setfgamma(), setfgeom(), setfcirc(), setfweibull(); | 
|  | 1909 extern void setfrbino(), setfrobust(), setfcauchy(), setfquant(); | 
|  | 1910 | 
|  | 1911 void setfamily(sp) | 
|  | 1912 smpar *sp; | 
|  | 1913 { int tg, lnk; | 
|  | 1914   family *f; | 
|  | 1915 | 
|  | 1916   tg = fam(sp); | 
|  | 1917   f = fami(sp); | 
|  | 1918   f->quasi = tg&64; | 
|  | 1919   f->robust = tg&128; | 
|  | 1920   f->initial = reginit; | 
|  | 1921   f->like = likereg; | 
|  | 1922   f->pcheck = def_check; | 
|  | 1923 | 
|  | 1924   switch(tg&63) | 
|  | 1925   { case TDEN: | 
|  | 1926     case THAZ: | 
|  | 1927     case TRAT:	setfdensity(f); break; | 
|  | 1928     case TGAUS: setfgauss(f); break; | 
|  | 1929     case TLOGT: setfbino(f); break; | 
|  | 1930     case TRBIN: setfrbino(f); break; | 
|  | 1931     case TPROB: | 
|  | 1932     case TPOIS: setfpoisson(f); break; | 
|  | 1933     case TGAMM: setfgamma(f); break; | 
|  | 1934     case TGEOM: setfgeom(f); break; | 
|  | 1935     case TWEIB: setfweibull(f); | 
|  | 1936     case TCIRC: setfcirc(f); break; | 
|  | 1937     case TROBT: setfrobust(f); break; | 
|  | 1938     case TCAUC: setfcauchy(f); break; | 
|  | 1939     case TQUANT: setfquant(f); break; | 
|  | 1940     default: LERR(("setfamily: unknown family %d",tg&63)); | 
|  | 1941              return; | 
|  | 1942   } | 
|  | 1943 | 
|  | 1944   lnk = defaultlink(link(sp),f); | 
|  | 1945   if (!f->vallink(lnk)) | 
|  | 1946   { WARN(("setfamily: invalid link %d - revert to default",link(sp))); | 
|  | 1947     link(sp) = f->deflink; | 
|  | 1948   } | 
|  | 1949   else | 
|  | 1950     link(sp) = lnk; | 
|  | 1951 } | 
|  | 1952 /* | 
|  | 1953  * Copyright 1996-2006 Catherine Loader. | 
|  | 1954  */ | 
|  | 1955 #include "locf.h" | 
|  | 1956 | 
|  | 1957 int pois_vallink(link) | 
|  | 1958 int link; | 
|  | 1959 { return((link==LLOG) | (link==LIDENT) | (link==LSQRT)); | 
|  | 1960 } | 
|  | 1961 | 
|  | 1962 int pois_fam(y,mean,th,link,res,cens,w) | 
|  | 1963 double y, mean, th, *res, w; | 
|  | 1964 int link, cens; | 
|  | 1965 { double wmu, pt, dp; | 
|  | 1966   if (link==LINIT) | 
|  | 1967   { res[ZDLL] = MAX(y,0.0); | 
|  | 1968     return(LF_OK); | 
|  | 1969   } | 
|  | 1970   wmu = w*mean; | 
|  | 1971   if (inllmix) y = w*y; | 
|  | 1972   if (cens) | 
|  | 1973   { if (y<=0) | 
|  | 1974     { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0.0; | 
|  | 1975       return(LF_OK); | 
|  | 1976     } | 
|  | 1977     pt = igamma(wmu,y); | 
|  | 1978     dp = dgamma(wmu,y,1.0,0)/pt; | 
|  | 1979     res[ZLIK] = log(pt); | 
|  | 1980 /* | 
|  | 1981  * res[ZDLL] = dp * w*dmu/dth | 
|  | 1982  * res[ZDDLL]= -dp*(w*d2mu/dth2 + (y-1)/mu*(dmu/dth)^2) + res[ZDLL]^2 | 
|  | 1983  */ | 
|  | 1984     if (link==LLOG) | 
|  | 1985     { res[ZDLL] = dp*wmu; | 
|  | 1986       res[ZDDLL]= -dp*wmu*(y-wmu) + SQR(res[ZDLL]); | 
|  | 1987       return(LF_OK); | 
|  | 1988     } | 
|  | 1989     if (link==LIDENT) | 
|  | 1990     { res[ZDLL] = dp*w; | 
|  | 1991       res[ZDDLL]= -dp*(y-1-wmu)*w/mean + SQR(res[ZDLL]); | 
|  | 1992       return(LF_OK); | 
|  | 1993     } | 
|  | 1994     if (link==LSQRT) | 
|  | 1995     { res[ZDLL] = dp*2*w*th; | 
|  | 1996       res[ZDDLL]= -dp*w*(4*y-2-4*wmu) + SQR(res[ZDLL]); | 
|  | 1997       return(LF_OK); | 
|  | 1998   } } | 
|  | 1999   if (link==LLOG) | 
|  | 2000   { if (y<0) /* goon observation - delete it */ | 
|  | 2001     { res[ZLIK] = res[ZDLL] = res[ZDDLL] = 0; | 
|  | 2002       return(LF_OK); | 
|  | 2003     } | 
|  | 2004     res[ZLIK] = res[ZDLL] = y-wmu; | 
|  | 2005     if (y>0) res[ZLIK] += y*(th-log(y/w)); | 
|  | 2006     res[ZDDLL] = wmu; | 
|  | 2007     return(LF_OK); | 
|  | 2008   } | 
|  | 2009   if (link==LIDENT) | 
|  | 2010   { if ((mean<=0) && (y>0)) return(LF_BADP); | 
|  | 2011     res[ZLIK] = y-wmu; | 
|  | 2012     res[ZDLL] = -w; | 
|  | 2013     res[ZDDLL] = 0; | 
|  | 2014     if (y>0) | 
|  | 2015     { res[ZLIK] += y*log(wmu/y); | 
|  | 2016       res[ZDLL] += y/mean; | 
|  | 2017       res[ZDDLL]= y/(mean*mean); | 
|  | 2018     } | 
|  | 2019     return(LF_OK); | 
|  | 2020   } | 
|  | 2021   if (link==LSQRT) | 
|  | 2022   { if ((mean<=0) && (y>0)) return(LF_BADP); | 
|  | 2023     res[ZLIK] = y-wmu; | 
|  | 2024     res[ZDLL] = -2*w*th; | 
|  | 2025     res[ZDDLL]= 2*w; | 
|  | 2026     if (y>0) | 
|  | 2027     { res[ZLIK] += y*log(wmu/y); | 
|  | 2028       res[ZDLL] += 2*y/th; | 
|  | 2029       res[ZDDLL]+= 2*y/mean; | 
|  | 2030     } | 
|  | 2031     return(LF_OK); | 
|  | 2032   } | 
|  | 2033   LERR(("link %d invalid for Poisson family",link)); | 
|  | 2034   return(LF_LNK); | 
|  | 2035 } | 
|  | 2036 | 
|  | 2037 void setfpoisson(fam) | 
|  | 2038 family *fam; | 
|  | 2039 { fam->deflink = LLOG; | 
|  | 2040   fam->canlink = LLOG; | 
|  | 2041   fam->vallink = pois_vallink; | 
|  | 2042   fam->family  = pois_fam; | 
|  | 2043 } | 
|  | 2044 /* | 
|  | 2045  * Copyright 1996-2006 Catherine Loader. | 
|  | 2046  */ | 
|  | 2047 #include "locf.h" | 
|  | 2048 | 
|  | 2049 #define QTOL 1.0e-10 | 
|  | 2050 extern int lf_status; | 
|  | 2051 static double q0; | 
|  | 2052 | 
|  | 2053 int quant_vallink(int link) { return(1); } | 
|  | 2054 | 
|  | 2055 int quant_fam(y,mean,th,link,res,cens,w) | 
|  | 2056 double y, mean, th, *res, w; | 
|  | 2057 int link, cens; | 
|  | 2058 { double z, p; | 
|  | 2059   if (link==LINIT) | 
|  | 2060   { res[ZDLL] = w*y; | 
|  | 2061     return(LF_OK); | 
|  | 2062   } | 
|  | 2063 p = 0.5; /* should be pen(sp) */ | 
|  | 2064   z = y-mean; | 
|  | 2065   res[ZLIK] = (z<0) ? (w*z/p) : (-w*z/(1-p)); | 
|  | 2066   res[ZDLL] = (z<0) ? -w/p : w/(1-p); | 
|  | 2067   res[ZDDLL]= w/(p*(1-p)); | 
|  | 2068   return(LF_OK); | 
|  | 2069 } | 
|  | 2070 | 
|  | 2071 int quant_check(sp,des,lfd) | 
|  | 2072 smpar *sp; | 
|  | 2073 design *des; | 
|  | 2074 lfdata *lfd; | 
|  | 2075 { return(LF_DONE); | 
|  | 2076 } | 
|  | 2077 | 
|  | 2078 void setfquant(fam) | 
|  | 2079 family *fam; | 
|  | 2080 { fam->deflink = LIDENT; | 
|  | 2081   fam->canlink = LIDENT; | 
|  | 2082   fam->vallink = quant_vallink; | 
|  | 2083   fam->family  = quant_fam; | 
|  | 2084   fam->pcheck  = quant_check; | 
|  | 2085 } | 
|  | 2086 | 
|  | 2087 /* | 
|  | 2088  * cycling rule for choosing among ties. | 
|  | 2089  */ | 
|  | 2090 int tiecycle(ind,i0,i1,oi) | 
|  | 2091 int *ind, i0, i1, oi; | 
|  | 2092 { int i, ii, im; | 
|  | 2093   im = ind[i0]; | 
|  | 2094   for (i=i0+1; i<=i1; i++) | 
|  | 2095   { ii = ind[i]; | 
|  | 2096     if (im<=oi) | 
|  | 2097     { if ((ii<im) | (ii>oi)) im = ii; | 
|  | 2098     } | 
|  | 2099     else | 
|  | 2100     { if ((ii<im) & (ii>oi)) im = ii; | 
|  | 2101     } | 
|  | 2102   } | 
|  | 2103   return(im); | 
|  | 2104 } | 
|  | 2105 | 
|  | 2106 /* | 
|  | 2107  * move coefficient vector cf, as far as possible, in direction dc. | 
|  | 2108  */ | 
|  | 2109 int movecoef(lfd,des,p,cf,dc,oi) | 
|  | 2110 lfdata *lfd; | 
|  | 2111 design *des; | 
|  | 2112 double p, *cf, *dc; | 
|  | 2113 int oi; | 
|  | 2114 { int i, ii, im, i0, i1, j; | 
|  | 2115   double *lb, *el, e, sp, sn, sw, sum1, sum2, tol1; | 
|  | 2116 | 
|  | 2117   lb = des->th; | 
|  | 2118   el = des->res; | 
|  | 2119   sum1 = sum2 = 0.0; | 
|  | 2120 | 
|  | 2121   sp = sn = sw = 0.0; | 
|  | 2122   for (i=0; i<des->n; i++) | 
|  | 2123   { ii = des->ind[i]; | 
|  | 2124     lb[ii] = innerprod(dc,d_xi(des,ii),des->p); | 
|  | 2125     e = resp(lfd,ii) - innerprod(cf,d_xi(des,ii),des->p); | 
|  | 2126     el[ii] = (fabs(lb[ii])<QTOL) ? 1e100 : e/lb[ii]; | 
|  | 2127     if (lb[ii]>0) | 
|  | 2128       sp += prwt(lfd,ii)*wght(des,ii)*lb[ii]; | 
|  | 2129     else | 
|  | 2130       sn -= prwt(lfd,ii)*wght(des,ii)*lb[ii]; | 
|  | 2131     sw += prwt(lfd,ii)*wght(des,ii); | 
|  | 2132   } | 
|  | 2133 printf("sp %8.5f  sn %8.5f\n",sn,sp); | 
|  | 2134 /* if sn, sp are both zero, should return an LF_PF. | 
|  | 2135  * but within numerical tolerance? what does it mean? | 
|  | 2136  */ | 
|  | 2137   if (sn+sp <= QTOL*q0) { lf_status = LF_PF; return(0); } | 
|  | 2138 | 
|  | 2139   sum1 = sp/(1-p) + sn/p; | 
|  | 2140   tol1 = QTOL*(sp+sn); | 
|  | 2141   mut_order(el,des->ind,0,des->n-1); | 
|  | 2142 | 
|  | 2143   for (i=0; i<des->n; i++) | 
|  | 2144   { ii = des->ind[i]; | 
|  | 2145     sum2 += prwt(lfd,ii)*wght(des,ii)*((lb[ii]>0) ? lb[ii]/p : -lb[ii]/(1-p) ); | 
|  | 2146     sum1 -= prwt(lfd,ii)*wght(des,ii)*((lb[ii]>0) ? lb[ii]/(1-p) : -lb[ii]/p ); | 
|  | 2147     if (sum1<=sum2+tol1) | 
|  | 2148     { | 
|  | 2149 /* determine the range of ties [i0,i1] | 
|  | 2150  *   el[ind[i0..i1]] = el[ind[i]]. | 
|  | 2151  *   if sum1==sum2, el[ind[i+1]]..el[ind[i1]]] = el[ind[i1]], else i1 = i. | 
|  | 2152  */ | 
|  | 2153       i0 = i1 = i; | 
|  | 2154       while ((i0>0) && (el[des->ind[i0-1]]==el[ii])) i0--; | 
|  | 2155       while ((i1<des->n-1) && (el[des->ind[i1+1]]==el[ii])) i1++; | 
|  | 2156       if (sum1>=sum2-tol1) | 
|  | 2157         while ((i1<des->n-1) && (el[des->ind[i1+1]]==el[des->ind[i+1]])) i1++; | 
|  | 2158 | 
|  | 2159       if (i0<i1) ii = tiecycle(des->ind,i0,i1,oi); | 
|  | 2160       for (j=0; j<des->p; j++) cf[j] += el[ii]*dc[j]; | 
|  | 2161       return(ii); | 
|  | 2162     } | 
|  | 2163   } | 
|  | 2164 mut_printf("Big finddlt problem.\n"); | 
|  | 2165 ii = des->ind[des->n-1]; | 
|  | 2166 for (j=0; j<des->p; j++) cf[j] += el[ii]*dc[j]; | 
|  | 2167 return(ii); | 
|  | 2168 } | 
|  | 2169 | 
|  | 2170 /* | 
|  | 2171  * special version of movecoef for min/max. | 
|  | 2172  */ | 
|  | 2173 int movemin(lfd,des,f,cf,dc,oi) | 
|  | 2174 design *des; | 
|  | 2175 lfdata *lfd; | 
|  | 2176 double *cf, *dc, f; | 
|  | 2177 int oi; | 
|  | 2178 { int i, ii, im, p, s, ssum; | 
|  | 2179   double *lb, sum, lb0, lb1, z0, z1; | 
|  | 2180 | 
|  | 2181   lb = des->th; | 
|  | 2182   s = (f<=0.0) ? 1 : -1; | 
|  | 2183 | 
|  | 2184 /* first, determine whether move should be in positive or negative direction */ | 
|  | 2185   p = des->p; | 
|  | 2186   sum = 0; | 
|  | 2187   for (i=0; i<des->n; i++) | 
|  | 2188   { ii = des->ind[i]; | 
|  | 2189     lb[ii] = innerprod(dc,d_xi(des,ii),des->p); | 
|  | 2190     sum += prwt(lfd,ii)*wght(des,ii)*lb[ii]; | 
|  | 2191   } | 
|  | 2192   if (fabs(sum) <= QTOL*q0) | 
|  | 2193   { lf_status = LF_PF; | 
|  | 2194     return(0); | 
|  | 2195   } | 
|  | 2196   ssum = (sum<=0.0) ? -1 : 1; | 
|  | 2197   if (ssum != s) | 
|  | 2198     for (i=0; i<p; i++) dc[i] = -dc[i]; | 
|  | 2199 | 
|  | 2200 /* now, move positively. How far can we move? */ | 
|  | 2201   lb0 = 1.0e100; im = oi; | 
|  | 2202   for (i=0; i<des->n; i++) | 
|  | 2203   { ii = des->ind[i]; | 
|  | 2204     lb[ii] = innerprod(dc,d_xi(des,ii),des->p); /* must recompute - signs! */ | 
|  | 2205     if (s*lb[ii]>QTOL) /* should have scale-free tolerance here */ | 
|  | 2206     { z0 = innerprod(cf,d_xi(des,ii),p); | 
|  | 2207       lb1 = (resp(lfd,ii) - z0)/lb[ii]; | 
|  | 2208       if (lb1<lb0) | 
|  | 2209       { if (fabs(lb1-lb0)<QTOL) /* cycle */ | 
|  | 2210         { if (im<=oi) | 
|  | 2211           { if ((ii>oi) | (ii<im)) im = ii; } | 
|  | 2212           else | 
|  | 2213           { if ((ii>oi) & (ii<im)) im = ii; } | 
|  | 2214         } | 
|  | 2215         else | 
|  | 2216         { im = ii; lb0 = lb1; } | 
|  | 2217       } | 
|  | 2218     } | 
|  | 2219   } | 
|  | 2220 | 
|  | 2221   for (i=0; i<p; i++) cf[i] = cf[i]+lb0*dc[i]; | 
|  | 2222   if (im==-1) lf_status = LF_PF; | 
|  | 2223   return(im); | 
|  | 2224 } | 
|  | 2225 | 
|  | 2226 double qll(lfd,spr,des,cf) | 
|  | 2227 lfdata *lfd; | 
|  | 2228 smpar *spr; | 
|  | 2229 design *des; | 
|  | 2230 double *cf; | 
|  | 2231 { int i, ii; | 
|  | 2232   double th, sp, sn, p, e; | 
|  | 2233 | 
|  | 2234   p = pen(spr); | 
|  | 2235   sp = sn = 0.0; | 
|  | 2236   for (i=0; i<des->n; i++) | 
|  | 2237   { ii = des->ind[i]; | 
|  | 2238     th = innerprod(d_xi(des,ii),cf,des->p); | 
|  | 2239     e = resp(lfd,ii)-th; | 
|  | 2240     if (e<0) sn -= prwt(lfd,ii)*wght(des,ii)*e; | 
|  | 2241     if (e>0) sp += prwt(lfd,ii)*wght(des,ii)*e; | 
|  | 2242   } | 
|  | 2243   if (p<=0.0) return((sn<QTOL) ? -sp : -1e300); | 
|  | 2244   if (p>=1.0) return((sp<QTOL) ? -sn : -1e300); | 
|  | 2245   return(-sp/(1-p)-sn/p); | 
|  | 2246 } | 
|  | 2247 | 
|  | 2248 /* | 
|  | 2249  * running quantile smoother. | 
|  | 2250  */ | 
|  | 2251 void lfquantile(lfd,sp,des,maxit) | 
|  | 2252 lfdata *lfd; | 
|  | 2253 smpar *sp; | 
|  | 2254 design *des; | 
|  | 2255 int maxit; | 
|  | 2256 { int i, ii, im, j, k, p, *ci, (*mover)(); | 
|  | 2257   double *cf, *db, *dc, *cm, f, q1, q2, l0; | 
|  | 2258 | 
|  | 2259 printf("in lfquantile\n"); | 
|  | 2260   f = pen(sp); | 
|  | 2261   p = des->p; | 
|  | 2262   cf = des->cf; | 
|  | 2263   dc = des->oc; | 
|  | 2264   db = des->ss; | 
|  | 2265   setzero(cf,p); | 
|  | 2266   setzero(dc,p); | 
|  | 2267   cm = des->V; | 
|  | 2268   setzero(cm,p*p); | 
|  | 2269   ci = (int *)des->fix; | 
|  | 2270 | 
|  | 2271   q1 = -qll(lfd,sp,des,cf); | 
|  | 2272   if (q1==0.0) { lf_status = LF_PF; return; } | 
|  | 2273   for (i=0; i<p; i++) cm[i*(p+1)] = 1; | 
|  | 2274   mover = movecoef; | 
|  | 2275   if ((f<=0.0) | (f>=1.0)) mover = movemin; | 
|  | 2276 | 
|  | 2277   dc[0] = 1.0; | 
|  | 2278   im = mover(lfd,des,f,cf,dc,-1); | 
|  | 2279   if (lf_status != LF_OK) return; | 
|  | 2280   ci[0] = im; | 
|  | 2281 printf("init const %2d\n",ci[0]); | 
|  | 2282   q0 = -qll(lfd,sp,des,cf); | 
|  | 2283   if (q0<QTOL*q1) { lf_status = LF_PF; return; } | 
|  | 2284 | 
|  | 2285 printf("loop 0\n"); fflush(stdout); | 
|  | 2286   for (i=1; i<p; i++) | 
|  | 2287   { | 
|  | 2288 printf("i %2d\n",i); | 
|  | 2289     memcpy(&cm[(i-1)*p],d_xi(des,im),p*sizeof(double)); | 
|  | 2290     setzero(db,p); | 
|  | 2291     db[i] = 1.0; | 
|  | 2292     resproj(db,cm,dc,p,i); | 
|  | 2293 printf("call mover\n"); fflush(stdout); | 
|  | 2294     im = mover(lfd,des,f,cf,dc,-1); | 
|  | 2295     if (lf_status != LF_OK) return; | 
|  | 2296 printf("mover %2d\n",im); fflush(stdout); | 
|  | 2297     ci[i] = im; | 
|  | 2298   } | 
|  | 2299 printf("call qll\n"); fflush(stdout); | 
|  | 2300   q1 = qll(lfd,sp,des,cf); | 
|  | 2301 | 
|  | 2302 printf("loop 1    %d %d %d %d\n",ci[0],ci[1],ci[2],ci[3]); fflush(stdout); | 
|  | 2303   for (k=0; k<maxit; k++) | 
|  | 2304   { for (i=0; i<p; i++) | 
|  | 2305     { for (j=0; j<p; j++) | 
|  | 2306         if (j!=i) memcpy(&cm[(j-(j>i))*p],d_xi(des,ci[j]),p*sizeof(double)); | 
|  | 2307       memcpy(db,d_xi(des,ci[i]),p*sizeof(double)); | 
|  | 2308       resproj(db,cm,dc,p,p-1); | 
|  | 2309 printf("call mover\n"); fflush(stdout); | 
|  | 2310       im = mover(lfd,des,f,cf,dc,ci[i]); | 
|  | 2311       if (lf_status != LF_OK) return; | 
|  | 2312 printf("mover %2d\n",im); fflush(stdout); | 
|  | 2313       ci[i] = im; | 
|  | 2314     } | 
|  | 2315     q2 = qll(lfd,sp,des,cf); | 
|  | 2316 /* | 
|  | 2317  * convergence: require no change -- reasonable, since discrete? | 
|  | 2318  * remember we're maximizing, and q's are negative. | 
|  | 2319  */ | 
|  | 2320      if (q2 <= q1) return; | 
|  | 2321      q1 = q2; | 
|  | 2322   } | 
|  | 2323 printf("loop 2\n"); | 
|  | 2324   mut_printf("Warning: lfquantile not converged.\n"); | 
|  | 2325 } | 
|  | 2326 /* | 
|  | 2327  * Copyright 1996-2006 Catherine Loader. | 
|  | 2328  */ | 
|  | 2329 #include "locf.h" | 
|  | 2330 | 
|  | 2331 extern double links_rs; | 
|  | 2332 | 
|  | 2333 int robust_vallink(link) | 
|  | 2334 int link; | 
|  | 2335 { return(link==LIDENT); | 
|  | 2336 } | 
|  | 2337 | 
|  | 2338 int robust_fam(y,mean,th,link,res,cens,w) | 
|  | 2339 double y, mean, th, *res, w; | 
|  | 2340 int link, cens; | 
|  | 2341 { double z, sw; | 
|  | 2342   if (link==LINIT) | 
|  | 2343   { res[ZDLL] = w*y; | 
|  | 2344     return(LF_OK); | 
|  | 2345   } | 
|  | 2346   sw = (w==1.0) ? 1.0 : sqrt(w); /* don't want unnecess. sqrt! */ | 
|  | 2347   z = sw*(y-mean)/links_rs; | 
|  | 2348   res[ZLIK] = (fabs(z)<HUBERC) ? -z*z/2 : HUBERC*(HUBERC/2.0-fabs(z)); | 
|  | 2349   if (z< -HUBERC) | 
|  | 2350   { res[ZDLL] = -sw*HUBERC/links_rs; | 
|  | 2351     res[ZDDLL]= 0.0; | 
|  | 2352     return(LF_OK); | 
|  | 2353   } | 
|  | 2354   if (z> HUBERC) | 
|  | 2355   { res[ZDLL] = sw*HUBERC/links_rs; | 
|  | 2356     res[ZDDLL]= 0.0; | 
|  | 2357     return(LF_OK); | 
|  | 2358   } | 
|  | 2359   res[ZDLL] =  sw*z/links_rs; | 
|  | 2360   res[ZDDLL] = w/(links_rs*links_rs); | 
|  | 2361   return(LF_OK); | 
|  | 2362 } | 
|  | 2363 | 
|  | 2364 int cauchy_fam(y,p,th,link,res,cens,w) | 
|  | 2365 double y, p, th, *res, w; | 
|  | 2366 int link, cens; | 
|  | 2367 { double z; | 
|  | 2368   if (link!=LIDENT) | 
|  | 2369   { LERR(("Invalid link in famcauc")); | 
|  | 2370     return(LF_LNK); | 
|  | 2371   } | 
|  | 2372   z = w*(y-th)/links_rs; | 
|  | 2373   res[ZLIK] = -log(1+z*z); | 
|  | 2374   res[ZDLL] = 2*w*z/(links_rs*(1+z*z)); | 
|  | 2375   res[ZDDLL] = 2*w*w*(1-z*z)/(links_rs*links_rs*(1+z*z)*(1+z*z)); | 
|  | 2376   return(LF_OK); | 
|  | 2377 } | 
|  | 2378 | 
|  | 2379 extern double lf_tol; | 
|  | 2380 int robust_init(lfd,des,sp) | 
|  | 2381 lfdata *lfd; | 
|  | 2382 design *des; | 
|  | 2383 smpar *sp; | 
|  | 2384 { int i; | 
|  | 2385   for (i=0; i<des->n; i++) | 
|  | 2386   des->res[i] = resp(lfd,(int)des->ind[i]) - base(lfd,(int)des->ind[i]); | 
|  | 2387   des->cf[0] = median(des->res,des->n); | 
|  | 2388   for (i=1; i<des->p; i++) des->cf[i] = 0.0; | 
|  | 2389   lf_tol = 1.0e-6; | 
|  | 2390   return(LF_OK); | 
|  | 2391 } | 
|  | 2392 | 
|  | 2393 void setfrobust(fam) | 
|  | 2394 family *fam; | 
|  | 2395 { fam->deflink = LIDENT; | 
|  | 2396   fam->canlink = LIDENT; | 
|  | 2397   fam->vallink = robust_vallink; | 
|  | 2398   fam->family  = robust_fam; | 
|  | 2399   fam->initial = robust_init; | 
|  | 2400   fam->robust = 0; | 
|  | 2401 } | 
|  | 2402 | 
|  | 2403 void setfcauchy(fam) | 
|  | 2404 family *fam; | 
|  | 2405 { fam->deflink = LIDENT; | 
|  | 2406   fam->canlink = LIDENT; | 
|  | 2407   fam->vallink = robust_vallink; | 
|  | 2408   fam->family  = cauchy_fam; | 
|  | 2409   fam->initial = robust_init; | 
|  | 2410   fam->robust = 0; | 
|  | 2411 } | 
|  | 2412 /* | 
|  | 2413  * Copyright 1996-2006 Catherine Loader. | 
|  | 2414  */ | 
|  | 2415 #include "locf.h" | 
|  | 2416 | 
|  | 2417 int weibull_vallink(link) | 
|  | 2418 int link; | 
|  | 2419 { return((link==LIDENT) | (link==LLOG) | (link==LLOGIT)); | 
|  | 2420 } | 
|  | 2421 | 
|  | 2422 int weibull_fam(y,mean,th,link,res,cens,w) | 
|  | 2423 double y, mean, th, *res, w; | 
|  | 2424 int link, cens; | 
|  | 2425 { double yy; | 
|  | 2426   yy = pow(y,w); | 
|  | 2427   if (link==LINIT) | 
|  | 2428   { res[ZDLL] = MAX(yy,0.0); | 
|  | 2429     return(LF_OK); | 
|  | 2430   } | 
|  | 2431   if (cens) | 
|  | 2432   { res[ZLIK] = -yy/mean; | 
|  | 2433     res[ZDLL] = res[ZDDLL] = yy/mean; | 
|  | 2434     return(LF_OK); | 
|  | 2435   } | 
|  | 2436   res[ZLIK] = 1-yy/mean-th; | 
|  | 2437   if (yy>0) res[ZLIK] += log(w*yy); | 
|  | 2438   res[ZDLL] = -1+yy/mean; | 
|  | 2439   res[ZDDLL]= yy/mean; | 
|  | 2440   return(LF_OK); | 
|  | 2441 } | 
|  | 2442 | 
|  | 2443 void setfweibull(fam) | 
|  | 2444 family *fam; | 
|  | 2445 { fam->deflink = LLOG; | 
|  | 2446   fam->canlink = LLOG; | 
|  | 2447   fam->vallink = weibull_vallink; | 
|  | 2448   fam->family  = weibull_fam; | 
|  | 2449   fam->robust = 0; | 
|  | 2450 } | 
|  | 2451 /* | 
|  | 2452  * Copyright 1996-2006 Catherine Loader. | 
|  | 2453  */ | 
|  | 2454 /* | 
|  | 2455   Functions implementing the adaptive bandwidth selection. | 
|  | 2456   Will make the final call to nbhd() to set smoothing weights | 
|  | 2457   for selected bandwidth, But will **not** make the | 
|  | 2458   final call to locfit(). | 
|  | 2459 */ | 
|  | 2460 | 
|  | 2461 #include "locf.h" | 
|  | 2462 | 
|  | 2463 static double hmin; | 
|  | 2464 | 
|  | 2465 #define NACRI 5 | 
|  | 2466 static char *atype[NACRI] = { "none", "cp", "ici", "mindex", "ok" }; | 
|  | 2467 static int   avals[NACRI] = { ANONE, ACP, AKAT, AMDI, AOK }; | 
|  | 2468 int lfacri(char *z) | 
|  | 2469 { return(pmatch(z, atype, avals, NACRI, ANONE)); | 
|  | 2470 } | 
|  | 2471 | 
|  | 2472 double adcri(lk,t0,t2,pen) | 
|  | 2473 double lk, t0, t2, pen; | 
|  | 2474 { double y; | 
|  | 2475 /* return(-2*lk/(t0*exp(pen*log(1-t2/t0)))); */ | 
|  | 2476   /* return((-2*lk+pen*t2)/t0); */ | 
|  | 2477   y = (MAX(-2*lk,t0-t2)+pen*t2)/t0; | 
|  | 2478   return(y); | 
|  | 2479 } | 
|  | 2480 | 
|  | 2481 double mmse(lfd,sp,dv,des) | 
|  | 2482 lfdata *lfd; | 
|  | 2483 smpar *sp; | 
|  | 2484 deriv *dv; | 
|  | 2485 design *des; | 
|  | 2486 { int i, ii, j, p, p1; | 
|  | 2487   double sv, sb, *l, dp; | 
|  | 2488 | 
|  | 2489   l = des->wd; | 
|  | 2490   wdiag(lfd, sp, des,l,dv,0,1,0); | 
|  | 2491   sv = sb = 0; | 
|  | 2492   p = npar(sp); | 
|  | 2493   for (i=0; i<des->n; i++) | 
|  | 2494   { sv += l[i]*l[i]; | 
|  | 2495     ii = des->ind[i]; | 
|  | 2496     dp = dist(des,ii); | 
|  | 2497     for (j=0; j<deg(sp); j++) dp *= dist(des,ii); | 
|  | 2498     sb += fabs(l[i])*dp; | 
|  | 2499   } | 
|  | 2500   p1 = factorial(deg(sp)+1); | 
|  | 2501 printf("%8.5f sv %8.5f  sb %8.5f  %8.5f\n",des->h,sv,sb,sv+sb*sb*pen(sp)*pen(sp)/(p1*p1)); | 
|  | 2502   return(sv+sb*sb*pen(sp)*pen(sp)/(p1*p1)); | 
|  | 2503 } | 
|  | 2504 | 
|  | 2505 static double mcp, clo, cup; | 
|  | 2506 | 
|  | 2507 /* | 
|  | 2508   Initial bandwidth will be (by default) | 
|  | 2509   k-nearest neighbors for k small, just large enough to | 
|  | 2510   get defined estimate (unless user provided nonzero nn or fix-h components) | 
|  | 2511 */ | 
|  | 2512 | 
|  | 2513 int ainitband(lfd,sp,dv,des) | 
|  | 2514 lfdata *lfd; | 
|  | 2515 smpar *sp; | 
|  | 2516 deriv *dv; | 
|  | 2517 design *des; | 
|  | 2518 { int lf_status, p, z, cri, noit, redo; | 
|  | 2519   double ho, t[6]; | 
|  | 2520 | 
|  | 2521   if (lf_debug >= 2) mut_printf("ainitband:\n"); | 
|  | 2522   p = des->p; | 
|  | 2523   cri = acri(sp); | 
|  | 2524   noit = (cri!=AOK); | 
|  | 2525   z = (int)(lfd->n*nn(sp)); | 
|  | 2526   if ((noit) && (z<p+2)) z = p+2; | 
|  | 2527   redo = 0; ho = -1; | 
|  | 2528   do | 
|  | 2529   { | 
|  | 2530     nbhd(lfd,des,z,redo,sp); | 
|  | 2531     if (z<des->n) z = des->n; | 
|  | 2532     if (des->h>ho) lf_status = locfit(lfd,des,sp,noit,0,0); | 
|  | 2533     z++; | 
|  | 2534     redo = 1; | 
|  | 2535   } while ((z<=lfd->n) && ((des->h==0)||(lf_status!=LF_OK))); | 
|  | 2536   hmin = des->h; | 
|  | 2537 | 
|  | 2538   switch(cri) | 
|  | 2539   { case ACP: | 
|  | 2540       local_df(lfd,sp,des,t); | 
|  | 2541       mcp = adcri(des->llk,t[0],t[2],pen(sp)); | 
|  | 2542       return(lf_status); | 
|  | 2543     case AKAT: | 
|  | 2544       local_df(lfd,sp,des,t); | 
|  | 2545       clo = des->cf[0]-pen(sp)*t[5]; | 
|  | 2546       cup = des->cf[0]+pen(sp)*t[5]; | 
|  | 2547       return(lf_status); | 
|  | 2548     case AMDI: | 
|  | 2549       mcp = mmse(lfd,sp,dv,des); | 
|  | 2550       return(lf_status); | 
|  | 2551     case AOK: return(lf_status); | 
|  | 2552   } | 
|  | 2553   LERR(("aband1: unknown criterion")); | 
|  | 2554   return(LF_ERR); | 
|  | 2555 } | 
|  | 2556 | 
|  | 2557 /* | 
|  | 2558   aband2 increases the initial bandwidth until lack of fit results, | 
|  | 2559   or the fit is close to a global fit. Increase h by 1+0.3/d at | 
|  | 2560   each iteration. | 
|  | 2561 */ | 
|  | 2562 | 
|  | 2563 double aband2(lfd,sp,dv,des,h0) | 
|  | 2564 lfdata *lfd; | 
|  | 2565 smpar *sp; | 
|  | 2566 deriv *dv; | 
|  | 2567 design *des; | 
|  | 2568 double h0; | 
|  | 2569 { double t[6], h1, nu1, cp, ncp, tlo, tup; | 
|  | 2570   int d, inc, n, p, done; | 
|  | 2571 | 
|  | 2572   if (lf_debug >= 2) mut_printf("aband2:\n"); | 
|  | 2573   d = lfd->d; n = lfd->n; p = npar(sp); | 
|  | 2574   h1 = des->h = h0; | 
|  | 2575   done = 0; nu1 = 0.0; | 
|  | 2576   inc = 0; ncp = 0.0; | 
|  | 2577   while ((!done) & (nu1<(n-p)*0.95)) | 
|  | 2578   { fixh(sp) = (1+0.3/d)*des->h; | 
|  | 2579     nbhd(lfd,des,0,1,sp); | 
|  | 2580     if (locfit(lfd,des,sp,1,0,0) > 0) WARN(("aband2: failed fit")); | 
|  | 2581     local_df(lfd,sp,des,t); | 
|  | 2582     nu1 = t[0]-t[2]; /* tr(A) */ | 
|  | 2583     switch(acri(sp)) | 
|  | 2584     { case AKAT: | 
|  | 2585         tlo = des->cf[0]-pen(sp)*t[5]; | 
|  | 2586         tup = des->cf[0]+pen(sp)*t[5]; | 
|  | 2587 /* mut_printf("h %8.5f  tlo %8.5f  tup %8.5f\n",des->h,tlo,tup); */ | 
|  | 2588         done = ((tlo>cup) | (tup<clo)); | 
|  | 2589         if (!done) | 
|  | 2590         { clo = MAX(clo,tlo); | 
|  | 2591           cup = MIN(cup,tup); | 
|  | 2592           h1 = des->h; | 
|  | 2593         } | 
|  | 2594         break; | 
|  | 2595       case ACP: | 
|  | 2596         cp = adcri(des->llk,t[0],t[2],pen(sp)); | 
|  | 2597 /* mut_printf("h %8.5f  lk %8.5f  t0 %8.5f  t2 %8.5f  cp %8.5f\n",des->h,des->llk,t[0],t[2],cp); */ | 
|  | 2598         if (cp<mcp) { mcp = cp; h1 = des->h; } | 
|  | 2599         if (cp>=ncp) inc++; else inc = 0; | 
|  | 2600         ncp = cp; | 
|  | 2601         done = (inc>=10) | ((inc>=3) & ((t[0]-t[2])>=10) & (cp>1.5*mcp)); | 
|  | 2602         break; | 
|  | 2603       case AMDI: | 
|  | 2604         cp = mmse(lfd,sp,dv,des); | 
|  | 2605         if (cp<mcp) { mcp = cp; h1 = des->h; } | 
|  | 2606         if (cp>ncp) inc++; else inc = 0; | 
|  | 2607         ncp = cp; | 
|  | 2608         done = (inc>=3); | 
|  | 2609         break; | 
|  | 2610     } | 
|  | 2611   } | 
|  | 2612   return(h1); | 
|  | 2613 } | 
|  | 2614 | 
|  | 2615 /* | 
|  | 2616   aband3 does a finer search around best h so far. Try | 
|  | 2617   h*(1-0.2/d), h/(1-0.1/d), h*(1+0.1/d), h*(1+0.2/d) | 
|  | 2618 */ | 
|  | 2619 double aband3(lfd,sp,dv,des,h0) | 
|  | 2620 lfdata *lfd; | 
|  | 2621 smpar *sp; | 
|  | 2622 deriv *dv; | 
|  | 2623 design *des; | 
|  | 2624 double h0; | 
|  | 2625 { double t[6], h1, cp, tlo, tup; | 
|  | 2626   int i, i0, d, n; | 
|  | 2627 | 
|  | 2628   if (lf_debug >= 2) mut_printf("aband3:\n"); | 
|  | 2629   d = lfd->d; n = lfd->n; | 
|  | 2630   h1 = h0; | 
|  | 2631   i0 = (acri(sp)==AKAT) ? 1 : -2; | 
|  | 2632   if (h0==hmin) i0 = 1; | 
|  | 2633 | 
|  | 2634   for (i=i0; i<=2; i++) | 
|  | 2635   { if (i==0) i++; | 
|  | 2636     fixh(sp) = h0*(1+0.1*i/d); | 
|  | 2637     nbhd(lfd,des,0,1,sp); | 
|  | 2638     if (locfit(lfd,des,sp,1,0,0) > 0) WARN(("aband3: failed fit")); | 
|  | 2639     local_df(lfd,sp,des,t); | 
|  | 2640     switch (acri(sp)) | 
|  | 2641     { case AKAT: | 
|  | 2642         tlo = des->cf[0]-pen(sp)*t[5]; | 
|  | 2643         tup = des->cf[0]+pen(sp)*t[5]; | 
|  | 2644         if ((tlo>cup) | (tup<clo)) /* done */ | 
|  | 2645           i = 2; | 
|  | 2646         else | 
|  | 2647         { h1 = des->h; | 
|  | 2648           clo = MAX(clo,tlo); | 
|  | 2649           cup = MIN(cup,tup); | 
|  | 2650         } | 
|  | 2651         break; | 
|  | 2652       case ACP: | 
|  | 2653         cp = adcri(des->llk,t[0],t[2],pen(sp)); | 
|  | 2654         if (cp<mcp) { mcp = cp; h1 = des->h; } | 
|  | 2655         else | 
|  | 2656         { if (i>0) i = 2; } | 
|  | 2657         break; | 
|  | 2658       case AMDI: | 
|  | 2659         cp = mmse(lfd,sp,dv,des); | 
|  | 2660         if (cp<mcp) { mcp = cp; h1 = des->h; } | 
|  | 2661         else | 
|  | 2662         { if (i>0) i = 2; } | 
|  | 2663     } | 
|  | 2664   } | 
|  | 2665   return(h1); | 
|  | 2666 } | 
|  | 2667 | 
|  | 2668 int alocfit(lfd,sp,dv,des,cv) | 
|  | 2669 lfdata *lfd; | 
|  | 2670 smpar *sp; | 
|  | 2671 deriv *dv; | 
|  | 2672 design *des; | 
|  | 2673 int cv; | 
|  | 2674 { int lf_status; | 
|  | 2675   double h0; | 
|  | 2676 | 
|  | 2677   lf_status = ainitband(lfd,sp,dv,des); | 
|  | 2678   if (lf_error) return(lf_status); | 
|  | 2679   if (acri(sp) == AOK) return(lf_status); | 
|  | 2680 | 
|  | 2681   h0 = fixh(sp); | 
|  | 2682   fixh(sp) = aband2(lfd,sp,dv,des,des->h); | 
|  | 2683   fixh(sp) = aband3(lfd,sp,dv,des,fixh(sp)); | 
|  | 2684   nbhd(lfd,des,0,1,sp); | 
|  | 2685   lf_status = locfit(lfd,des,sp,0,0,cv); | 
|  | 2686   fixh(sp) = h0; | 
|  | 2687 | 
|  | 2688   return(lf_status); | 
|  | 2689 } | 
|  | 2690 /* | 
|  | 2691  * Copyright 1996-2006 Catherine Loader. | 
|  | 2692  */ | 
|  | 2693 /* | 
|  | 2694  * | 
|  | 2695  *   Evaluate the locfit fitting functions. | 
|  | 2696  *     calcp(sp,d) | 
|  | 2697  *       calculates the number of fitting functions. | 
|  | 2698  *     makecfn(sp,des,dv,d) | 
|  | 2699  *       makes the coef.number vector. | 
|  | 2700  *     fitfun(lfd, sp, x,t,f,dv) | 
|  | 2701  *       lfd is the local fit structure. | 
|  | 2702  *       sp  smoothing parameter structure. | 
|  | 2703  *       x is the data point. | 
|  | 2704  *       t is the fitting point. | 
|  | 2705  *       f is a vector to return the results. | 
|  | 2706  *       dv derivative structure. | 
|  | 2707  *     designmatrix(lfd, sp, des) | 
|  | 2708  *       is a wrapper for fitfun to build the design matrix. | 
|  | 2709  * | 
|  | 2710  */ | 
|  | 2711 | 
|  | 2712 #include "locf.h" | 
|  | 2713 | 
|  | 2714 int calcp(sp,d) | 
|  | 2715 smpar *sp; | 
|  | 2716 int d; | 
|  | 2717 { int i, k; | 
|  | 2718 | 
|  | 2719   if (ubas(sp)) return(npar(sp)); | 
|  | 2720 | 
|  | 2721   switch (kt(sp)) | 
|  | 2722   { case KSPH: | 
|  | 2723     case KCE: | 
|  | 2724       k = 1; | 
|  | 2725       for (i=1; i<=deg(sp); i++) k = k*(d+i)/i; | 
|  | 2726       return(k); | 
|  | 2727     case KPROD: return(d*deg(sp)+1); | 
|  | 2728     case KLM: return(d); | 
|  | 2729     case KZEON: return(1); | 
|  | 2730   } | 
|  | 2731   LERR(("calcp: invalid kt %d",kt(sp))); | 
|  | 2732   return(0); | 
|  | 2733 } | 
|  | 2734 | 
|  | 2735 int coefnumber(dv,kt,d,deg) | 
|  | 2736 int kt, d, deg; | 
|  | 2737 deriv *dv; | 
|  | 2738 { int d0, d1, t; | 
|  | 2739 | 
|  | 2740   if (d==1) | 
|  | 2741   { if (dv->nd<=deg) return(dv->nd); | 
|  | 2742     return(-1); | 
|  | 2743   } | 
|  | 2744 | 
|  | 2745   if (dv->nd==0) return(0); | 
|  | 2746   if (deg==0) return(-1); | 
|  | 2747   if (dv->nd==1) return(1+dv->deriv[0]); | 
|  | 2748   if (deg==1) return(-1); | 
|  | 2749   if (kt==KPROD) return(-1); | 
|  | 2750 | 
|  | 2751   if (dv->nd==2) | 
|  | 2752   { d0 = dv->deriv[0]; d1 = dv->deriv[1]; | 
|  | 2753     if (d0<d1) { t = d0; d0 = d1; d1 = t; } | 
|  | 2754     return((d+1)*(d0+1)-d0*(d0+3)/2+d1); | 
|  | 2755   } | 
|  | 2756   if (deg==2) return(-1); | 
|  | 2757 | 
|  | 2758   LERR(("coefnumber not programmed for nd>=3")); | 
|  | 2759   return(-1); | 
|  | 2760 } | 
|  | 2761 | 
|  | 2762 void makecfn(sp,des,dv,d) | 
|  | 2763 smpar *sp; | 
|  | 2764 design *des; | 
|  | 2765 deriv *dv; | 
|  | 2766 int d; | 
|  | 2767 { int i, nd; | 
|  | 2768 | 
|  | 2769   nd = dv->nd; | 
|  | 2770 | 
|  | 2771   des->cfn[0] = coefnumber(dv,kt(sp),d,deg(sp)); | 
|  | 2772   des->ncoef = 1; | 
|  | 2773   if (nd >= deg(sp)) return; | 
|  | 2774   if (kt(sp)==KZEON) return; | 
|  | 2775 | 
|  | 2776   if (d>1) | 
|  | 2777   { if (nd>=2) return; | 
|  | 2778     if ((nd>=1) && (kt(sp)==KPROD)) return; | 
|  | 2779   } | 
|  | 2780 | 
|  | 2781   dv->nd = nd+1; | 
|  | 2782   for (i=0; i<d; i++) | 
|  | 2783   { dv->deriv[nd] = i; | 
|  | 2784     des->cfn[i+1] = coefnumber(dv,kt(sp),d,deg(sp)); | 
|  | 2785   } | 
|  | 2786   dv->nd = nd; | 
|  | 2787 | 
|  | 2788   des->ncoef = 1+d; | 
|  | 2789 } | 
|  | 2790 | 
|  | 2791 void fitfunangl(dx,ff,sca,cd,deg) | 
|  | 2792 double dx, *ff, sca; | 
|  | 2793 int deg, cd; | 
|  | 2794 { | 
|  | 2795   if (deg>=3) WARN(("Can't handle angular model with deg>=3")); | 
|  | 2796 | 
|  | 2797   switch(cd) | 
|  | 2798   { case 0: | 
|  | 2799       ff[0] = 1; | 
|  | 2800       ff[1] = sin(dx/sca)*sca; | 
|  | 2801       ff[2] = (1-cos(dx/sca))*sca*sca; | 
|  | 2802       return; | 
|  | 2803     case 1: | 
|  | 2804       ff[0] = 0; | 
|  | 2805       ff[1] = cos(dx/sca); | 
|  | 2806       ff[2] = sin(dx/sca)*sca; | 
|  | 2807       return; | 
|  | 2808     case 2: | 
|  | 2809       ff[0] = 0; | 
|  | 2810       ff[1] = -sin(dx/sca)/sca; | 
|  | 2811       ff[2] = cos(dx/sca); | 
|  | 2812       return; | 
|  | 2813     default: WARN(("Can't handle angular model with >2 derivs")); | 
|  | 2814   } | 
|  | 2815 } | 
|  | 2816 | 
|  | 2817 void fitfun(lfd,sp,x,t,f,dv) | 
|  | 2818 lfdata *lfd; | 
|  | 2819 smpar *sp; | 
|  | 2820 double *x, *t, *f; | 
|  | 2821 deriv *dv; | 
|  | 2822 { int d, deg, nd, m, i, j, k, ct_deriv[MXDIM]; | 
|  | 2823   double ff[MXDIM][1+MXDEG], dx[MXDIM], *xx[MXDIM]; | 
|  | 2824 | 
|  | 2825   if (ubas(sp)) | 
|  | 2826   { for (i=0; i<lfd->d; i++) xx[i] = &x[i]; | 
|  | 2827     i = 0; | 
|  | 2828     sp->vbasis(xx,t,1,lfd->d,1,npar(sp),f); | 
|  | 2829     return; | 
|  | 2830   } | 
|  | 2831 | 
|  | 2832   d = lfd->d; | 
|  | 2833   deg = deg(sp); | 
|  | 2834   m = 0; | 
|  | 2835   nd = (dv==NULL) ? 0 : dv->nd; | 
|  | 2836 | 
|  | 2837   if (kt(sp)==KZEON) | 
|  | 2838   { f[0] = 1.0; | 
|  | 2839     return; | 
|  | 2840   } | 
|  | 2841 | 
|  | 2842   if (kt(sp)==KLM) | 
|  | 2843   { for (i=0; i<d; i++) f[m++] = x[i]; | 
|  | 2844     return; | 
|  | 2845   } | 
|  | 2846 | 
|  | 2847   f[m++] = (nd==0); | 
|  | 2848   if (deg==0) return; | 
|  | 2849 | 
|  | 2850   for (i=0; i<d; i++) | 
|  | 2851   { ct_deriv[i] = 0; | 
|  | 2852     dx[i] = (t==NULL) ? x[i] : x[i]-t[i]; | 
|  | 2853   } | 
|  | 2854   for (i=0; i<nd; i++) ct_deriv[dv->deriv[i]]++; | 
|  | 2855 | 
|  | 2856   for (i=0; i<d; i++) | 
|  | 2857   { switch(lfd->sty[i]) | 
|  | 2858     { | 
|  | 2859       case STANGL: | 
|  | 2860         fitfunangl(dx[i],ff[i],lfd->sca[i],ct_deriv[i],deg(sp)); | 
|  | 2861         break; | 
|  | 2862       default: | 
|  | 2863         for (j=0; j<ct_deriv[i]; j++) ff[i][j] = 0.0; | 
|  | 2864         ff[i][ct_deriv[i]] = 1.0; | 
|  | 2865         for (j=ct_deriv[i]+1; j<=deg; j++) | 
|  | 2866           ff[i][j] = ff[i][j-1]*dx[i]/(j-ct_deriv[i]); | 
|  | 2867     } | 
|  | 2868   } | 
|  | 2869 | 
|  | 2870 /* | 
|  | 2871  *  Product kernels. Note that if ct_deriv[i] != nd, that implies | 
|  | 2872  *  there is differentiation wrt another variable, and all components | 
|  | 2873  *  involving x[i] are 0. | 
|  | 2874  */ | 
|  | 2875   if ((d==1) || (kt(sp)==KPROD)) | 
|  | 2876   { for (j=1; j<=deg; j++) | 
|  | 2877       for (i=0; i<d; i++) | 
|  | 2878         f[m++] = (ct_deriv[i]==nd) ? ff[i][j] : 0.0; | 
|  | 2879     return; | 
|  | 2880   } | 
|  | 2881 | 
|  | 2882 /* | 
|  | 2883  *  Spherical kernels with the full polynomial basis. | 
|  | 2884  *  Presently implemented up to deg=3. | 
|  | 2885  */ | 
|  | 2886   for (i=0; i<d; i++) | 
|  | 2887     f[m++] = (ct_deriv[i]==nd) ? ff[i][1] : 0.0; | 
|  | 2888   if (deg==1) return; | 
|  | 2889 | 
|  | 2890   for (i=0; i<d; i++) | 
|  | 2891   { | 
|  | 2892     /* xi^2/2 terms. */ | 
|  | 2893     f[m++] = (ct_deriv[i]==nd) ? ff[i][2] : 0.0; | 
|  | 2894 | 
|  | 2895     /* xi xj terms */ | 
|  | 2896     for (j=i+1; j<d; j++) | 
|  | 2897       f[m++] = (ct_deriv[i]+ct_deriv[j]==nd) ? ff[i][1]*ff[j][1] : 0.0; | 
|  | 2898   } | 
|  | 2899   if (deg==2) return; | 
|  | 2900 | 
|  | 2901   for (i=0; i<d; i++) | 
|  | 2902   { | 
|  | 2903     /* xi^3/6 terms */ | 
|  | 2904     f[m++] = (ct_deriv[i]==nd) ? ff[i][3] : 0.0; | 
|  | 2905 | 
|  | 2906     /* xi^2/2 xk terms */ | 
|  | 2907     for (k=i+1; k<d; k++) | 
|  | 2908       f[m++] = (ct_deriv[i]+ct_deriv[k]==nd) ? ff[i][2]*ff[k][1] : 0.0; | 
|  | 2909 | 
|  | 2910     /* xi xj xk terms */ | 
|  | 2911     for (j=i+1; j<d; j++) | 
|  | 2912     { f[m++] = (ct_deriv[i]+ct_deriv[j]==nd) ? ff[i][1]*ff[j][2] : 0.0; | 
|  | 2913       for (k=j+1; k<d; k++) | 
|  | 2914         f[m++] = (ct_deriv[i]+ct_deriv[j]+ct_deriv[k]==nd) ? | 
|  | 2915                     ff[i][1]*ff[j][1]*ff[k][1] : 0.0; | 
|  | 2916     } | 
|  | 2917   } | 
|  | 2918   if (deg==3) return; | 
|  | 2919 | 
|  | 2920   LERR(("fitfun: can't handle deg=%d for spherical kernels",deg)); | 
|  | 2921 } | 
|  | 2922 | 
|  | 2923 /* | 
|  | 2924  *  Build the design matrix. Assumes des->ind contains the indices of | 
|  | 2925  *  the required data points; des->n the number of points; des->xev | 
|  | 2926  *  the fitting point. | 
|  | 2927  */ | 
|  | 2928 void designmatrix(lfd,sp,des) | 
|  | 2929 lfdata *lfd; | 
|  | 2930 smpar *sp; | 
|  | 2931 design *des; | 
|  | 2932 { int i, ii, j, p; | 
|  | 2933   double *X, u[MXDIM]; | 
|  | 2934 | 
|  | 2935   X = d_x(des); | 
|  | 2936   p = des->p; | 
|  | 2937 | 
|  | 2938   if (ubas(sp)) | 
|  | 2939   { | 
|  | 2940     sp->vbasis(lfd->x,des->xev,lfd->n,lfd->d,des->n,p,X); | 
|  | 2941     return; | 
|  | 2942   } | 
|  | 2943 | 
|  | 2944   for (i=0; i<des->n; i++) | 
|  | 2945   { ii = des->ind[i]; | 
|  | 2946     for (j=0; j<lfd->d; j++) u[j] = datum(lfd,j,ii); | 
|  | 2947     fitfun(lfd,sp,u,des->xev,&X[ii*p],NULL); | 
|  | 2948   } | 
|  | 2949 } | 
|  | 2950 /* | 
|  | 2951  * Copyright 1996-2006 Catherine Loader. | 
|  | 2952  */ | 
|  | 2953 /* | 
|  | 2954  * | 
|  | 2955  * | 
|  | 2956  *  Functions for determining bandwidth; smoothing neighborhood | 
|  | 2957  *  and smoothing weights. | 
|  | 2958  */ | 
|  | 2959 | 
|  | 2960 #include "locf.h" | 
|  | 2961 | 
|  | 2962 double rho(x,sc,d,kt,sty) /* ||x|| for appropriate distance metric */ | 
|  | 2963 double *x, *sc; | 
|  | 2964 int d, kt, *sty; | 
|  | 2965 { double rhoi[MXDIM], s; | 
|  | 2966   int i; | 
|  | 2967   for (i=0; i<d; i++) | 
|  | 2968   { if (sty!=NULL) | 
|  | 2969     { switch(sty[i]) | 
|  | 2970       { case STANGL:  rhoi[i] = 2*sin(x[i]/(2*sc[i])); break; | 
|  | 2971         case STCPAR: rhoi[i] = 0; break; | 
|  | 2972         default: rhoi[i] = x[i]/sc[i]; | 
|  | 2973     } } | 
|  | 2974     else rhoi[i] = x[i]/sc[i]; | 
|  | 2975   } | 
|  | 2976 | 
|  | 2977   if (d==1) return(fabs(rhoi[0])); | 
|  | 2978 | 
|  | 2979   s = 0; | 
|  | 2980   if (kt==KPROD) | 
|  | 2981   { for (i=0; i<d; i++) | 
|  | 2982     { rhoi[i] = fabs(rhoi[i]); | 
|  | 2983       if (rhoi[i]>s) s = rhoi[i]; | 
|  | 2984     } | 
|  | 2985     return(s); | 
|  | 2986   } | 
|  | 2987 | 
|  | 2988   if (kt==KSPH) | 
|  | 2989   { for (i=0; i<d; i++) | 
|  | 2990       s += rhoi[i]*rhoi[i]; | 
|  | 2991     return(sqrt(s)); | 
|  | 2992   } | 
|  | 2993 | 
|  | 2994   LERR(("rho: invalid kt")); | 
|  | 2995   return(0.0); | 
|  | 2996 } | 
|  | 2997 | 
|  | 2998 double kordstat(x,k,n,ind) | 
|  | 2999 double *x; | 
|  | 3000 int k, n, *ind; | 
|  | 3001 { int i, i0, i1, l, r; | 
|  | 3002   double piv; | 
|  | 3003   if (k<1) return(0.0); | 
|  | 3004   i0 = 0; i1 = n-1; | 
|  | 3005   while (1) | 
|  | 3006   { piv = x[ind[(i0+i1)/2]]; | 
|  | 3007     l = i0; r = i1; | 
|  | 3008     while (l<=r) | 
|  | 3009     { while ((l<=i1) && (x[ind[l]]<=piv)) l++; | 
|  | 3010       while ((r>=i0) && (x[ind[r]]>piv)) r--; | 
|  | 3011       if (l<=r) ISWAP(ind[l],ind[r]); | 
|  | 3012     } /* now, x[ind[i0..r]] <= piv < x[ind[l..i1]] */ | 
|  | 3013     if (r<k-1) i0 = l;  /* go right */ | 
|  | 3014     else /* put pivots in middle */ | 
|  | 3015     { for (i=i0; i<=r; ) | 
|  | 3016         if (x[ind[i]]==piv) { ISWAP(ind[i],ind[r]); r--; } | 
|  | 3017         else i++; | 
|  | 3018       if (r<k-1) return(piv); | 
|  | 3019       i1 = r; | 
|  | 3020     } | 
|  | 3021   } | 
|  | 3022 } | 
|  | 3023 | 
|  | 3024 /* check if i'th data point is in limits */ | 
|  | 3025 int inlim(lfd,i) | 
|  | 3026 lfdata *lfd; | 
|  | 3027 int i; | 
|  | 3028 { int d, j, k; | 
|  | 3029   double *xlim; | 
|  | 3030 | 
|  | 3031   xlim = lfd->xl; | 
|  | 3032   d = lfd->d; | 
|  | 3033   k = 1; | 
|  | 3034   for (j=0; j<d; j++) | 
|  | 3035   { if (xlim[j]<xlim[j+d]) | 
|  | 3036       k &= ((datum(lfd,j,i)>=xlim[j]) & (datum(lfd,j,i)<=xlim[j+d])); | 
|  | 3037   } | 
|  | 3038   return(k); | 
|  | 3039 } | 
|  | 3040 | 
|  | 3041 double compbandwid(di,ind,x,n,d,nn,fxh) | 
|  | 3042 double *di, *x, fxh; | 
|  | 3043 int n, d, nn, *ind; | 
|  | 3044 { int i; | 
|  | 3045   double nnh; | 
|  | 3046 | 
|  | 3047   if (nn==0) return(fxh); | 
|  | 3048 | 
|  | 3049   if (nn<n) | 
|  | 3050     nnh = kordstat(di,nn,n,ind); | 
|  | 3051   else | 
|  | 3052   { nnh = 0; | 
|  | 3053     for (i=0; i<n; i++) nnh = MAX(nnh,di[i]); | 
|  | 3054     nnh = nnh*exp(log(1.0*nn/n)/d); | 
|  | 3055   } | 
|  | 3056   return(MAX(fxh,nnh)); | 
|  | 3057 } | 
|  | 3058 | 
|  | 3059 /* | 
|  | 3060   fast version of nbhd for ordered 1-d data | 
|  | 3061 */ | 
|  | 3062 void nbhd1(lfd,sp,des,k) | 
|  | 3063 lfdata *lfd; | 
|  | 3064 smpar *sp; | 
|  | 3065 design *des; | 
|  | 3066 int k; | 
|  | 3067 { double x, h, *xd, sc; | 
|  | 3068   int i, l, r, m, n, z; | 
|  | 3069 | 
|  | 3070   n = lfd->n; | 
|  | 3071   x = des->xev[0]; | 
|  | 3072   xd = dvari(lfd,0); | 
|  | 3073   sc = lfd->sca[0]; | 
|  | 3074 | 
|  | 3075   /* find closest data point to x */ | 
|  | 3076   if (x<=xd[0]) z = 0; | 
|  | 3077   else | 
|  | 3078   if (x>=xd[n-1]) z = n-1; | 
|  | 3079   else | 
|  | 3080   { l = 0; r = n-1; | 
|  | 3081     while (r-l>1) | 
|  | 3082     { z = (r+l)/2; | 
|  | 3083       if (xd[z]>x) r = z; | 
|  | 3084               else l = z; | 
|  | 3085     } | 
|  | 3086     /* now, xd[0..l] <= x < x[r..n-1] */ | 
|  | 3087     if ((x-xd[l])>(xd[r]-x)) z = r; else z = l; | 
|  | 3088   } | 
|  | 3089   /* closest point to x is xd[z] */ | 
|  | 3090 | 
|  | 3091   if (nn(sp)<0)  /* user bandwidth */ | 
|  | 3092     h = sp->vb(des->xev); | 
|  | 3093   else | 
|  | 3094   { if (k>0) /* set h to nearest neighbor bandwidth */ | 
|  | 3095     { l = r = z; | 
|  | 3096       if (l==0) r = k-1; | 
|  | 3097       if (r==n-1) l = n-k; | 
|  | 3098       while (r-l<k-1) | 
|  | 3099       { if ((x-xd[l-1])<(xd[r+1]-x)) l--; else r++; | 
|  | 3100         if (l==0) r = k-1; | 
|  | 3101         if (r==n-1) l = n-k; | 
|  | 3102       } | 
|  | 3103       h = x-xd[l]; | 
|  | 3104       if (h<xd[r]-x) h = xd[r]-x; | 
|  | 3105     } | 
|  | 3106     else h = 0; | 
|  | 3107     h /= sc; | 
|  | 3108     if (h<fixh(sp)) h = fixh(sp); | 
|  | 3109   } | 
|  | 3110 | 
|  | 3111   m = 0; | 
|  | 3112   if (xd[z]>x) z--; /* so xd[z]<=x */ | 
|  | 3113   /* look left */ | 
|  | 3114   for (i=z; i>=0; i--) if (inlim(lfd,i)) | 
|  | 3115   { dist(des,i) = (x-xd[i])/sc; | 
|  | 3116     wght(des,i) = weight(lfd, sp, &xd[i], &x, h, 1, dist(des,i)); | 
|  | 3117     if (wght(des,i)>0) | 
|  | 3118     { des->ind[m] = i; | 
|  | 3119       m++; | 
|  | 3120     } else i = 0; | 
|  | 3121   } | 
|  | 3122   /* look right */ | 
|  | 3123   for (i=z+1; i<n; i++) if (inlim(lfd,i)) | 
|  | 3124   { dist(des,i) = (xd[i]-x)/sc; | 
|  | 3125     wght(des,i) = weight(lfd, sp, &xd[i], &x, h, 1, dist(des,i)); | 
|  | 3126     if (wght(des,i)>0) | 
|  | 3127     { des->ind[m] = i; | 
|  | 3128       m++; | 
|  | 3129     } else i = n; | 
|  | 3130   } | 
|  | 3131 | 
|  | 3132   des->n = m; | 
|  | 3133   des->h = h; | 
|  | 3134 } | 
|  | 3135 | 
|  | 3136 void nbhd_zeon(lfd,des) | 
|  | 3137 lfdata *lfd; | 
|  | 3138 design *des; | 
|  | 3139 { int i, j, m, eq; | 
|  | 3140 | 
|  | 3141   m = 0; | 
|  | 3142   for (i=0; i<lfd->n; i++) | 
|  | 3143   { eq = 1; | 
|  | 3144     for (j=0; j<lfd->d; j++) eq = eq && (des->xev[j] == datum(lfd,j,i)); | 
|  | 3145     if (eq) | 
|  | 3146     { wght(des,i) = 1; | 
|  | 3147       des->ind[m] = i; | 
|  | 3148       m++; | 
|  | 3149     } | 
|  | 3150   } | 
|  | 3151   des->n = m; | 
|  | 3152   des->h = 1.0; | 
|  | 3153 } | 
|  | 3154 | 
|  | 3155 void nbhd(lfd,des,nn,redo,sp) | 
|  | 3156 lfdata *lfd; | 
|  | 3157 design *des; | 
|  | 3158 int redo, nn; | 
|  | 3159 smpar *sp; | 
|  | 3160 { int d, i, j, m, n; | 
|  | 3161   double h, u[MXDIM]; | 
|  | 3162 | 
|  | 3163   if (lf_debug>1) mut_printf("nbhd: nn %d  fixh %8.5f\n",nn,fixh(sp)); | 
|  | 3164 | 
|  | 3165   d = lfd->d; n = lfd->n; | 
|  | 3166 | 
|  | 3167   if (ker(sp)==WPARM) | 
|  | 3168   { for (i=0; i<n; i++) | 
|  | 3169     { wght(des,i) = 1.0; | 
|  | 3170       des->ind[i] = i; | 
|  | 3171     } | 
|  | 3172     des->n = n; | 
|  | 3173     return; | 
|  | 3174   } | 
|  | 3175 | 
|  | 3176   if (kt(sp)==KZEON) | 
|  | 3177   { nbhd_zeon(lfd,des); | 
|  | 3178     return; | 
|  | 3179   } | 
|  | 3180 | 
|  | 3181   if (kt(sp)==KCE) | 
|  | 3182   { des->h = 0.0; | 
|  | 3183     return; | 
|  | 3184   } | 
|  | 3185 | 
|  | 3186   /* ordered 1-dim; use fast searches */ | 
|  | 3187   if ((nn<=n) & (lfd->ord) & (ker(sp)!=WMINM) & (lfd->sty[0]!=STANGL)) | 
|  | 3188   { nbhd1(lfd,sp,des,nn); | 
|  | 3189     return; | 
|  | 3190   } | 
|  | 3191 | 
|  | 3192   if (!redo) | 
|  | 3193   { for (i=0; i<n; i++) | 
|  | 3194     { for (j=0; j<d; j++) u[j] = datum(lfd,j,i)-des->xev[j]; | 
|  | 3195       dist(des,i) = rho(u,lfd->sca,d,kt(sp),lfd->sty); | 
|  | 3196       des->ind[i] = i; | 
|  | 3197     } | 
|  | 3198   } | 
|  | 3199   else | 
|  | 3200     for (i=0; i<n; i++) des->ind[i] = i; | 
|  | 3201 | 
|  | 3202   if (ker(sp)==WMINM) | 
|  | 3203   { des->h = minmax(lfd,des,sp); | 
|  | 3204     return; | 
|  | 3205   } | 
|  | 3206 | 
|  | 3207   if (nn<0) | 
|  | 3208     h = sp->vb(des->xev); | 
|  | 3209   else | 
|  | 3210     h = compbandwid(des->di,des->ind,des->xev,n,lfd->d,nn,fixh(sp)); | 
|  | 3211   m = 0; | 
|  | 3212   for (i=0; i<n; i++) if (inlim(lfd,i)) | 
|  | 3213   { for (j=0; j<d; j++) u[j] = datum(lfd,j,i); | 
|  | 3214     wght(des,i) = weight(lfd, sp, u, des->xev, h, 1, dist(des,i)); | 
|  | 3215     if (wght(des,i)>0) | 
|  | 3216     { des->ind[m] = i; | 
|  | 3217       m++; | 
|  | 3218     } | 
|  | 3219   } | 
|  | 3220   des->n = m; | 
|  | 3221   des->h = h; | 
|  | 3222 } | 
|  | 3223 /* | 
|  | 3224  * Copyright 1996-2006 Catherine Loader. | 
|  | 3225  */ | 
|  | 3226 /* | 
|  | 3227  * | 
|  | 3228  *   This file includes functions to solve for the scale estimate in | 
|  | 3229  *   local robust regression and likelihood. The main entry point is | 
|  | 3230  *   lf_robust(lfd,sp,des,mxit), | 
|  | 3231  *   called from the locfit() function. | 
|  | 3232  * | 
|  | 3233  *   The update_rs(x) accepts a residual scale x as the argument (actually, | 
|  | 3234  *   it works on the log-scale). The function computes the local fit | 
|  | 3235  *   assuming this residual scale, and re-estimates the scale from this | 
|  | 3236  *   new fit. The final solution satisfies the fixed point equation | 
|  | 3237  *   update_rs(x)=x. The function lf_robust() automatically calls | 
|  | 3238  *   update_rs() through the fixed point iterations. | 
|  | 3239  * | 
|  | 3240  *   The estimation of the scale from the fit is based on the sqrt of | 
|  | 3241  *   the median deviance of observations with non-zero weights (in the | 
|  | 3242  *   gaussian case, this is the median absolute residual). | 
|  | 3243  * | 
|  | 3244  *   TODO: | 
|  | 3245  *     Should use smoothing weights in the median. | 
|  | 3246  */ | 
|  | 3247 | 
|  | 3248 #include "locf.h" | 
|  | 3249 | 
|  | 3250 extern int lf_status; | 
|  | 3251 double robscale; | 
|  | 3252 | 
|  | 3253 static lfdata *rob_lfd; | 
|  | 3254 static smpar *rob_sp; | 
|  | 3255 static design *rob_des; | 
|  | 3256 static int rob_mxit; | 
|  | 3257 | 
|  | 3258 double median(x,n) | 
|  | 3259 double *x; | 
|  | 3260 int n; | 
|  | 3261 { int i, j, lt, eq, gt; | 
|  | 3262   double lo, hi, s; | 
|  | 3263   lo = hi = x[0]; | 
|  | 3264   for (i=0; i<n; i++) | 
|  | 3265   { lo = MIN(lo,x[i]); | 
|  | 3266     hi = MAX(hi,x[i]); | 
|  | 3267   } | 
|  | 3268   if (lo==hi) return(lo); | 
|  | 3269   lo -= (hi-lo); | 
|  | 3270   hi += (hi-lo); | 
|  | 3271   for (i=0; i<n; i++) | 
|  | 3272   { if ((x[i]>lo) & (x[i]<hi)) | 
|  | 3273     { s = x[i]; lt = eq = gt = 0; | 
|  | 3274       for (j=0; j<n; j++) | 
|  | 3275       { lt += (x[j]<s); | 
|  | 3276         eq += (x[j]==s); | 
|  | 3277         gt += (x[j]>s); | 
|  | 3278       } | 
|  | 3279       if ((2*(lt+eq)>n) && (2*(gt+eq)>n)) return(s); | 
|  | 3280       if (2*(lt+eq)<=n) lo = s; | 
|  | 3281       if (2*(gt+eq)<=n) hi = s; | 
|  | 3282     } | 
|  | 3283   } | 
|  | 3284   return((hi+lo)/2); | 
|  | 3285 } | 
|  | 3286 | 
|  | 3287 double nrobustscale(lfd,sp,des,rs) | 
|  | 3288 lfdata *lfd; | 
|  | 3289 smpar *sp; | 
|  | 3290 design *des; | 
|  | 3291 double rs; | 
|  | 3292 { int i, ii, p; | 
|  | 3293   double link[LLEN], sc, sd, sw, e; | 
|  | 3294   p = des->p; sc = sd = sw = 0.0; | 
|  | 3295   for (i=0; i<des->n; i++) | 
|  | 3296   { ii = des->ind[i]; | 
|  | 3297     fitv(des,ii) = base(lfd,ii)+innerprod(des->cf,d_xi(des,ii),p); | 
|  | 3298     e = resp(lfd,ii)-fitv(des,ii); | 
|  | 3299     stdlinks(link,lfd,sp,ii,fitv(des,ii),rs); | 
|  | 3300     sc += wght(des,ii)*e*link[ZDLL]; | 
|  | 3301     sd += wght(des,ii)*e*e*link[ZDDLL]; | 
|  | 3302     sw += wght(des,ii); | 
|  | 3303   } | 
|  | 3304 | 
|  | 3305   /* newton-raphson iteration for log(s) | 
|  | 3306      -psi(ei/s) - log(s); s = e^{-th} | 
|  | 3307   */ | 
|  | 3308   rs *= exp((sc-sw)/(sd+sc)); | 
|  | 3309   return(rs); | 
|  | 3310 } | 
|  | 3311 | 
|  | 3312 double robustscale(lfd,sp,des) | 
|  | 3313 lfdata *lfd; | 
|  | 3314 smpar *sp; | 
|  | 3315 design *des; | 
|  | 3316 { int i, ii, p, fam, lin, or; | 
|  | 3317   double rs, link[LLEN]; | 
|  | 3318   p = des->p; | 
|  | 3319   fam = fam(sp); | 
|  | 3320   lin = link(sp); | 
|  | 3321   or = fami(sp)->robust; | 
|  | 3322   fami(sp)->robust = 0; | 
|  | 3323 | 
|  | 3324   for (i=0; i<des->n; i++) | 
|  | 3325   { ii = des->ind[i]; | 
|  | 3326     fitv(des,ii) = base(lfd,ii) + innerprod(des->cf,d_xi(des,ii),p); | 
|  | 3327     links(fitv(des,ii),resp(lfd,ii),fami(sp),lin,link,cens(lfd,ii),prwt(lfd,ii),1.0); | 
|  | 3328     des->res[i] = -2*link[ZLIK]; | 
|  | 3329   } | 
|  | 3330   fami(sp)->robust = or; | 
|  | 3331   rs = sqrt(median(des->res,des->n)); | 
|  | 3332 | 
|  | 3333   if (rs==0.0) rs = 1.0; | 
|  | 3334   return(rs); | 
|  | 3335 } | 
|  | 3336 | 
|  | 3337 double update_rs(x) | 
|  | 3338 double x; | 
|  | 3339 { double nx; | 
|  | 3340   if (lf_status != LF_OK) return(x); | 
|  | 3341   robscale = exp(x); | 
|  | 3342   lfiter(rob_lfd,rob_sp,rob_des,rob_mxit); | 
|  | 3343   if (lf_status != LF_OK) return(x); | 
|  | 3344 | 
|  | 3345   nx = log(robustscale(rob_lfd,rob_sp,rob_des)); | 
|  | 3346   if (nx<x-0.2) nx = x-0.2; | 
|  | 3347   return(nx); | 
|  | 3348 } | 
|  | 3349 | 
|  | 3350 void lf_robust(lfd,sp,des,mxit) | 
|  | 3351 lfdata *lfd; | 
|  | 3352 design *des; | 
|  | 3353 smpar *sp; | 
|  | 3354 int mxit; | 
|  | 3355 { double x; | 
|  | 3356   rob_lfd = lfd; | 
|  | 3357   rob_des = des; | 
|  | 3358   rob_sp = sp; | 
|  | 3359   rob_mxit = mxit; | 
|  | 3360   lf_status = LF_OK; | 
|  | 3361 | 
|  | 3362   x = log(robustscale(lfd,sp,des)); | 
|  | 3363 | 
|  | 3364   solve_fp(update_rs, x, 1.0e-6, mxit); | 
|  | 3365 } | 
|  | 3366 /* | 
|  | 3367  * Copyright 1996-2006 Catherine Loader. | 
|  | 3368  */ | 
|  | 3369 /* | 
|  | 3370  *   Post-fitting functions to compute the local variance and | 
|  | 3371  *   influence functions. Also the local degrees of freedom | 
|  | 3372  *   calculations for adaptive smoothing. | 
|  | 3373  */ | 
|  | 3374 | 
|  | 3375 #include "locf.h" | 
|  | 3376 | 
|  | 3377 extern double robscale; | 
|  | 3378 | 
|  | 3379 /* | 
|  | 3380   vmat() computes (after the local fit..) the matrix | 
|  | 3381   M2  = X^T W^2 V X. | 
|  | 3382   M12 = (X^T W V X)^{-1} M2 | 
|  | 3383   Also, for convenience, tr[0] = sum(wi) tr[1] = sum(wi^2). | 
|  | 3384 */ | 
|  | 3385 void vmat(lfd, sp, des, M12, M2) | 
|  | 3386 lfdata *lfd; | 
|  | 3387 smpar *sp; | 
|  | 3388 design *des; | 
|  | 3389 double *M12, *M2; | 
|  | 3390 { int i, ii, p, nk, ok; | 
|  | 3391   double link[LLEN], h, ww, tr0, tr1; | 
|  | 3392   p = des->p; | 
|  | 3393   setzero(M2,p*p); | 
|  | 3394 | 
|  | 3395   nk = -1; | 
|  | 3396 | 
|  | 3397   /* for density estimation, use integral rather than | 
|  | 3398      sum form, if W^2 is programmed... | 
|  | 3399   */ | 
|  | 3400   if ((fam(sp)<=THAZ) && (link(sp)==LLOG)) | 
|  | 3401   { switch(ker(sp)) | 
|  | 3402     { case WGAUS: nk = WGAUS; h = des->h/SQRT2; break; | 
|  | 3403       case WRECT: nk = WRECT; h = des->h; break; | 
|  | 3404       case WEPAN: nk = WBISQ; h = des->h; break; | 
|  | 3405       case WBISQ: nk = WQUQU; h = des->h; break; | 
|  | 3406       case WTCUB: nk = W6CUB; h = des->h; break; | 
|  | 3407       case WEXPL: nk = WEXPL; h = des->h/2; break; | 
|  | 3408     } | 
|  | 3409   } | 
|  | 3410 | 
|  | 3411   tr0 = tr1 = 0.0; | 
|  | 3412   if (nk != -1) | 
|  | 3413   { ok = ker(sp); ker(sp) = nk; | 
|  | 3414 /* compute M2 using integration. Use M12 as work matrix. */ | 
|  | 3415     (des->itype)(des->xev, M2, M12, des->cf, h); | 
|  | 3416     ker(sp) = ok; | 
|  | 3417     if (fam(sp)==TDEN) multmatscal(M2,des->smwt,p*p); | 
|  | 3418     tr0 = des->ss[0]; | 
|  | 3419     tr1 = M2[0]; /* n int W e^<a,A> */ | 
|  | 3420   } | 
|  | 3421   else | 
|  | 3422   { for (i=0; i<des->n; i++) | 
|  | 3423     { ii = des->ind[i]; | 
|  | 3424       stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | 
|  | 3425       ww = SQR(wght(des,ii))*link[ZDDLL]; | 
|  | 3426       tr0 += wght(des,ii); | 
|  | 3427       tr1 += SQR(wght(des,ii)); | 
|  | 3428       addouter(M2,d_xi(des,ii),d_xi(des,ii),p,ww); | 
|  | 3429     } | 
|  | 3430   } | 
|  | 3431   des->tr0 = tr0; | 
|  | 3432   des->tr1 = tr1; | 
|  | 3433 | 
|  | 3434   memcpy(M12,M2,p*p*sizeof(double)); | 
|  | 3435   for (i=0; i<p; i++) | 
|  | 3436     jacob_solve(&des->xtwx,&M12[i*p]); | 
|  | 3437 } | 
|  | 3438 | 
|  | 3439 void lf_vcov(lfd,sp,des) | 
|  | 3440 lfdata *lfd; | 
|  | 3441 smpar *sp; | 
|  | 3442 design *des; | 
|  | 3443 { int i, j, k, p; | 
|  | 3444   double *M12, *M2; | 
|  | 3445   M12 = des->V; M2 = des->P; p = des->p; | 
|  | 3446   vmat(lfd,sp,des,M12,M2); /* M2 = X^T W^2 V X  tr0=sum(W) tr1=sum(W*W) */ | 
|  | 3447   des->tr2 = m_trace(M12,p);   /* tr (XTWVX)^{-1}(XTW^2VX) */ | 
|  | 3448 | 
|  | 3449 /* | 
|  | 3450  * Covariance matrix is M1^{-1} * M2 * M1^{-1} | 
|  | 3451  * We compute this using the cholesky decomposition of | 
|  | 3452  * M2; premultiplying by M1^{-1} and squaring. This | 
|  | 3453  * is more stable than direct computation in near-singular cases. | 
|  | 3454  */ | 
|  | 3455   chol_dec(M2,p,p); | 
|  | 3456   for (i=0; i<p; i++) | 
|  | 3457     for (j=0; j<i; j++) | 
|  | 3458     { M2[j*p+i] = M2[i*p+j]; | 
|  | 3459       M2[i*p+j] = 0.0; | 
|  | 3460     } | 
|  | 3461   for (i=0; i<p; i++) jacob_solve(&des->xtwx,&M2[i*p]); | 
|  | 3462   for (i=0; i<p; i++) | 
|  | 3463   { for (j=0; j<p; j++) | 
|  | 3464     { M12[i*p+j] = 0; | 
|  | 3465       for (k=0; k<p; k++) | 
|  | 3466         M12[i*p+j] += M2[k*p+i]*M2[k*p+j]; /* ith column of covariance */ | 
|  | 3467     } | 
|  | 3468   } | 
|  | 3469   if ((fam(sp)==TDEN) && (link(sp)==LIDENT)) | 
|  | 3470     multmatscal(M12,1/SQR(des->smwt),p*p); | 
|  | 3471 | 
|  | 3472 /* this computes the influence function as des->f1[0]. */ | 
|  | 3473   unitvec(des->f1,0,des->p); | 
|  | 3474   jacob_solve(&des->xtwx,des->f1); | 
|  | 3475 } | 
|  | 3476 | 
|  | 3477 /* local_df computes: | 
|  | 3478  *   tr[0] = trace(W) | 
|  | 3479  *   tr[1] = trace(W*W) | 
|  | 3480  *   tr[2] = trace( M1^{-1} M2 ) | 
|  | 3481  *   tr[3] = trace( M1^{-1} M3 ) | 
|  | 3482  *   tr[4] = trace( (M1^{-1} M2)^2 ) | 
|  | 3483  *   tr[5] = var(theta-hat). | 
|  | 3484  */ | 
|  | 3485 void local_df(lfd,sp,des,tr) | 
|  | 3486 lfdata *lfd; | 
|  | 3487 smpar *sp; | 
|  | 3488 design *des; | 
|  | 3489 double *tr; | 
|  | 3490 { int i, ii, j, p; | 
|  | 3491   double *m2, *V, ww, link[LLEN]; | 
|  | 3492 | 
|  | 3493   tr[0] = tr[1] = tr[2] = tr[3] = tr[4] = tr[5] = 0.0; | 
|  | 3494   m2 = des->V; V = des->P; p = des->p; | 
|  | 3495 | 
|  | 3496   vmat(lfd,sp,des,m2,V);  /* M = X^T W^2 V X  tr0=sum(W) tr1=sum(W*W) */ | 
|  | 3497   tr[0] = des->tr0; | 
|  | 3498   tr[1] = des->tr1; | 
|  | 3499   tr[2] = m_trace(m2,p);   /* tr (XTWVX)^{-1}(XTW^2VX) */ | 
|  | 3500 | 
|  | 3501   unitvec(des->f1,0,p); | 
|  | 3502   jacob_solve(&des->xtwx,des->f1); | 
|  | 3503   for (i=0; i<p; i++) | 
|  | 3504     for (j=0; j<p; j++) | 
|  | 3505     { tr[4] += m2[i*p+j]*m2[j*p+i];  /* tr(M^2) */ | 
|  | 3506       tr[5] += des->f1[i]*V[i*p+j]*des->f1[j]; /* var(thetahat) */ | 
|  | 3507   } | 
|  | 3508   tr[5] = sqrt(tr[5]); | 
|  | 3509 | 
|  | 3510   setzero(m2,p*p); | 
|  | 3511   for (i=0; i<des->n; i++) | 
|  | 3512   { ii = des->ind[i]; | 
|  | 3513     stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | 
|  | 3514     ww = wght(des,ii)*wght(des,ii)*wght(des,ii)*link[ZDDLL]; | 
|  | 3515     addouter(m2,d_xi(des,ii),d_xi(des,ii),p,ww); | 
|  | 3516   } | 
|  | 3517   for (i=0; i<p; i++) | 
|  | 3518   { jacob_solve(&des->xtwx,&m2[i*p]); | 
|  | 3519     tr[3] += m2[i*(p+1)]; | 
|  | 3520   } | 
|  | 3521 | 
|  | 3522   return; | 
|  | 3523 } | 
|  | 3524 /* | 
|  | 3525  * Copyright 1996-2006 Catherine Loader. | 
|  | 3526  */ | 
|  | 3527 /* | 
|  | 3528  *  Routines for computing weight diagrams. | 
|  | 3529  *     wdiag(lf,des,lx,deg,ty,exp) | 
|  | 3530  *  Must locfit() first, unless ker==WPARM and has par. comp. | 
|  | 3531  * | 
|  | 3532  */ | 
|  | 3533 | 
|  | 3534 #include "locf.h" | 
|  | 3535 | 
|  | 3536 static double *wd; | 
|  | 3537 extern double robscale; | 
|  | 3538 void nnresproj(lfd,sp,des,u,m,p) | 
|  | 3539 lfdata *lfd; | 
|  | 3540 smpar *sp; | 
|  | 3541 design *des; | 
|  | 3542 double *u; | 
|  | 3543 int m, p; | 
|  | 3544 { int i, ii, j; | 
|  | 3545   double link[LLEN]; | 
|  | 3546   setzero(des->f1,p); | 
|  | 3547   for (j=0; j<m; j++) | 
|  | 3548   { ii = des->ind[j]; | 
|  | 3549     stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | 
|  | 3550     for (i=0; i<p; i++) des->f1[i] += link[ZDDLL]*d_xij(des,j,ii)*u[j]; | 
|  | 3551   } | 
|  | 3552   jacob_solve(&des->xtwx,des->f1); | 
|  | 3553   for (i=0; i<m; i++) | 
|  | 3554   { ii = des->ind[i]; | 
|  | 3555     u[i] -= innerprod(des->f1,d_xi(des,ii),p)*wght(des,ii); | 
|  | 3556   } | 
|  | 3557 } | 
|  | 3558 | 
|  | 3559 void wdexpand(l,n,ind,m) | 
|  | 3560 double *l; | 
|  | 3561 int *ind, n, m; | 
|  | 3562 { int i, j, t; | 
|  | 3563   double z; | 
|  | 3564   for (j=m; j<n; j++) { l[j] = 0.0; ind[j] = -1; } | 
|  | 3565   j = m-1; | 
|  | 3566   while (j>=0) | 
|  | 3567   { if (ind[j]==j) j--; | 
|  | 3568     else | 
|  | 3569     { i = ind[j]; | 
|  | 3570       z = l[j]; l[j] = l[i]; l[i] = z; | 
|  | 3571       t = ind[j]; ind[j] = ind[i]; ind[i] = t; | 
|  | 3572       if (ind[j]==-1) j--; | 
|  | 3573     } | 
|  | 3574   } | 
|  | 3575 | 
|  | 3576 /*  for (i=n-1; i>=0; i--) | 
|  | 3577   { l[i] = ((j>=0) && (ind[j]==i)) ? l[j--] : 0.0; } */ | 
|  | 3578 } | 
|  | 3579 | 
|  | 3580 int wdiagp(lfd,sp,des,lx,pc,dv,deg,ty,exp) | 
|  | 3581 lfdata *lfd; | 
|  | 3582 smpar *sp; | 
|  | 3583 design *des; | 
|  | 3584 paramcomp *pc; | 
|  | 3585 deriv *dv; | 
|  | 3586 double *lx; | 
|  | 3587 int deg, ty, exp; | 
|  | 3588 { int i, j, p, nd; | 
|  | 3589   double *l1; | 
|  | 3590 | 
|  | 3591   p = des->p; | 
|  | 3592 | 
|  | 3593   fitfun(lfd,sp,des->xev,pc->xbar,des->f1,dv); | 
|  | 3594   if (exp) | 
|  | 3595   { jacob_solve(&pc->xtwx,des->f1); | 
|  | 3596     for (i=0; i<lfd->n; i++) | 
|  | 3597       lx[i] = innerprod(des->f1,d_xi(des,des->ind[i]),p); | 
|  | 3598     return(lfd->n); | 
|  | 3599   } | 
|  | 3600   jacob_hsolve(&pc->xtwx,des->f1); | 
|  | 3601   for (i=0; i<p; i++) lx[i] = des->f1[i]; | 
|  | 3602 | 
|  | 3603   nd = dv->nd; | 
|  | 3604   dv->nd = nd+1; | 
|  | 3605   if (deg>=1) | 
|  | 3606     for (i=0; i<lfd->d; i++) | 
|  | 3607     { dv->deriv[nd] = i; | 
|  | 3608       l1 = &lx[(i+1)*p]; | 
|  | 3609       fitfun(lfd,sp,des->xev,pc->xbar,l1,dv); | 
|  | 3610       jacob_hsolve(&pc->xtwx,l1); | 
|  | 3611     } | 
|  | 3612 | 
|  | 3613   dv->nd = nd+2; | 
|  | 3614   if (deg>=2) | 
|  | 3615     for (i=0; i<lfd->d; i++) | 
|  | 3616     { dv->deriv[nd] = i; | 
|  | 3617       for (j=0; j<lfd->d; j++) | 
|  | 3618       { dv->deriv[nd+1] = j; | 
|  | 3619         l1 = &lx[(i*lfd->d+j+lfd->d+1)*p]; | 
|  | 3620         fitfun(lfd,sp,des->xev,pc->xbar,l1,dv); | 
|  | 3621         jacob_hsolve(&pc->xtwx,l1); | 
|  | 3622     } } | 
|  | 3623   dv->nd = nd; | 
|  | 3624   return(p); | 
|  | 3625 } | 
|  | 3626 | 
|  | 3627 int wdiag(lfd,sp,des,lx,dv,deg,ty,exp) | 
|  | 3628 lfdata *lfd; | 
|  | 3629 smpar *sp; | 
|  | 3630 design *des; | 
|  | 3631 deriv *dv; | 
|  | 3632 double *lx; | 
|  | 3633 int deg, ty, exp; | 
|  | 3634 /* deg=0: l(x) only. | 
|  | 3635    deg=1: l(x), l'(x) | 
|  | 3636    deg=2: l(x), l'(x), l''(x) | 
|  | 3637    ty = 1: e1 (X^T WVX)^{-1} X^T W        -- hat matrix | 
|  | 3638    ty = 2: e1 (X^T WVX)^{-1} X^T WV^{1/2} -- scb's | 
|  | 3639 */ | 
|  | 3640 { double w, *X, *lxd, *lxdd, wdd, wdw, *ulx, link[LLEN], h; | 
|  | 3641   double dfx[MXDIM], hs[MXDIM]; | 
|  | 3642   int i, ii, j, k, l, m, d, p, nd; | 
|  | 3643 | 
|  | 3644   h = des->h; | 
|  | 3645   nd = dv->nd; | 
|  | 3646   wd = des->wd; | 
|  | 3647   d = lfd->d; p = des->p; X = d_x(des); | 
|  | 3648   ulx = des->res; | 
|  | 3649   m = des->n; | 
|  | 3650   for (i=0; i<d; i++) hs[i] = h*lfd->sca[i]; | 
|  | 3651   if (deg>0) | 
|  | 3652   { lxd = &lx[m]; | 
|  | 3653     setzero(lxd,m*d); | 
|  | 3654     if (deg>1) | 
|  | 3655     { lxdd = &lxd[d*m]; | 
|  | 3656       setzero(lxdd,m*d*d); | 
|  | 3657   } } | 
|  | 3658 | 
|  | 3659   if (nd>0) fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); /* c(0) */ | 
|  | 3660     else unitvec(des->f1,0,p); | 
|  | 3661   jacob_solve(&des->xtwx,des->f1);   /* c(0) (X^TWX)^{-1} */ | 
|  | 3662   for (i=0; i<m; i++) | 
|  | 3663   { ii = des->ind[i]; | 
|  | 3664     lx[i] = innerprod(des->f1,&X[ii*p],p); /* c(0)(XTWX)^{-1}X^T */ | 
|  | 3665     if (deg>0) | 
|  | 3666     { wd[i] = Wd(dist(des,ii)/h,ker(sp)); | 
|  | 3667       for (j=0; j<d; j++) | 
|  | 3668       { dfx[j] = datum(lfd,j,ii)-des->xev[j]; | 
|  | 3669         lxd[j*m+i] = lx[i]*wght(des,ii)*weightd(dfx[j],lfd->sca[j], | 
|  | 3670           d,ker(sp),kt(sp),h,lfd->sty[j],dist(des,ii)); | 
|  | 3671              /* c(0) (XTWX)^{-1}XTW' */ | 
|  | 3672       } | 
|  | 3673       if (deg>1) | 
|  | 3674       { wdd = Wdd(dist(des,ii)/h,ker(sp)); | 
|  | 3675         for (j=0; j<d; j++) | 
|  | 3676           for (k=0; k<d; k++) | 
|  | 3677           { w = (dist(des,ii)==0) ? 0 : h/dist(des,ii); | 
|  | 3678             w = wdd * (des->xev[k]-datum(lfd,k,ii)) * (des->xev[j]-datum(lfd,j,ii)) | 
|  | 3679                   * w*w / (hs[k]*hs[k]*hs[j]*hs[j]); | 
|  | 3680             if (j==k) w += wd[i]/(hs[j]*hs[j]); | 
|  | 3681             lxdd[(j*d+k)*m+i] = lx[i]*w; | 
|  | 3682               /* c(0)(XTWX)^{-1}XTW'' */ | 
|  | 3683           } | 
|  | 3684       } | 
|  | 3685     } | 
|  | 3686     lx[i] *= wght(des,ii); | 
|  | 3687   } | 
|  | 3688 | 
|  | 3689   dv->nd = nd+1; | 
|  | 3690   if (deg==2) | 
|  | 3691   { for (i=0; i<d; i++) | 
|  | 3692     { dv->deriv[nd] = i; | 
|  | 3693       fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); | 
|  | 3694       for (k=0; k<m; k++) | 
|  | 3695       { ii = des->ind[i]; | 
|  | 3696         stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | 
|  | 3697         for (j=0; j<p; j++) | 
|  | 3698           des->f1[j] -= link[ZDDLL]*lxd[i*m+k]*X[ii*p+j]; | 
|  | 3699         /* c'(x)-c(x)(XTWX)^{-1}XTW'X */ | 
|  | 3700       } | 
|  | 3701       jacob_solve(&des->xtwx,des->f1); /* (...)(XTWX)^{-1} */ | 
|  | 3702       for (j=0; j<m; j++) | 
|  | 3703       { ii = des->ind[j]; | 
|  | 3704         ulx[j] = innerprod(des->f1,&X[ii*p],p); /* (...)XT */ | 
|  | 3705       } | 
|  | 3706       for (j=0; j<d; j++) | 
|  | 3707         for (k=0; k<m; k++) | 
|  | 3708         { ii = des->ind[k]; | 
|  | 3709           dfx[j] = datum(lfd,j,ii)-des->xev[j]; | 
|  | 3710           wdw = wght(des,ii)*weightd(dfx[j],lfd->sca[j],d,ker(sp), | 
|  | 3711             kt(sp),h,lfd->sty[j],dist(des,ii)); | 
|  | 3712           lxdd[(i*d+j)*m+k] += ulx[k]*wdw; | 
|  | 3713           lxdd[(j*d+i)*m+k] += ulx[k]*wdw; | 
|  | 3714         } /* + 2(c'-c(XTWX)^{-1}XTW'X)(XTWX)^{-1}XTW' */ | 
|  | 3715     } | 
|  | 3716     for (j=0; j<d*d; j++) nnresproj(lfd,sp,des,&lxdd[j*m],m,p); | 
|  | 3717         /* * (I-X(XTWX)^{-1} XTW */ | 
|  | 3718   } | 
|  | 3719   if (deg>0) | 
|  | 3720   { for (j=0; j<d; j++) nnresproj(lfd,sp,des,&lxd[j*m],m,p); | 
|  | 3721       /* c(0)(XTWX)^{-1}XTW'(I-X(XTWX)^{-1}XTW) */ | 
|  | 3722     for (i=0; i<d; i++) | 
|  | 3723     { dv->deriv[nd]=i; | 
|  | 3724       fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); | 
|  | 3725       jacob_solve(&des->xtwx,des->f1); | 
|  | 3726       for (k=0; k<m; k++) | 
|  | 3727       { ii = des->ind[k]; | 
|  | 3728         for (l=0; l<p; l++) | 
|  | 3729           lxd[i*m+k] += des->f1[l]*X[ii*p+l]*wght(des,ii); | 
|  | 3730       } /* add c'(0)(XTWX)^{-1}XTW */ | 
|  | 3731     } | 
|  | 3732   } | 
|  | 3733 | 
|  | 3734   dv->nd = nd+2; | 
|  | 3735   if (deg==2) | 
|  | 3736   { for (i=0; i<d; i++) | 
|  | 3737     { dv->deriv[nd]=i; | 
|  | 3738       for (j=0; j<d; j++) | 
|  | 3739       { dv->deriv[nd+1]=j; | 
|  | 3740         fitfun(lfd,sp,des->xev,des->xev,des->f1,dv); | 
|  | 3741         jacob_solve(&des->xtwx,des->f1); | 
|  | 3742         for (k=0; k<m; k++) | 
|  | 3743         { ii = des->ind[k]; | 
|  | 3744           for (l=0; l<p; l++) | 
|  | 3745             lxdd[(i*d+j)*m+k] += des->f1[l]*X[ii*p+l]*wght(des,ii); | 
|  | 3746         } /* + c''(x)(XTWX)^{-1}XTW */ | 
|  | 3747       } | 
|  | 3748     } | 
|  | 3749   } | 
|  | 3750   dv->nd = nd; | 
|  | 3751 | 
|  | 3752   k = 1+d*(deg>0)+d*d*(deg==2); | 
|  | 3753 | 
|  | 3754   if (exp) wdexpand(lx,lfd->n,des->ind,m); | 
|  | 3755 | 
|  | 3756   if (ty==1) return(m); | 
|  | 3757   for (i=0; i<m; i++) | 
|  | 3758   { ii = des->ind[i]; | 
|  | 3759     stdlinks(link,lfd,sp,ii,fitv(des,ii),robscale); | 
|  | 3760     link[ZDDLL] = sqrt(fabs(link[ZDDLL])); | 
|  | 3761     for (j=0; j<k; j++) lx[j*m+i] *= link[ZDDLL]; | 
|  | 3762   } | 
|  | 3763   return(m); | 
|  | 3764 } | 
|  | 3765 /* | 
|  | 3766  * Copyright 1996-2006 Catherine Loader. | 
|  | 3767  */ | 
|  | 3768 /* | 
|  | 3769  *  String  matching functions. For a given argument string, find | 
|  | 3770  *  the best match from an array of possibilities. Is there a library | 
|  | 3771  *  function somewhere to do something like this? | 
|  | 3772  * | 
|  | 3773  *  return values of -1 indicate failure/unknown string. | 
|  | 3774  */ | 
|  | 3775 | 
|  | 3776 #include "locf.h" | 
|  | 3777 | 
|  | 3778 int ct_match(z1, z2) | 
|  | 3779 char *z1, *z2; | 
|  | 3780 { int ct = 0; | 
|  | 3781   while (z1[ct]==z2[ct]) | 
|  | 3782   { if (z1[ct]=='\0') return(ct+1); | 
|  | 3783     ct++; | 
|  | 3784   } | 
|  | 3785   return(ct); | 
|  | 3786 } | 
|  | 3787 | 
|  | 3788 int pmatch(z, strings, vals, n, def) | 
|  | 3789 char *z, **strings; | 
|  | 3790 int *vals, n, def; | 
|  | 3791 { int i, ct, best, best_ct; | 
|  | 3792   best = -1; | 
|  | 3793   best_ct = 0; | 
|  | 3794 | 
|  | 3795   for (i=0; i<n; i++) | 
|  | 3796   { ct = ct_match(z,strings[i]); | 
|  | 3797     if (ct==strlen(z)+1) return(vals[i]); | 
|  | 3798     if (ct>best_ct) { best = i; best_ct = ct; } | 
|  | 3799   } | 
|  | 3800   if (best==-1) return(def); | 
|  | 3801   return(vals[best]); | 
|  | 3802 } | 
|  | 3803 /* | 
|  | 3804  * Copyright 1996-2006 Catherine Loader. | 
|  | 3805  */ | 
|  | 3806 #include "locf.h" | 
|  | 3807 | 
|  | 3808 int lf_maxit = 20; | 
|  | 3809 int lf_debug = 0; | 
|  | 3810 int lf_error = 0; | 
|  | 3811 | 
|  | 3812 double s0, s1; | 
|  | 3813 static lfdata *lf_lfd; | 
|  | 3814 static design *lf_des; | 
|  | 3815 static smpar   *lf_sp; | 
|  | 3816 int lf_status; | 
|  | 3817 int ident=0; | 
|  | 3818 double lf_tol; | 
|  | 3819 extern double robscale; | 
|  | 3820 | 
|  | 3821 void lfdata_init(lfd) | 
|  | 3822 lfdata *lfd; | 
|  | 3823 { int i; | 
|  | 3824   for (i=0; i<MXDIM; i++) | 
|  | 3825   { lfd->sty[i] = 0; | 
|  | 3826     lfd->sca[i] = 1.0; | 
|  | 3827     lfd->xl[i] = lfd->xl[i+MXDIM] = 0.0; | 
|  | 3828   } | 
|  | 3829   lfd->y = lfd->w = lfd->c = lfd->b = NULL; | 
|  | 3830   lfd->d = lfd->n = 0; | 
|  | 3831 } | 
|  | 3832 | 
|  | 3833 void smpar_init(sp,lfd) | 
|  | 3834 smpar *sp; | 
|  | 3835 lfdata *lfd; | 
|  | 3836 { nn(sp)  = 0.7; | 
|  | 3837   fixh(sp)= 0.0; | 
|  | 3838   pen(sp) = 0.0; | 
|  | 3839   acri(sp)= ANONE; | 
|  | 3840   deg(sp) = deg0(sp) = 2; | 
|  | 3841   ubas(sp) = 0; | 
|  | 3842   kt(sp) = KSPH; | 
|  | 3843   ker(sp) = WTCUB; | 
|  | 3844   fam(sp) = 64+TGAUS; | 
|  | 3845   link(sp)= LDEFAU; | 
|  | 3846   npar(sp) = calcp(sp,lfd->d); | 
|  | 3847 } | 
|  | 3848 | 
|  | 3849 void deriv_init(dv) | 
|  | 3850 deriv *dv; | 
|  | 3851 { dv->nd = 0; | 
|  | 3852 } | 
|  | 3853 | 
|  | 3854 int des_reqd(n,p) | 
|  | 3855 int n, p; | 
|  | 3856 { | 
|  | 3857   return(n*(p+5)+2*p*p+4*p + jac_reqd(p)); | 
|  | 3858 } | 
|  | 3859 int des_reqi(n,p) | 
|  | 3860 int n, p; | 
|  | 3861 { return(n+p); | 
|  | 3862 } | 
|  | 3863 | 
|  | 3864 void des_init(des,n,p) | 
|  | 3865 design *des; | 
|  | 3866 int n, p; | 
|  | 3867 { double *z; | 
|  | 3868   int k; | 
|  | 3869 | 
|  | 3870   if (n<=0) WARN(("des_init: n <= 0")); | 
|  | 3871   if (p<=0) WARN(("des_init: p <= 0")); | 
|  | 3872 | 
|  | 3873   if (des->des_init_id != DES_INIT_ID) | 
|  | 3874   { des->lwk = des->lind = 0; | 
|  | 3875     des->des_init_id = DES_INIT_ID; | 
|  | 3876   } | 
|  | 3877 | 
|  | 3878   k = des_reqd(n,p); | 
|  | 3879   if (k>des->lwk) | 
|  | 3880   { des->wk = (double *)calloc(k,sizeof(double)); | 
|  | 3881     if ( des->wk == NULL ) { | 
|  | 3882       printf("Problem allocating memory for des->wk\n");fflush(stdout); | 
|  | 3883     } | 
|  | 3884     des->lwk = k; | 
|  | 3885   } | 
|  | 3886   z = des->wk; | 
|  | 3887 | 
|  | 3888   des->X = z; z += n*p; | 
|  | 3889   des->w = z; z += n; | 
|  | 3890   des->res=z; z += n; | 
|  | 3891   des->di =z; z += n; | 
|  | 3892   des->th =z; z += n; | 
|  | 3893   des->wd =z; z += n; | 
|  | 3894   des->V  =z; z += p*p; | 
|  | 3895   des->P  =z; z += p*p; | 
|  | 3896   des->f1 =z; z += p; | 
|  | 3897   des->ss =z; z += p; | 
|  | 3898   des->oc =z; z += p; | 
|  | 3899   des->cf =z; z += p; | 
|  | 3900 | 
|  | 3901   z = jac_alloc(&des->xtwx,p,z); | 
|  | 3902 | 
|  | 3903   k = des_reqi(n,p); | 
|  | 3904   if (k>des->lind) | 
|  | 3905   { | 
|  | 3906     des->ind = (int *)calloc(k,sizeof(int)); | 
|  | 3907     if ( des->ind == NULL ) { | 
|  | 3908       printf("Problem allocating memory for des->ind\n");fflush(stdout); | 
|  | 3909     } | 
|  | 3910     des->lind = k; | 
|  | 3911   } | 
|  | 3912   des->fix = &des->ind[n]; | 
|  | 3913   for (k=0; k<p; k++) des->fix[k] = 0; | 
|  | 3914 | 
|  | 3915   des->n = n; des->p = p; | 
|  | 3916   des->smwt = n; | 
|  | 3917   des->xtwx.p = p; | 
|  | 3918 } | 
|  | 3919 | 
|  | 3920 void deschk(des,n,p) | 
|  | 3921 design *des; | 
|  | 3922 int n, p; | 
|  | 3923 { WARN(("deschk deprecated - use des_init()")); | 
|  | 3924   des_init(des,n,p); | 
|  | 3925 } | 
|  | 3926 | 
|  | 3927 int likereg(coef, lk0, f1, Z) | 
|  | 3928 double *coef, *lk0, *f1, *Z; | 
|  | 3929 { int i, ii, j, p; | 
|  | 3930   double lk, ww, link[LLEN], *X; | 
|  | 3931 | 
|  | 3932   if (lf_debug>2) mut_printf("  likereg: %8.5f\n",coef[0]); | 
|  | 3933   lf_status = LF_OK; | 
|  | 3934   lk = 0.0; p = lf_des->p; | 
|  | 3935   setzero(Z,p*p); | 
|  | 3936   setzero(f1,p); | 
|  | 3937   for (i=0; i<lf_des->n; i++) | 
|  | 3938   { | 
|  | 3939     ii = lf_des->ind[i]; | 
|  | 3940     X = d_xi(lf_des,ii); | 
|  | 3941     fitv(lf_des,ii) = base(lf_lfd,ii)+innerprod(coef,X,p); | 
|  | 3942     lf_status = stdlinks(link,lf_lfd,lf_sp,ii,fitv(lf_des,ii),robscale); | 
|  | 3943     if (lf_status == LF_BADP) | 
|  | 3944     { *lk0 = -1.0e300; | 
|  | 3945       return(NR_REDUCE); | 
|  | 3946     } | 
|  | 3947     if (lf_error) lf_status = LF_ERR; | 
|  | 3948     if (lf_status != LF_OK) return(NR_BREAK); | 
|  | 3949 | 
|  | 3950     ww = wght(lf_des,ii); | 
|  | 3951     lk += ww*link[ZLIK]; | 
|  | 3952     for (j=0; j<p; j++) | 
|  | 3953       f1[j] += X[j]*ww*link[ZDLL]; | 
|  | 3954     addouter(Z, X, X, p, ww*link[ZDDLL]); | 
|  | 3955   } | 
|  | 3956   for (i=0; i<p; i++) if (lf_des->fix[i]) | 
|  | 3957   { for (j=0; j<p; j++) Z[i*p+j] = Z[j*p+i] = 0.0; | 
|  | 3958     Z[i*p+i] = 1.0; | 
|  | 3959     f1[i] = 0.0; | 
|  | 3960   } | 
|  | 3961 | 
|  | 3962   if (lf_debug>4) prresp(coef,Z,p); | 
|  | 3963   if (lf_debug>3) mut_printf("  likelihood: %8.5f\n",lk); | 
|  | 3964   *lk0 = lf_des->llk = lk; | 
|  | 3965 | 
|  | 3966   lf_status = fami(lf_sp)->pcheck(lf_sp,lf_des,lf_lfd); | 
|  | 3967   switch(lf_status) | 
|  | 3968   { case LF_DONE: return(NR_BREAK); | 
|  | 3969     case LF_OOB:  return(NR_REDUCE); | 
|  | 3970     case LF_PF:   return(NR_REDUCE); | 
|  | 3971     case LF_NSLN: return(NR_BREAK); | 
|  | 3972   } | 
|  | 3973 | 
|  | 3974   return(NR_OK); | 
|  | 3975 } | 
|  | 3976 | 
|  | 3977 int reginit(lfd,des,sp) | 
|  | 3978 lfdata *lfd; | 
|  | 3979 design *des; | 
|  | 3980 smpar *sp; | 
|  | 3981 { int i, ii; | 
|  | 3982   double sb, link[LLEN]; | 
|  | 3983   s0 = s1 = sb = 0; | 
|  | 3984   for (i=0; i<des->n; i++) | 
|  | 3985   { ii = des->ind[i]; | 
|  | 3986     links(base(lfd,ii),resp(lfd,ii),fami(sp),LINIT,link,cens(lfd,ii),prwt(lfd,ii),1.0); | 
|  | 3987     s1 += wght(des,ii)*link[ZDLL]; | 
|  | 3988     s0 += wght(des,ii)*prwt(lfd,ii); | 
|  | 3989     sb += wght(des,ii)*prwt(lfd,ii)*base(lfd,ii); | 
|  | 3990   } | 
|  | 3991   if (s0==0) return(LF_NOPT); /* no observations with W>0 */ | 
|  | 3992   setzero(des->cf,des->p); | 
|  | 3993   lf_tol = 1.0e-6*s0; | 
|  | 3994   switch(link(sp)) | 
|  | 3995   { case LIDENT: | 
|  | 3996       des->cf[0] = (s1-sb)/s0; | 
|  | 3997       return(LF_OK); | 
|  | 3998     case LLOG: | 
|  | 3999       if (s1<=0.0) | 
|  | 4000       { des->cf[0] = -1000; | 
|  | 4001         return(LF_INFA); | 
|  | 4002       } | 
|  | 4003       des->cf[0] = log(s1/s0) - sb/s0; | 
|  | 4004       return(LF_OK); | 
|  | 4005     case LLOGIT: | 
|  | 4006       if (s1<=0.0) | 
|  | 4007       { des->cf[0] = -1000; | 
|  | 4008         return(LF_INFA); | 
|  | 4009       } | 
|  | 4010       if (s1>=s0) | 
|  | 4011       { des->cf[0] = 1000; | 
|  | 4012         return(LF_INFA); | 
|  | 4013       } | 
|  | 4014       des->cf[0] = logit(s1/s0)-sb/s0; | 
|  | 4015       return(LF_OK); | 
|  | 4016     case LINVER: | 
|  | 4017       if (s1<=0.0) | 
|  | 4018       { des->cf[0] = 1e100; | 
|  | 4019         return(LF_INFA); | 
|  | 4020       } | 
|  | 4021       des->cf[0] = s0/s1-sb/s0; | 
|  | 4022       return(LF_OK); | 
|  | 4023     case LSQRT: | 
|  | 4024       des->cf[0] = sqrt(s1/s0)-sb/s0; | 
|  | 4025       return(LF_OK); | 
|  | 4026     case LASIN: | 
|  | 4027       des->cf[0] = asin(sqrt(s1/s0))-sb/s0; | 
|  | 4028       return(LF_OK); | 
|  | 4029     default: | 
|  | 4030       LERR(("reginit: invalid link %d",link(sp))); | 
|  | 4031       return(LF_ERR); | 
|  | 4032   } | 
|  | 4033 } | 
|  | 4034 | 
|  | 4035 int lfinit(lfd,sp,des) | 
|  | 4036 lfdata *lfd; | 
|  | 4037 smpar *sp; | 
|  | 4038 design *des; | 
|  | 4039 { int initstat; | 
|  | 4040   des->xtwx.sm = (deg0(sp)<deg(sp)) ? JAC_CHOL : JAC_EIGD; | 
|  | 4041 | 
|  | 4042   designmatrix(lfd,sp,des); | 
|  | 4043   setfamily(sp); | 
|  | 4044   initstat = fami(sp)->initial(lfd,des,sp); | 
|  | 4045 | 
|  | 4046   return(initstat); | 
|  | 4047 } | 
|  | 4048 | 
|  | 4049 void lfiter(lfd,sp,des,maxit) | 
|  | 4050 lfdata *lfd; | 
|  | 4051 smpar *sp; | 
|  | 4052 design *des; | 
|  | 4053 int maxit; | 
|  | 4054 { int err; | 
|  | 4055   if (lf_debug>1) mut_printf(" lfiter: %8.5f\n",des->cf[0]); | 
|  | 4056 | 
|  | 4057   lf_des = des; | 
|  | 4058   lf_lfd = lfd; | 
|  | 4059   lf_sp  = sp; | 
|  | 4060 | 
|  | 4061   max_nr(fami(sp)->like, des->cf, des->oc, des->res, des->f1, | 
|  | 4062     &des->xtwx, des->p, maxit, lf_tol, &err); | 
|  | 4063   switch(err) | 
|  | 4064   { case NR_OK: return; | 
|  | 4065     case NR_NCON: | 
|  | 4066       WARN(("max_nr not converged")); | 
|  | 4067       return; | 
|  | 4068     case NR_NDIV: | 
|  | 4069       WARN(("max_nr reduction problem")); | 
|  | 4070       return; | 
|  | 4071   } | 
|  | 4072   WARN(("max_nr return status %d",err)); | 
|  | 4073 } | 
|  | 4074 | 
|  | 4075 int use_robust_scale(int tg) | 
|  | 4076 { if ((tg&64)==0) return(0); /* not quasi - no scale */ | 
|  | 4077   if (((tg&128)==0) & (((tg&63)!=TROBT) & ((tg&63)!=TCAUC))) return(0); | 
|  | 4078   return(1); | 
|  | 4079 } | 
|  | 4080 | 
|  | 4081 /* | 
|  | 4082  * noit not really needed any more, since | 
|  | 4083  * gauss->pcheck returns LF_DONE, and likereg NR_BREAK | 
|  | 4084  * in gaussian case. | 
|  | 4085  * nb: 0/1: does local neighborhood and weights need computing? | 
|  | 4086  * cv: 0/1: is variance/covariance matrix needed? | 
|  | 4087  */ | 
|  | 4088 int locfit(lfd,des,sp,noit,nb,cv) | 
|  | 4089 lfdata *lfd; | 
|  | 4090 design *des; | 
|  | 4091 smpar *sp; | 
|  | 4092 int noit, nb, cv; | 
|  | 4093 { int i; | 
|  | 4094 | 
|  | 4095   if (des->xev==NULL) | 
|  | 4096   { LERR(("locfit: NULL evaluation point?")); | 
|  | 4097     return(246); | 
|  | 4098   } | 
|  | 4099 | 
|  | 4100   if (lf_debug>0) | 
|  | 4101   { mut_printf("locfit: "); | 
|  | 4102     for (i=0; i<lfd->d; i++) mut_printf(" %10.6f",des->xev[i]); | 
|  | 4103     mut_printf("\n"); | 
|  | 4104   } | 
|  | 4105 | 
|  | 4106 /* the 1e-12 avoids problems that can occur with roundoff */ | 
|  | 4107   if (nb) nbhd(lfd,des,(int)(lfd->n*nn(sp)+1e-12),0,sp); | 
|  | 4108 | 
|  | 4109   lf_status = lfinit(lfd,sp,des); | 
|  | 4110 | 
|  | 4111   if (lf_status == LF_OK) | 
|  | 4112   { if (use_robust_scale(fam(sp))) | 
|  | 4113       lf_robust(lfd,sp,des,lf_maxit); | 
|  | 4114     else | 
|  | 4115     { if ((fam(sp)&63)==TQUANT) | 
|  | 4116         lfquantile(lfd,sp,des,lf_maxit); | 
|  | 4117       else | 
|  | 4118       { robscale = 1.0; | 
|  | 4119         lfiter(lfd,sp,des,lf_maxit); | 
|  | 4120       } | 
|  | 4121     } | 
|  | 4122   } | 
|  | 4123 | 
|  | 4124   if (lf_status == LF_DONE) lf_status = LF_OK; | 
|  | 4125   if (lf_status == LF_OOB) lf_status = LF_OK; | 
|  | 4126 | 
|  | 4127   if ((fam(sp)&63)==TDEN) /* convert from rate to density */ | 
|  | 4128   { switch(link(sp)) | 
|  | 4129     { case LLOG: | 
|  | 4130         des->cf[0] -= log(des->smwt); | 
|  | 4131         break; | 
|  | 4132       case LIDENT: | 
|  | 4133         multmatscal(des->cf,1.0/des->smwt,des->p); | 
|  | 4134         break; | 
|  | 4135       default: LERR(("Density adjustment; invalid link")); | 
|  | 4136     } | 
|  | 4137   } | 
|  | 4138 | 
|  | 4139   /* variance calculations, if requested */ | 
|  | 4140   if (cv) | 
|  | 4141   { switch(lf_status) | 
|  | 4142     { case LF_PF:  /* for these cases, variance calc. would likely fail. */ | 
|  | 4143       case LF_NOPT: | 
|  | 4144       case LF_NSLN: | 
|  | 4145       case LF_INFA: | 
|  | 4146       case LF_DEMP: | 
|  | 4147       case LF_XOOR: | 
|  | 4148       case LF_DNOP: | 
|  | 4149       case LF_BADP: | 
|  | 4150         des->llk = des->tr0 = des->tr1 = des->tr2 = 0.0; | 
|  | 4151         setzero(des->V,des->p*des->p); | 
|  | 4152         setzero(des->f1,des->p); | 
|  | 4153         break; | 
|  | 4154       default: lf_vcov(lfd,sp,des); | 
|  | 4155     } | 
|  | 4156   } | 
|  | 4157 | 
|  | 4158   return(lf_status); | 
|  | 4159 } | 
|  | 4160 | 
|  | 4161 void lf_status_msg(status) | 
|  | 4162 int status; | 
|  | 4163 { switch(status) | 
|  | 4164 { case LF_OK: return; | 
|  | 4165   case LF_NCON: WARN(("locfit did not converge")); return; | 
|  | 4166   case LF_OOB: WARN(("parameters out of bounds")); return; | 
|  | 4167   case LF_PF: WARN(("perfect fit")); return; | 
|  | 4168   case LF_NOPT: WARN(("no points with non-zero weight")); return; | 
|  | 4169   case LF_NSLN: WARN(("no solution")); return; | 
|  | 4170   case LF_INFA: WARN(("initial value problem")); return; | 
|  | 4171   case LF_DEMP: WARN(("density estimate, empty integration region")); return; | 
|  | 4172   case LF_XOOR: WARN(("procv: fit point outside xlim region")); return; | 
|  | 4173   case LF_DNOP: WARN(("density estimation -- insufficient points in smoothing window")); return; | 
|  | 4174   case LF_BADP: WARN(("bad parameters")); return; | 
|  | 4175   default: WARN(("procv: unknown return code %d",status)); return; | 
|  | 4176 } } | 
|  | 4177 /* | 
|  | 4178  * Copyright 1996-2006 Catherine Loader. | 
|  | 4179  */ | 
|  | 4180 /* | 
|  | 4181  *   Compute minimax weights for local regression. | 
|  | 4182  */ | 
|  | 4183 | 
|  | 4184 #include "locf.h" | 
|  | 4185 #define NR_EMPTY 834 | 
|  | 4186 | 
|  | 4187 int mmsm_ct; | 
|  | 4188 | 
|  | 4189 static int debug=0; | 
|  | 4190 #define CONVTOL 1.0e-8 | 
|  | 4191 #define SINGTOL 1.0e-10 | 
|  | 4192 #define NR_SINGULAR 100 | 
|  | 4193 | 
|  | 4194 static lfdata *mm_lfd; | 
|  | 4195 static design *mm_des; | 
|  | 4196 static double mm_gam, mmf, lb; | 
|  | 4197 static int st; | 
|  | 4198 | 
|  | 4199 double ipower(x,n) /* use for n not too large!! */ | 
|  | 4200 double x; | 
|  | 4201 int n; | 
|  | 4202 { if (n==0) return(1.0); | 
|  | 4203   if (n<0) return(1/ipower(x,-n)); | 
|  | 4204   return(x*ipower(x,n-1)); | 
|  | 4205 } | 
|  | 4206 | 
|  | 4207 double setmmwt(des,a,gam) | 
|  | 4208 design *des; | 
|  | 4209 double *a, gam; | 
|  | 4210 { double ip, w0, w1, sw, wt; | 
|  | 4211   int i; | 
|  | 4212   sw = 0.0; | 
|  | 4213   for (i=0; i<mm_lfd->n; i++) | 
|  | 4214   { ip = innerprod(a,d_xi(des,i),des->p); | 
|  | 4215     wt = prwt(mm_lfd,i); | 
|  | 4216     w0 = ip - gam*des->wd[i]; | 
|  | 4217     w1 = ip + gam*des->wd[i]; | 
|  | 4218     wght(des,i) = 0.0; | 
|  | 4219     if (w0>0) { wght(des,i) = w0; sw += wt*w0*w0; } | 
|  | 4220     if (w1<0) { wght(des,i) = w1; sw += wt*w1*w1; } | 
|  | 4221   } | 
|  | 4222   return(sw/2-a[0]); | 
|  | 4223 } | 
|  | 4224 | 
|  | 4225 /* compute sum_{w!=0} AA^T; e1-sum wA  */ | 
|  | 4226 int mmsums(des,coef,f,z,J) | 
|  | 4227 design *des; | 
|  | 4228 double *coef, *f, *z; | 
|  | 4229 jacobian *J; | 
|  | 4230 { int ct, i, j, p, sing; | 
|  | 4231   double *A; | 
|  | 4232 | 
|  | 4233 mmsm_ct++; | 
|  | 4234   A = J->Z; | 
|  | 4235   *f = setmmwt(des,coef,mm_gam); | 
|  | 4236 | 
|  | 4237   p = des->p; | 
|  | 4238   setzero(A,p*p); | 
|  | 4239   setzero(z,p); | 
|  | 4240   z[0] = 1.0; | 
|  | 4241   ct = 0; | 
|  | 4242 | 
|  | 4243   for (i=0; i<mm_lfd->n; i++) | 
|  | 4244     if (wght(des,i)!=0.0) | 
|  | 4245     { addouter(A,d_xi(des,i),d_xi(des,i),p,prwt(mm_lfd,i)); | 
|  | 4246       for (j=0; j<p; j++) z[j] -= prwt(mm_lfd,i)*wght(des,i)*d_xij(des,i,j); | 
|  | 4247       ct++; | 
|  | 4248     } | 
|  | 4249   if (ct==0) return(NR_EMPTY); | 
|  | 4250 | 
|  | 4251   J->st = JAC_RAW; | 
|  | 4252   J->p = p; | 
|  | 4253   jacob_dec(J,JAC_EIGD); | 
|  | 4254 | 
|  | 4255   sing = 0; | 
|  | 4256   for (i=0; i<p; i++) sing |= (J->Z[i*p+i]<SINGTOL); | 
|  | 4257   if ((debug) & (sing)) mut_printf("SINGULAR!!!!\n"); | 
|  | 4258 | 
|  | 4259   return((sing) ? NR_SINGULAR : NR_OK); | 
|  | 4260 } | 
|  | 4261 | 
|  | 4262 int descenddir(des,coef,dlt,f,af) | 
|  | 4263 design *des; | 
|  | 4264 double *coef, *dlt, *f; | 
|  | 4265 int af; | 
|  | 4266 { int i, p; | 
|  | 4267   double f0, *oc; | 
|  | 4268 | 
|  | 4269   if (debug) mut_printf("descenddir: %8.5f %8.5f\n",dlt[0],dlt[1]); | 
|  | 4270 | 
|  | 4271   f0 = *f; | 
|  | 4272   oc = des->oc; | 
|  | 4273   p = des->p; | 
|  | 4274   memcpy(oc,coef,p*sizeof(double)); | 
|  | 4275 | 
|  | 4276   for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | 
|  | 4277   st = mmsums(des,coef,f,des->f1,&des->xtwx); | 
|  | 4278 | 
|  | 4279   if (*f>f0) /* halve till we drop */ | 
|  | 4280   { while (*f>f0) | 
|  | 4281     { lb = lb/2.0; | 
|  | 4282       for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | 
|  | 4283       st = mmsums(des,coef,f,des->f1,&des->xtwx); | 
|  | 4284     } | 
|  | 4285     return(st); | 
|  | 4286   } | 
|  | 4287 | 
|  | 4288   if (!af) return(st); | 
|  | 4289 | 
|  | 4290   /* double */ | 
|  | 4291   while (*f<f0) | 
|  | 4292   { f0 = *f; | 
|  | 4293     lb *= 2.0; | 
|  | 4294     for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | 
|  | 4295     st = mmsums(des,coef,f,des->f1,&des->xtwx); | 
|  | 4296   } | 
|  | 4297 | 
|  | 4298   lb /= 2.0; | 
|  | 4299   for (i=0; i<p; i++) coef[i] = oc[i]+lb*dlt[i]; | 
|  | 4300   st = mmsums(des,coef,f,des->f1,&des->xtwx); | 
|  | 4301 | 
|  | 4302   return(st); | 
|  | 4303 } | 
|  | 4304 | 
|  | 4305 int mm_initial(des) | 
|  | 4306 design *des; | 
|  | 4307 { double *dlt; | 
|  | 4308 | 
|  | 4309   dlt = des->ss; | 
|  | 4310 | 
|  | 4311   setzero(des->cf,des->p); | 
|  | 4312   st = mmsums(des,des->cf,&mmf,des->f1,&des->xtwx); | 
|  | 4313 | 
|  | 4314   setzero(dlt,des->p); | 
|  | 4315   dlt[0] = 1; | 
|  | 4316   lb = 1.0; | 
|  | 4317   st = descenddir(des,des->cf,dlt,&mmf,1); | 
|  | 4318   return(st); | 
|  | 4319 } | 
|  | 4320 | 
|  | 4321 void getsingdir(des,dlt) | 
|  | 4322 design *des; | 
|  | 4323 double *dlt; | 
|  | 4324 { double f, sw, c0; | 
|  | 4325   int i, j, p, sd; | 
|  | 4326 | 
|  | 4327   sd = -1; p = des->p; | 
|  | 4328   setzero(dlt,p); | 
|  | 4329   for (i=0; i<p; i++) if (des->xtwx.Z[i*p+i]<SINGTOL) sd = i; | 
|  | 4330   if (sd==-1) | 
|  | 4331   { mut_printf("getsingdir: nonsing?\n"); | 
|  | 4332     return; | 
|  | 4333   } | 
|  | 4334   if (des->xtwx.dg[sd]>0) | 
|  | 4335     for (i=0; i<p; i++) dlt[i] = des->xtwx.Q[p*i+sd]*des->xtwx.dg[i]; | 
|  | 4336   else | 
|  | 4337   { dlt[sd] = 1.0; | 
|  | 4338   } | 
|  | 4339 | 
|  | 4340   c0 = innerprod(dlt,des->f1,p); | 
|  | 4341   if (c0<0) for (i=0; i<p; i++) dlt[i] = -dlt[i]; | 
|  | 4342 } | 
|  | 4343 | 
|  | 4344 void mmax(coef, old_coef, delta, J, p, maxit, tol, err) | 
|  | 4345 double *coef, *old_coef, *delta, tol; | 
|  | 4346 int p, maxit, *err; | 
|  | 4347 jacobian *J; | 
|  | 4348 { double old_f, lambda; | 
|  | 4349   int i, j; | 
|  | 4350 | 
|  | 4351   *err = NR_OK; | 
|  | 4352 | 
|  | 4353   for (j=0; j<maxit; j++) | 
|  | 4354   { memcpy(old_coef,coef,p*sizeof(double)); | 
|  | 4355     old_f = mmf; | 
|  | 4356 | 
|  | 4357     if (st == NR_SINGULAR) | 
|  | 4358     { | 
|  | 4359       getsingdir(mm_des,delta); | 
|  | 4360       st = descenddir(mm_des,coef,delta,&mmf,1); | 
|  | 4361     } | 
|  | 4362     if (st == NR_EMPTY) | 
|  | 4363     { | 
|  | 4364       setzero(delta,p); | 
|  | 4365       delta[0] = 1.0; | 
|  | 4366       st = descenddir(mm_des,coef,delta,&mmf,1); | 
|  | 4367     } | 
|  | 4368     if (st == NR_OK) | 
|  | 4369     { | 
|  | 4370       lb = 1.0; | 
|  | 4371       jacob_solve(J,mm_des->f1); | 
|  | 4372       memcpy(delta,mm_des->f1,p*sizeof(double)); | 
|  | 4373       st = descenddir(mm_des,coef,delta,&mmf,0); | 
|  | 4374     } | 
|  | 4375 | 
|  | 4376     if ((j>0) & (fabs(mmf-old_f)<tol)) return; | 
|  | 4377   } | 
|  | 4378   WARN(("findab not converged")); | 
|  | 4379   *err = NR_NCON; | 
|  | 4380   return; | 
|  | 4381 } | 
|  | 4382 | 
|  | 4383 double findab(gam) | 
|  | 4384 double gam; | 
|  | 4385 { double sl; | 
|  | 4386   int i, p, nr_stat; | 
|  | 4387 | 
|  | 4388   if (debug) mut_printf("  findab: gam %8.5f\n",gam); | 
|  | 4389   mm_gam = gam; | 
|  | 4390   p = mm_des->p; | 
|  | 4391   lb = 1.0; | 
|  | 4392   st = mm_initial(mm_des); | 
|  | 4393 | 
|  | 4394     mmax(mm_des->cf, mm_des->oc, mm_des->ss, | 
|  | 4395        &mm_des->xtwx, p, lf_maxit, CONVTOL, &nr_stat); | 
|  | 4396 | 
|  | 4397   sl = 0.0; | 
|  | 4398   for (i=0; i<mm_lfd->n; i++) sl += fabs(wght(mm_des,i))*mm_des->wd[i]; | 
|  | 4399 | 
|  | 4400   if (debug) mut_printf("  sl %8.5f  gam %8.5f    %8.5f %d\n", sl,gam,sl-gam,nr_stat); | 
|  | 4401   return(sl-gam); | 
|  | 4402 } | 
|  | 4403 | 
|  | 4404 double weightmm(coef,di,ff,gam) | 
|  | 4405 double *coef, di, *ff, gam; | 
|  | 4406 { double y1, y2, ip; | 
|  | 4407   ip = innerprod(ff,coef,mm_des->p); | 
|  | 4408   y1 = ip-gam*di; if (y1>0) return(y1/ip); | 
|  | 4409   y2 = ip+gam*di; if (y2<0) return(y2/ip); | 
|  | 4410   return(0.0); | 
|  | 4411 } | 
|  | 4412 | 
|  | 4413 double minmax(lfd,des,sp) | 
|  | 4414 lfdata *lfd; | 
|  | 4415 design *des; | 
|  | 4416 smpar *sp; | 
|  | 4417 { double h, u[MXDIM], gam; | 
|  | 4418   int i, j, m, d1, p1, err_flag; | 
|  | 4419 | 
|  | 4420   if (debug) mut_printf("minmax: x %8.5f\n",des->xev[0]); | 
|  | 4421   mm_lfd = lfd; | 
|  | 4422   mm_des = des; | 
|  | 4423 | 
|  | 4424 mmsm_ct = 0; | 
|  | 4425   d1 = deg(sp)+1; | 
|  | 4426   p1 = factorial(d1); | 
|  | 4427   for (i=0; i<lfd->n; i++) | 
|  | 4428   { for (j=0; j<lfd->d; j++) u[j] = datum(lfd,j,i); | 
|  | 4429     des->wd[i] = sp->nn/p1*ipower(dist(des,i),d1); | 
|  | 4430     des->ind[i] = i; | 
|  | 4431     fitfun(lfd, sp, u,des->xev,d_xi(des,i),NULL); | 
|  | 4432   } | 
|  | 4433 | 
|  | 4434 /* find gamma (i.e. solve eqn 13.17 from book), using the secant method. | 
|  | 4435  * As a side effect, this finds the other minimax coefficients. | 
|  | 4436  * Note that 13.17 is rewritten as | 
|  | 4437  *   g2 = sum |l_i(x)| (||xi-x||^(p+1) M/(s*(p+1)!)) | 
|  | 4438  * where g2 = gamma * s * (p+1)! / M. The gam variable below is g2. | 
|  | 4439  * The smoothing parameter is sp->nn == M/s. | 
|  | 4440  */ | 
|  | 4441   gam = solve_secant(findab, 0.0, 0.0,1.0, 0.0000001, BDF_EXPRIGHT, &err_flag); | 
|  | 4442 | 
|  | 4443 /* | 
|  | 4444  * Set the smoothing weights, in preparation for the actual fit. | 
|  | 4445  */ | 
|  | 4446   h = 0.0; m = 0; | 
|  | 4447   for (i=0; i<lfd->n; i++) | 
|  | 4448   { wght(des,i) = weightmm(des->cf, des->wd[i],d_xi(des,i),gam); | 
|  | 4449     if (wght(des,i)>0) | 
|  | 4450     { if (dist(des,i)>h) h = dist(des,i); | 
|  | 4451       des->ind[m] = i; | 
|  | 4452       m++; | 
|  | 4453     } | 
|  | 4454   } | 
|  | 4455   des->n = m; | 
|  | 4456   return(h); | 
|  | 4457 } | 
|  | 4458 /* | 
|  | 4459  * Copyright 1996-2006 Catherine Loader. | 
|  | 4460  */ | 
|  | 4461 /* | 
|  | 4462  * | 
|  | 4463  *  Defines the weight functions and related quantities used | 
|  | 4464  *  in LOCFIT. | 
|  | 4465  */ | 
|  | 4466 | 
|  | 4467 #include "locf.h" | 
|  | 4468 | 
|  | 4469 /* | 
|  | 4470  * convert kernel and kernel type strings to numeric codes. | 
|  | 4471  */ | 
|  | 4472 #define NWFUNS 13 | 
|  | 4473 static char *wfuns[NWFUNS] = { | 
|  | 4474   "rectangular", "epanechnikov", "bisquare",    "tricube", | 
|  | 4475   "triweight",   "gaussian",     "triangular",  "ququ", | 
|  | 4476   "6cub",        "minimax",      "exponential", "maclean", "parametric" }; | 
|  | 4477 static int wvals[NWFUNS] = { WRECT, WEPAN, WBISQ, WTCUB, | 
|  | 4478   WTRWT, WGAUS, WTRIA, WQUQU, W6CUB, WMINM, WEXPL, WMACL, WPARM }; | 
|  | 4479 int lfkernel(char *z) | 
|  | 4480 { return(pmatch(z, wfuns, wvals, NWFUNS, WTCUB)); | 
|  | 4481 } | 
|  | 4482 | 
|  | 4483 #define NKTYPE 5 | 
|  | 4484 static char *ktype[NKTYPE] = { "spherical", "product", "center", "lm", "zeon" }; | 
|  | 4485 static int   kvals[NKTYPE] = { KSPH, KPROD, KCE, KLM, KZEON }; | 
|  | 4486 int lfketype(char *z) | 
|  | 4487 { return(pmatch(z, ktype, kvals, NKTYPE, KSPH)); | 
|  | 4488 } | 
|  | 4489 | 
|  | 4490 /* The weight functions themselves.  Used everywhere. */ | 
|  | 4491 double W(u,ker) | 
|  | 4492 double u; | 
|  | 4493 int ker; | 
|  | 4494 { u = fabs(u); | 
|  | 4495   switch(ker) | 
|  | 4496   { case WRECT: return((u>1) ? 0.0 : 1.0); | 
|  | 4497     case WEPAN: return((u>1) ? 0.0 : 1-u*u); | 
|  | 4498     case WBISQ: if (u>1) return(0.0); | 
|  | 4499                 u = 1-u*u; return(u*u); | 
|  | 4500     case WTCUB: if (u>1) return(0.0); | 
|  | 4501                 u = 1-u*u*u; return(u*u*u); | 
|  | 4502     case WTRWT: if (u>1) return(0.0); | 
|  | 4503                 u = 1-u*u; return(u*u*u); | 
|  | 4504     case WQUQU: if (u>1) return(0.0); | 
|  | 4505                 u = 1-u*u; return(u*u*u*u); | 
|  | 4506     case WTRIA: if (u>1) return(0.0); | 
|  | 4507                 return(1-u); | 
|  | 4508     case W6CUB: if (u>1) return(0.0); | 
|  | 4509                 u = 1-u*u*u; u = u*u*u; return(u*u); | 
|  | 4510     case WGAUS: return(exp(-SQR(GFACT*u)/2.0)); | 
|  | 4511     case WEXPL: return(exp(-EFACT*u)); | 
|  | 4512     case WMACL: return(1/((u+1.0e-100)*(u+1.0e-100))); | 
|  | 4513     case WMINM: LERR(("WMINM in W")); | 
|  | 4514                 return(0.0); | 
|  | 4515     case WPARM: return(1.0); | 
|  | 4516   } | 
|  | 4517   LERR(("W(): Unknown kernel %d\n",ker)); | 
|  | 4518   return(1.0); | 
|  | 4519 } | 
|  | 4520 | 
|  | 4521 int iscompact(ker) | 
|  | 4522 int ker; | 
|  | 4523 { if ((ker==WEXPL) | (ker==WGAUS) | (ker==WMACL) | (ker==WPARM)) return(0); | 
|  | 4524   return(1); | 
|  | 4525 } | 
|  | 4526 | 
|  | 4527 double weightprod(lfd,u,h,ker) | 
|  | 4528 lfdata *lfd; | 
|  | 4529 double *u, h; | 
|  | 4530 int ker; | 
|  | 4531 { int i; | 
|  | 4532   double sc, w; | 
|  | 4533   w = 1.0; | 
|  | 4534   for (i=0; i<lfd->d; i++) | 
|  | 4535   { sc = lfd->sca[i]; | 
|  | 4536     switch(lfd->sty[i]) | 
|  | 4537     { case STLEFT: | 
|  | 4538         if (u[i]>0) return(0.0); | 
|  | 4539         w *= W(-u[i]/(h*sc),ker); | 
|  | 4540         break; | 
|  | 4541       case STRIGH: | 
|  | 4542         if (u[i]<0) return(0.0); | 
|  | 4543         w *= W(u[i]/(h*sc),ker); | 
|  | 4544         break; | 
|  | 4545       case STANGL: | 
|  | 4546         w *= W(2*fabs(sin(u[i]/(2*sc)))/h,ker); | 
|  | 4547         break; | 
|  | 4548       case STCPAR: | 
|  | 4549         break; | 
|  | 4550       default: | 
|  | 4551         w *= W(fabs(u[i])/(h*sc),ker); | 
|  | 4552     } | 
|  | 4553     if (w==0.0) return(w); | 
|  | 4554   } | 
|  | 4555   return(w); | 
|  | 4556 } | 
|  | 4557 | 
|  | 4558 double weightsph(lfd,u,h,ker, hasdi,di) | 
|  | 4559 lfdata *lfd; | 
|  | 4560 double *u, h, di; | 
|  | 4561 int ker, hasdi; | 
|  | 4562 { int i; | 
|  | 4563 | 
|  | 4564   if (!hasdi) di = rho(u,lfd->sca,lfd->d,KSPH,lfd->sty); | 
|  | 4565 | 
|  | 4566   for (i=0; i<lfd->d; i++) | 
|  | 4567   { if ((lfd->sty[i]==STLEFT) && (u[i]>0.0)) return(0.0); | 
|  | 4568     if ((lfd->sty[i]==STRIGH) && (u[i]<0.0)) return(0.0); | 
|  | 4569   } | 
|  | 4570   if (h==0) return((di==0.0) ? 1.0 : 0.0); | 
|  | 4571 | 
|  | 4572   return(W(di/h,ker)); | 
|  | 4573 } | 
|  | 4574 | 
|  | 4575 double weight(lfd,sp,x,t,h, hasdi,di) | 
|  | 4576 lfdata *lfd; | 
|  | 4577 smpar *sp; | 
|  | 4578 double *x, *t, h, di; | 
|  | 4579 int hasdi; | 
|  | 4580 { double u[MXDIM]; | 
|  | 4581   int i; | 
|  | 4582   for (i=0; i<lfd->d; i++) u[i] = (t==NULL) ? x[i] : x[i]-t[i]; | 
|  | 4583   switch(kt(sp)) | 
|  | 4584   { case KPROD: return(weightprod(lfd,u,h,ker(sp))); | 
|  | 4585     case KSPH:  return(weightsph(lfd,u,h,ker(sp), hasdi,di)); | 
|  | 4586   } | 
|  | 4587   LERR(("weight: unknown kernel type %d",kt(sp))); | 
|  | 4588   return(1.0); | 
|  | 4589 } | 
|  | 4590 | 
|  | 4591 double sgn(x) | 
|  | 4592 double x; | 
|  | 4593 { if (x>0) return(1.0); | 
|  | 4594   if (x<0) return(-1.0); | 
|  | 4595   return(0.0); | 
|  | 4596 } | 
|  | 4597 | 
|  | 4598 double WdW(u,ker) /* W'(u)/W(u) */ | 
|  | 4599 double u; | 
|  | 4600 int ker; | 
|  | 4601 { double eps=1.0e-10; | 
|  | 4602   if (ker==WGAUS) return(-GFACT*GFACT*u); | 
|  | 4603   if (ker==WPARM) return(0.0); | 
|  | 4604   if (fabs(u)>=1) return(0.0); | 
|  | 4605   switch(ker) | 
|  | 4606   { case WRECT: return(0.0); | 
|  | 4607     case WTRIA: return(-sgn(u)/(1-fabs(u)+eps)); | 
|  | 4608     case WEPAN: return(-2*u/(1-u*u+eps)); | 
|  | 4609     case WBISQ: return(-4*u/(1-u*u+eps)); | 
|  | 4610     case WTRWT: return(-6*u/(1-u*u+eps)); | 
|  | 4611     case WTCUB: return(-9*sgn(u)*u*u/(1-u*u*fabs(u)+eps)); | 
|  | 4612     case WEXPL: return((u>0) ? -EFACT : EFACT); | 
|  | 4613   } | 
|  | 4614   LERR(("WdW: invalid kernel")); | 
|  | 4615   return(0.0); | 
|  | 4616 } | 
|  | 4617 | 
|  | 4618 /* deriv. weights .. spherical, product etc | 
|  | 4619    u, sc, sty needed only in relevant direction | 
|  | 4620    Acutally, returns (d/dx W(||x||/h) ) / W(.) | 
|  | 4621 */ | 
|  | 4622 double weightd(u,sc,d,ker,kt,h,sty,di) | 
|  | 4623 double u, sc, h, di; | 
|  | 4624 int d, ker, kt, sty; | 
|  | 4625 { if (sty==STANGL) | 
|  | 4626   { if (kt==KPROD) | 
|  | 4627       return(-WdW(2*sin(u/(2*sc)),ker)*cos(u/(2*sc))/(h*sc)); | 
|  | 4628     if (di==0.0) return(0.0); | 
|  | 4629     return(-WdW(di/h,ker)*sin(u/sc)/(h*sc*di)); | 
|  | 4630   } | 
|  | 4631   if (sty==STCPAR) return(0.0); | 
|  | 4632   if (kt==KPROD) | 
|  | 4633     return(-WdW(u/(h*sc),ker)/(h*sc)); | 
|  | 4634   if (di==0.0) return(0.0); | 
|  | 4635   return(-WdW(di/h,ker)*u/(h*di*sc*sc)); | 
|  | 4636 } | 
|  | 4637 | 
|  | 4638 double weightdd(u,sc,d,ker,kt,h,sty,di,i0,i1) | 
|  | 4639 double *u, *sc, h, di; | 
|  | 4640 int d, ker, kt, i0, i1, *sty; | 
|  | 4641 { double w; | 
|  | 4642   w = 1; | 
|  | 4643   if (kt==KPROD) | 
|  | 4644   { | 
|  | 4645     w = WdW(u[i0]/(h*sc[i0]),ker)*WdW(u[i1]/(h*sc[i1]),ker)/(h*h*sc[i0]*sc[i1]); | 
|  | 4646   } | 
|  | 4647   return(0.0); | 
|  | 4648 } | 
|  | 4649 | 
|  | 4650 /* Derivatives W'(u)/u. | 
|  | 4651    Used in simult. conf. band computations, | 
|  | 4652    and kernel density bandwidth selectors. */ | 
|  | 4653 double Wd(u,ker) | 
|  | 4654 double u; | 
|  | 4655 int ker; | 
|  | 4656 { double v; | 
|  | 4657   if (ker==WGAUS) return(-SQR(GFACT)*exp(-SQR(GFACT*u)/2)); | 
|  | 4658   if (ker==WPARM) return(0.0); | 
|  | 4659   if (fabs(u)>1) return(0.0); | 
|  | 4660   switch(ker) | 
|  | 4661   { case WEPAN: return(-2.0); | 
|  | 4662     case WBISQ: return(-4*(1-u*u)); | 
|  | 4663     case WTCUB: v = 1-u*u*u; | 
|  | 4664                 return(-9*v*v*u); | 
|  | 4665     case WTRWT: v = 1-u*u; | 
|  | 4666                 return(-6*v*v); | 
|  | 4667     default: LERR(("Invalid kernel %d in Wd",ker)); | 
|  | 4668   } | 
|  | 4669   return(0.0); | 
|  | 4670 } | 
|  | 4671 | 
|  | 4672 /* Second derivatives W''(u)-W'(u)/u. | 
|  | 4673    used in simult. conf. band computations in >1 dimension. */ | 
|  | 4674 double Wdd(u,ker) | 
|  | 4675 double u; | 
|  | 4676 int ker; | 
|  | 4677 { double v; | 
|  | 4678   if (ker==WGAUS) return(SQR(u*GFACT*GFACT)*exp(-SQR(u*GFACT)/2)); | 
|  | 4679   if (ker==WPARM) return(0.0); | 
|  | 4680   if (u>1) return(0.0); | 
|  | 4681   switch(ker) | 
|  | 4682   { case WBISQ: return(12*u*u); | 
|  | 4683     case WTCUB: v = 1-u*u*u; | 
|  | 4684                 return(-9*u*v*v+54*u*u*u*u*v); | 
|  | 4685     case WTRWT: return(24*u*u*(1-u*u)); | 
|  | 4686     default: LERR(("Invalid kernel %d in Wdd",ker)); | 
|  | 4687   } | 
|  | 4688   return(0.0); | 
|  | 4689 } | 
|  | 4690 | 
|  | 4691 /* int u1^j1..ud^jd W(u) du. | 
|  | 4692    Used for local log-linear density estimation. | 
|  | 4693    Assume all j_i are even. | 
|  | 4694    Also in some bandwidth selection. | 
|  | 4695 */ | 
|  | 4696 double wint(d,j,nj,ker) | 
|  | 4697 int d, *j, nj, ker; | 
|  | 4698 { double I, z; | 
|  | 4699   int k, dj; | 
|  | 4700   dj = d; | 
|  | 4701   for (k=0; k<nj; k++) dj += j[k]; | 
|  | 4702   switch(ker) /* int_0^1 u^(dj-1) W(u)du  */ | 
|  | 4703   { case WRECT: I = 1.0/dj; break; | 
|  | 4704     case WEPAN: I = 2.0/(dj*(dj+2)); break; | 
|  | 4705     case WBISQ: I = 8.0/(dj*(dj+2)*(dj+4)); break; | 
|  | 4706     case WTCUB: I = 162.0/(dj*(dj+3)*(dj+6)*(dj+9)); break; | 
|  | 4707     case WTRWT: I = 48.0/(dj*(dj+2)*(dj+4)*(dj+6)); break; | 
|  | 4708     case WTRIA: I = 1.0/(dj*(dj+1)); break; | 
|  | 4709     case WQUQU: I = 384.0/(dj*(dj+2)*(dj+4)*(dj+6)*(dj+8)); break; | 
|  | 4710     case W6CUB: I = 524880.0/(dj*(dj+3)*(dj+6)*(dj+9)*(dj+12)*(dj+15)*(dj+18)); break; | 
|  | 4711     case WGAUS: switch(d) | 
|  | 4712                 { case 1: I = S2PI/GFACT; break; | 
|  | 4713                   case 2: I = 2*PI/(GFACT*GFACT); break; | 
|  | 4714                   default: I = exp(d*log(S2PI/GFACT)); /* for nj=0 */ | 
|  | 4715                 } | 
|  | 4716                 for (k=0; k<nj; k++) /* deliberate drop */ | 
|  | 4717                   switch(j[k]) | 
|  | 4718                   { case 4: I *= 3.0/(GFACT*GFACT); | 
|  | 4719                     case 2: I /= GFACT*GFACT; | 
|  | 4720                   } | 
|  | 4721                 return(I); | 
|  | 4722     case WEXPL: I = factorial(dj-1)/ipower(EFACT,dj); break; | 
|  | 4723     default: LERR(("Unknown kernel %d in exacint",ker)); | 
|  | 4724   } | 
|  | 4725   if ((d==1) && (nj==0)) return(2*I); /* common case quick */ | 
|  | 4726   z = (d-nj)*LOGPI/2-mut_lgammai(dj); | 
|  | 4727   for (k=0; k<nj; k++) z += mut_lgammai(j[k]+1); | 
|  | 4728   return(2*I*exp(z)); | 
|  | 4729 } | 
|  | 4730 | 
|  | 4731 /* taylor series expansion of weight function around x. | 
|  | 4732    0 and 1 are common arguments, so are worth programming | 
|  | 4733    as special cases. | 
|  | 4734    Used in density estimation. | 
|  | 4735 */ | 
|  | 4736 int wtaylor(f,x,ker) | 
|  | 4737 double *f, x; | 
|  | 4738 int ker; | 
|  | 4739 { double v; | 
|  | 4740   switch(ker) | 
|  | 4741   { case WRECT: | 
|  | 4742       f[0] = 1.0; | 
|  | 4743       return(1); | 
|  | 4744     case WEPAN: | 
|  | 4745       f[0] = 1-x*x; f[1] = -2*x; f[2] = -1; | 
|  | 4746       return(3); | 
|  | 4747     case WBISQ: | 
|  | 4748       v = 1-x*x; | 
|  | 4749       f[0] = v*v;   f[1] = -4*x*v; f[2] = 4-6*v; | 
|  | 4750       f[3] = 4*x;   f[4] = 1; | 
|  | 4751       return(5); | 
|  | 4752     case WTCUB: | 
|  | 4753       if (x==1.0) | 
|  | 4754       { f[0] = f[1] = f[2] = 0; f[3] = -27; f[4] = -81; f[5] = -108; | 
|  | 4755         f[6] = -81; f[7] = -36; f[8] = -9; f[9] = -1; return(10); } | 
|  | 4756       if (x==0.0) | 
|  | 4757       { f[1] = f[2] = f[4] = f[5] = f[7] = f[8] = 0; | 
|  | 4758         f[0] = 1; f[3] = -3; f[6] = 3; f[9] = -1; return(10); } | 
|  | 4759       v = 1-x*x*x; | 
|  | 4760       f[0] = v*v*v; f[1] = -9*v*v*x*x; f[2] = x*v*(27-36*v); | 
|  | 4761       f[3] = -27+v*(108-84*v);         f[4] = -3*x*x*(27-42*v); | 
|  | 4762       f[5] = x*(-108+126*v);           f[6] = -81+84*v; | 
|  | 4763       f[7] = -36*x*x; f[8] = -9*x;     f[9] = -1; | 
|  | 4764       return(10); | 
|  | 4765     case WTRWT: | 
|  | 4766       v = 1-x*x; | 
|  | 4767       f[0] = v*v*v; f[1] = -6*x*v*v; f[2] = v*(12-15*v); | 
|  | 4768       f[3] = x*(20*v-8); f[4] = 15*v-12; f[5] = -6; f[6] = -1; | 
|  | 4769       return(7); | 
|  | 4770     case WTRIA: | 
|  | 4771       f[0] = 1-x; f[1] = -1; | 
|  | 4772       return(2); | 
|  | 4773     case WQUQU: | 
|  | 4774       v = 1-x*x; | 
|  | 4775       f[0] = v*v*v*v; f[1] = -8*x*v*v*v; f[2] = v*v*(24-28*v); | 
|  | 4776       f[3] = v*x*(56*v-32); f[4] = (70*v-80)*v+16; f[5] = x*(32-56*v); | 
|  | 4777       f[6] = 24-28*v; f[7] = 8*x; f[8] = 1; | 
|  | 4778       return(9); | 
|  | 4779     case W6CUB: | 
|  | 4780       v = 1-x*x*x; | 
|  | 4781       f[0] = v*v*v*v*v*v; | 
|  | 4782       f[1] = -18*x*x*v*v*v*v*v; | 
|  | 4783       f[2] = x*v*v*v*v*(135-153*v); | 
|  | 4784       f[3] = v*v*v*(-540+v*(1350-816*v)); | 
|  | 4785       f[4] = x*x*v*v*(1215-v*(4050-v*3060)); | 
|  | 4786       f[5] = x*v*(-1458+v*(9234+v*(-16254+v*8568))); | 
|  | 4787       f[6] = 729-v*(10206-v*(35154-v*(44226-v*18564))); | 
|  | 4788       f[7] = x*x*(4374-v*(30132-v*(56862-v*31824))); | 
|  | 4789       f[8] = x*(12393-v*(61479-v*(92664-v*43758))); | 
|  | 4790       f[9] = 21870-v*(89100-v*(115830-v*48620)); | 
|  | 4791       f[10]= x*x*(26730-v*(69498-v*43758)); | 
|  | 4792       f[11]= x*(23814-v*(55458-v*31824)); | 
|  | 4793       f[12]= 15849-v*(34398-v*18564); | 
|  | 4794       f[13]= x*x*(7938-8568*v); | 
|  | 4795       f[14]= x*(2970-3060*v); | 
|  | 4796       f[15]= 810-816*v; | 
|  | 4797       f[16]= 153*x*x; | 
|  | 4798       f[17]= 18*x; | 
|  | 4799       f[18]= 1; | 
|  | 4800       return(19); | 
|  | 4801   } | 
|  | 4802   LERR(("Invalid kernel %d in wtaylor",ker)); | 
|  | 4803   return(0); | 
|  | 4804 } | 
|  | 4805 | 
|  | 4806 /* convolution int W(x)W(x+v)dx. | 
|  | 4807    used in kde bandwidth selection. | 
|  | 4808 */ | 
|  | 4809 double Wconv(v,ker) | 
|  | 4810 double v; | 
|  | 4811 int ker; | 
|  | 4812 { double v2; | 
|  | 4813   switch(ker) | 
|  | 4814   { case WGAUS: return(SQRPI/GFACT*exp(-SQR(GFACT*v)/4)); | 
|  | 4815     case WRECT: | 
|  | 4816       v = fabs(v); | 
|  | 4817       if (v>2) return(0.0); | 
|  | 4818       return(2-v); | 
|  | 4819     case WEPAN: | 
|  | 4820       v = fabs(v); | 
|  | 4821       if (v>2) return(0.0); | 
|  | 4822       return((2-v)*(16+v*(8-v*(16-v*(2+v))))/30); | 
|  | 4823     case WBISQ: | 
|  | 4824       v = fabs(v); | 
|  | 4825       if (v>2) return(0.0); | 
|  | 4826       v2 = 2-v; | 
|  | 4827       return(v2*v2*v2*v2*v2*(16+v*(40+v*(36+v*(10+v))))/630); | 
|  | 4828   } | 
|  | 4829   LERR(("Wconv not implemented for kernel %d",ker)); | 
|  | 4830   return(0.0); | 
|  | 4831 } | 
|  | 4832 | 
|  | 4833 /* derivative of Wconv. | 
|  | 4834    1/v d/dv int W(x)W(x+v)dx | 
|  | 4835    used in kde bandwidth selection. | 
|  | 4836 */ | 
|  | 4837 double Wconv1(v,ker) | 
|  | 4838 double v; | 
|  | 4839 int ker; | 
|  | 4840 { double v2; | 
|  | 4841   v = fabs(v); | 
|  | 4842   switch(ker) | 
|  | 4843   { case WGAUS: return(-0.5*SQRPI*GFACT*exp(-SQR(GFACT*v)/4)); | 
|  | 4844     case WRECT: | 
|  | 4845       if (v>2) return(0.0); | 
|  | 4846       return(1.0); | 
|  | 4847     case WEPAN: | 
|  | 4848       if (v>2) return(0.0); | 
|  | 4849       return((-16+v*(12-v*v))/6); | 
|  | 4850     case WBISQ: | 
|  | 4851       if (v>2) return(0.0); | 
|  | 4852       v2 = 2-v; | 
|  | 4853       return(-v2*v2*v2*v2*(32+v*(64+v*(24+v*3)))/210); | 
|  | 4854   } | 
|  | 4855   LERR(("Wconv1 not implemented for kernel %d",ker)); | 
|  | 4856   return(0.0); | 
|  | 4857 } | 
|  | 4858 | 
|  | 4859 /* 4th derivative of Wconv. | 
|  | 4860    used in kde bandwidth selection (BCV, SJPI, GKK) | 
|  | 4861 */ | 
|  | 4862 double Wconv4(v,ker) | 
|  | 4863 double v; | 
|  | 4864 int ker; | 
|  | 4865 { double gv; | 
|  | 4866   switch(ker) | 
|  | 4867   { case WGAUS: | 
|  | 4868       gv = GFACT*v; | 
|  | 4869       return(exp(-SQR(gv)/4)*GFACT*GFACT*GFACT*(12-gv*gv*(12-gv*gv))*SQRPI/16); | 
|  | 4870   } | 
|  | 4871   LERR(("Wconv4 not implemented for kernel %d",ker)); | 
|  | 4872   return(0.0); | 
|  | 4873 } | 
|  | 4874 | 
|  | 4875 /* 5th derivative of Wconv. | 
|  | 4876    used in kde bandwidth selection (BCV method only) | 
|  | 4877 */ | 
|  | 4878 double Wconv5(v,ker) /* (d/dv)^5 int W(x)W(x+v)dx */ | 
|  | 4879 double v; | 
|  | 4880 int ker; | 
|  | 4881 { double gv; | 
|  | 4882   switch(ker) | 
|  | 4883   { case WGAUS: | 
|  | 4884       gv = GFACT*v; | 
|  | 4885       return(-exp(-SQR(gv)/4)*GFACT*GFACT*GFACT*GFACT*gv*(60-gv*gv*(20-gv*gv))*SQRPI/32); | 
|  | 4886   } | 
|  | 4887   LERR(("Wconv5 not implemented for kernel %d",ker)); | 
|  | 4888   return(0.0); | 
|  | 4889 } | 
|  | 4890 | 
|  | 4891 /* 6th derivative of Wconv. | 
|  | 4892    used in kde bandwidth selection (SJPI) | 
|  | 4893 */ | 
|  | 4894 double Wconv6(v,ker) | 
|  | 4895 double v; | 
|  | 4896 int ker; | 
|  | 4897 { double gv, z; | 
|  | 4898   switch(ker) | 
|  | 4899   { case WGAUS: | 
|  | 4900       gv = GFACT*v; | 
|  | 4901       gv = gv*gv; | 
|  | 4902       z = exp(-gv/4)*(-120+gv*(180-gv*(30-gv)))*0.02769459142; | 
|  | 4903       gv = GFACT*GFACT; | 
|  | 4904       return(z*gv*gv*GFACT); | 
|  | 4905   } | 
|  | 4906   LERR(("Wconv6 not implemented for kernel %d",ker)); | 
|  | 4907   return(0.0); | 
|  | 4908 } | 
|  | 4909 | 
|  | 4910 /* int W(v)^2 dv / (int v^2 W(v) dv)^2 | 
|  | 4911    used in some bandwidth selectors | 
|  | 4912 */ | 
|  | 4913 double Wikk(ker,deg) | 
|  | 4914 int ker, deg; | 
|  | 4915 { switch(deg) | 
|  | 4916   { case 0: | 
|  | 4917     case 1: /* int W(v)^2 dv / (int v^2 W(v) dv)^2 */ | 
|  | 4918       switch(ker) | 
|  | 4919       { case WRECT: return(4.5); | 
|  | 4920         case WEPAN: return(15.0); | 
|  | 4921         case WBISQ: return(35.0); | 
|  | 4922         case WGAUS: return(0.2820947918*GFACT*GFACT*GFACT*GFACT*GFACT); | 
|  | 4923         case WTCUB: return(34.152111046847892);   /* 59049 / 1729 */ | 
|  | 4924         case WTRWT: return(66.083916083916080);   /* 9450/143 */ | 
|  | 4925       } | 
|  | 4926     case 2: | 
|  | 4927     case 3: /* 4!^2/8*int(W1^2)/int(v^4W1)^2 | 
|  | 4928                W1=W*(n4-v^2n2)/(n0n4-n2n2) */ | 
|  | 4929       switch(ker) | 
|  | 4930       { case WRECT: return(11025.0); | 
|  | 4931         case WEPAN: return(39690.0); | 
|  | 4932         case WBISQ: return(110346.9231); | 
|  | 4933         case WGAUS: return(14527.43412); | 
|  | 4934         case WTCUB: return(126500.5904); | 
|  | 4935         case WTRWT: return(254371.7647); | 
|  | 4936       } | 
|  | 4937   } | 
|  | 4938   LERR(("Wikk not implemented for kernel %d, deg %d",ker,deg)); | 
|  | 4939   return(0.0); | 
|  | 4940 } |