comparison rDiff/src/tools/read_utils/get_reads.cpp @ 0:0f80a5141704

version 0.3 uploaded
author vipints
date Thu, 14 Feb 2013 23:38:36 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:0f80a5141704
1 /* written by Jonas Behr, Regina Bohnert and Gunnar Raetsch, FML Tuebingen, Germany, 2010 */
2
3 #include <stdio.h>
4 #include <string.h>
5 #include <signal.h>
6 #include <mex.h>
7 #include <algorithm>
8 #include <vector>
9 using std::vector;
10 #include "get_reads_direct.h"
11 #include "mex_input.h"
12 #include "read.h"
13
14 #define MAXLINE 10000
15
16 /*
17 * input:
18 * 1 bam file
19 * 2 chromosome
20 * 3 region start (1-based index)
21 * 4 region end (1-based index)
22 * 5 strand (either '+' or '-' or '0')
23 * [6] collapse flag: if true the reads are collapsed to a coverage track
24 * [7] subsample percentage: percentage of reads to be subsampled (in per mill)
25 * [8] intron length filter
26 * [9] exon length filter
27 * [10] mismatch filter
28 * [11] bool: use mapped reads for coverage
29 * [12] bool: use spliced reads for coverage
30 * [13] return maxminlen
31 * [14] return pair coverage and pair index list
32 * [15] only_clipped
33 * [15] switch of pair filter
34 *
35 * output:
36 * 1 coverage
37 * [2] intron cell array
38 * [3] pair coverage
39 * [4] pair list
40 *
41 * example call:
42 * [cov introns] = get_reads('polyA_left_I+_el15_mm1_spliced.bam', 'I', 10000, 12000, '-', 1, 30);
43 */
44 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
45
46 if (nrhs<5 || nrhs>16 || (nlhs<1 || nlhs>4)) {
47 fprintf(stderr, "usage: [x [introns] [pair]] = get_reads(fname, chr, start, end, strand, [collapse], [subsample], [max intron length], [min exonlength], [max mismatches], [mapped], [spliced], [maxminlen], [pair], [only clipped], [all pairs]);\n");
48 return;
49 }
50
51 /* obligatory arguments
52 * **********************/
53 char *fname = get_string(prhs[0]);
54 //fprintf(stdout, "arg1: %s\n", fname);
55 char *chr = get_string(prhs[1]);
56 //fprintf(stdout, "arg2: %s\n", chr);
57 int from_pos = get_int(prhs[2]);
58 //fprintf(stdout, "arg3: %d\n", from_pos);
59 int to_pos = get_int(prhs[3]);
60 //fprintf(stdout, "arg4: %d\n", to_pos);
61 char *strand = get_string(prhs[4]);
62 //fprintf(stdout, "arg5: %s\n", strand);
63
64 if (from_pos>to_pos)
65 mexErrMsgTxt("Start (arg 3) must be <= end (arg 4)\n");
66
67 if (strand[0]!='+' && strand[0]!='-' && strand[0]!='0')
68 mexErrMsgTxt("Unknown strand (arg 5): either + or - or 0");
69
70 /* optional arguments
71 * ******************/
72 int collapse = 0;
73 if (nrhs>=6)
74 collapse = get_int(prhs[5]);
75
76 int subsample = 1000;
77 if (nrhs>=7)
78 subsample = get_int(prhs[6]);
79
80 int intron_len_filter = 1e9;
81 if (nrhs>=8)
82 intron_len_filter = get_int(prhs[7]);
83
84 int exon_len_filter = -1;
85 if (nrhs>=9)
86 exon_len_filter = get_int(prhs[8]);
87
88 int filter_mismatch = 1e9;
89 if (nrhs>=10)
90 filter_mismatch = get_int(prhs[9]);
91
92 int mapped = 1;
93 if (nrhs>=11)
94 mapped = get_int(prhs[10]);
95
96 int spliced = 1;
97 if (nrhs>=12)
98 spliced = get_int(prhs[11]);
99
100 int maxminlen = 0;
101 if (nrhs>=13)
102 maxminlen = get_int(prhs[12]);
103
104 int pair_cov = 0;
105 if (nrhs>=14)
106 pair_cov = get_int(prhs[13]);
107
108 int only_clipped = 0;
109 if (nrhs>=15)
110 only_clipped = get_int(prhs[14]);
111
112 int no_pair_filter = 0;
113 if (nrhs>=16)
114 no_pair_filter = get_int(prhs[15]);
115
116
117 /* call function to get reads
118 * **************************/
119 char region[MAXLINE];
120 sprintf(region, "%s:%i-%i", chr, from_pos, to_pos);
121
122 vector<CRead*> all_reads;
123
124 get_reads_from_bam(fname, region, &all_reads, strand[0], subsample);
125
126 for (int i=0; i<all_reads.size(); i++) {
127 all_reads[i]->strip_leftright_tag() ;
128 }
129
130 /* filter reads
131 * **************/
132 int left = 0;
133 int right = 0;
134
135 vector<CRead*> reads;
136 for (int i=0; i<all_reads.size(); i++) {
137 if (all_reads[i]->left)
138 left++;
139 if (all_reads[i]->right)
140 right++;
141 //if (all_reads[i]->max_intron_len()<intron_len_filter && all_reads[i]->min_exon_len()>exon_len_filter && all_reads[i]->get_mismatches()<=filter_mismatch && all_reads[i]->multiple_alignment_index==0)
142 if (all_reads[i]->max_intron_len()<intron_len_filter && all_reads[i]->min_exon_len()>exon_len_filter && all_reads[i]->get_mismatches()<=filter_mismatch && (only_clipped==0 || all_reads[i]->is_clipped))
143 reads.push_back(all_reads[i]);
144 }
145
146
147 /* prepare output
148 * **************/
149 int num_rows = reads.size();
150 int num_pos = to_pos-from_pos+1;
151
152 if (pair_cov==1 && nlhs>=3) {
153 // sort reads by read_id
154 //printf("\n\nleft:%i right:%i \n\n", left, right);
155 //printf("\nreads[0]->read_id: %s\n", reads[0]->read_id);
156 sort(reads.begin(), reads.end(), CRead::compare_by_read_id);
157 }
158
159 // read coverages collapsed
160 if (collapse) {
161 plhs[0] = mxCreateNumericMatrix(1, num_pos, mxUINT32_CLASS, mxREAL);
162 uint32_t *mask_ret = (uint32_t*) mxGetData(plhs[0]);
163 if (num_pos>0 && mask_ret==NULL)
164 mexErrMsgTxt("Error allocating memory\n");
165 if (mapped && spliced) {
166 for (int i=0; i<reads.size(); i++) {
167 reads[i]->get_coverage(from_pos, to_pos, mask_ret);
168 }
169 } else {
170 for (int i=0; i<reads.size(); i++) {
171 ssize_t num_exons = reads[i]->block_starts.size();
172 if ((num_exons==1 && mapped) || (num_exons>1 && spliced))
173 reads[i]->get_coverage(from_pos, to_pos, mask_ret);
174 }
175 }
176 }
177 // reads not collapsed
178 else {
179 uint32_t nzmax = 0; // maximal number of nonzero elements
180 int len = to_pos-from_pos+1;
181 for (uint i=0; i<reads.size(); i++)
182 {
183 ssize_t num_exons = reads[i]->block_starts.size();
184 if (!((mapped && spliced) || (num_exons==1 && mapped) || (num_exons>1 && spliced)))
185 {
186 continue;
187 }
188 for (uint n = 0; n < reads[i]->block_starts.size(); n++)
189 {
190 uint32_t from, to;
191 if (reads[i]->block_starts[n]+reads[i]->start_pos-from_pos >= 0)
192 from = reads[i]->block_starts[n]+reads[i]->start_pos-from_pos;
193 else
194 from = 0;
195 if (reads[i]->block_starts[n]+reads[i]->start_pos-from_pos+reads[i]->block_lengths[n] >= 0)
196 to = reads[i]->block_starts[n]+reads[i]->start_pos-from_pos+reads[i]->block_lengths[n];
197 else
198 to = 0;
199 for (int bp=from; bp<to&bp<len; bp++)
200 {
201 nzmax++;
202 }
203 }
204 }
205 // 1st row: row indices
206 // 2nd row: column indices
207 plhs[0] = mxCreateDoubleMatrix(2, nzmax, mxREAL);
208 double *mask_ret = (double*) mxGetData(plhs[0]);
209 if (nzmax>0 && mask_ret==NULL)
210 mexErrMsgTxt("Error allocating memory\n");
211 uint32_t mask_ret_c = 0; // counter
212 for (uint i=0; i<reads.size(); i++)
213 {
214 ssize_t num_exons = reads[i]->block_starts.size();
215 if (!((mapped && spliced) || (num_exons==1 && mapped) || (num_exons>1 && spliced)))
216 {
217 continue;
218 }
219 reads[i]->get_reads_sparse(from_pos, to_pos, mask_ret, mask_ret_c, i);
220 }
221 if (mask_ret_c!=2*nzmax)
222 mexErrMsgTxt("Error filling index arrays for sparse matrix\n");
223 }
224 // introns
225 if (maxminlen==0 && nlhs>=2) {
226 vector<int> intron_list;
227 for (int i=0; i<reads.size(); i++) {
228 reads[i]->get_introns(&intron_list);
229 }
230
231 plhs[1] = mxCreateNumericMatrix(2, intron_list.size()/2, mxUINT32_CLASS, mxREAL);
232 uint32_t *p_intron_list = (uint32_t*) mxGetData(plhs[1]);
233 for (int p = 0; p<intron_list.size(); p++) {
234 p_intron_list[p] = intron_list[p];
235 }
236 intron_list.clear();
237 } else if (nlhs>=2) {
238 vector<uint32_t> intron_starts;
239 vector<uint32_t> intron_ends;
240 vector<uint32_t> block_len1;
241 vector<uint32_t> block_len2;
242 for (int i=0; i<reads.size(); i++) {
243 reads[i]->get_introns(&intron_starts, &intron_ends, &block_len1, &block_len2);
244 }
245
246 plhs[1] = mxCreateNumericMatrix(4, intron_starts.size(), mxINT32_CLASS, mxREAL);
247 uint32_t *p_intron_list = (uint32_t*) mxGetData(plhs[1]);
248 for (int p = 0; p<intron_starts.size(); p++) {
249 p_intron_list[4*p] = intron_starts[p];
250 p_intron_list[(4*p)+1] = intron_ends[p];
251 p_intron_list[(4*p)+2] = block_len1[p];
252 p_intron_list[(4*p)+3] = block_len2[p];
253 }
254 intron_starts.clear() ;
255 intron_ends.clear() ;
256 block_len1.clear() ;
257 block_len2.clear() ;
258 }
259 if (pair_cov==1 && nlhs>=3) {
260 plhs[2] = mxCreateNumericMatrix(1, num_pos, mxUINT32_CLASS, mxREAL);
261 uint32_t *p_pair_map = (uint32_t*) mxGetData(plhs[2]);
262 if (num_pos>0 && p_pair_map==NULL)
263 mexErrMsgTxt("Error allocating memory\n");
264
265 vector<int> pair_ids;
266
267 int take_cnt = 0;
268 int discard_cnt = 0;
269 int discard_strand_cnt = 0;
270 //printf("reads.size(): %i\n", reads.size());
271 // find consecutive reads with the same id
272 for (int i=0; i<((int) reads.size())-1; i++)
273 {
274 //printf("reads[%i]->read_id: %s\n", i, reads[i]->read_id);
275 int j = i+1;
276 while(j<reads.size() && strcmp(reads[i]->read_id, reads[j]->read_id) == 0)
277 {
278 if ((reads[i]->left && reads[j]->right) || (reads[j]->left && reads[i]->right) && (reads[i]->reverse != reads[j]->reverse))
279 {
280 if (reads[i]->get_last_position()==-1 || reads[j]->get_last_position()==-1)
281 break;
282 if (false)//(reads[i]->strand[0]=='0' && reads[j]->strand[0]=='0' )
283 {
284 // discard pairs without strand information
285 discard_strand_cnt++;
286 }
287 else if (reads[i]->get_last_position()<reads[j]->start_pos && reads[j]->start_pos-reads[i]->get_last_position()<60000)
288 {
289 int from = std::max(0, reads[i]->get_last_position()-from_pos);
290 int to = std::min(num_pos-1, reads[j]->start_pos-from_pos);
291 pair_ids.push_back(i);
292 pair_ids.push_back(j);
293 for (int k=from; k<to; k++)
294 p_pair_map[k]++;
295 take_cnt++;
296 }
297 else if (reads[i]->start_pos>reads[j]->get_last_position() && reads[j]->get_last_position()-reads[i]->start_pos<60000)
298 {
299 int from = std::max(0, reads[j]->get_last_position()-from_pos);
300 int to = std::min(num_pos-1, reads[i]->start_pos-from_pos);
301 pair_ids.push_back(i);
302 pair_ids.push_back(j);
303 for (int k=from; k<to; k++)
304 p_pair_map[k]++;
305 take_cnt++;
306 }
307 else
308 {
309 if (no_pair_filter>0 && reads[i]->start_pos<reads[j]->start_pos)
310 {
311 pair_ids.push_back(i);
312 pair_ids.push_back(j);
313 take_cnt++;
314 }
315 else if (no_pair_filter>0)
316 {
317 pair_ids.push_back(j);
318 pair_ids.push_back(i);
319 take_cnt++;
320 }
321 else
322 discard_cnt++;
323 //printf("istart:%i, ilast:%i jstart:%i, jlast: %i\n", reads[i]->start_pos, reads[i]->get_last_position(), reads[j]->start_pos, reads[j]->get_last_position());
324 }
325 }
326 else
327 discard_cnt++;
328 j++;
329 }
330 }
331 //printf("take:%i, discard:%i discard_strand_cnt:%i\n", take_cnt, discard_cnt+discard_strand_cnt, discard_strand_cnt);
332
333 if (nlhs>=4) {
334 plhs[3] = mxCreateNumericMatrix(2, pair_ids.size()/2, mxUINT32_CLASS, mxREAL);
335 uint32_t *pair_ids_ret = (uint32_t*) mxGetData(plhs[3]);
336 if (pair_ids.size()>0 && pair_ids_ret==NULL)
337 mexErrMsgTxt("Error allocating memory\n");
338 for (int i=0; i<pair_ids.size(); i++) {
339 pair_ids_ret[i] = pair_ids[i];
340 }
341 }
342 }
343 for (int i=0; i<all_reads.size(); i++)
344 delete all_reads[i];
345 }
346