Mercurial > repos > vipints > rdiff
comparison rDiff/src/tools/read_utils/get_reads.cpp @ 0:0f80a5141704
version 0.3 uploaded
author | vipints |
---|---|
date | Thu, 14 Feb 2013 23:38:36 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0f80a5141704 |
---|---|
1 /* written by Jonas Behr, Regina Bohnert and Gunnar Raetsch, FML Tuebingen, Germany, 2010 */ | |
2 | |
3 #include <stdio.h> | |
4 #include <string.h> | |
5 #include <signal.h> | |
6 #include <mex.h> | |
7 #include <algorithm> | |
8 #include <vector> | |
9 using std::vector; | |
10 #include "get_reads_direct.h" | |
11 #include "mex_input.h" | |
12 #include "read.h" | |
13 | |
14 #define MAXLINE 10000 | |
15 | |
16 /* | |
17 * input: | |
18 * 1 bam file | |
19 * 2 chromosome | |
20 * 3 region start (1-based index) | |
21 * 4 region end (1-based index) | |
22 * 5 strand (either '+' or '-' or '0') | |
23 * [6] collapse flag: if true the reads are collapsed to a coverage track | |
24 * [7] subsample percentage: percentage of reads to be subsampled (in per mill) | |
25 * [8] intron length filter | |
26 * [9] exon length filter | |
27 * [10] mismatch filter | |
28 * [11] bool: use mapped reads for coverage | |
29 * [12] bool: use spliced reads for coverage | |
30 * [13] return maxminlen | |
31 * [14] return pair coverage and pair index list | |
32 * [15] only_clipped | |
33 * [15] switch of pair filter | |
34 * | |
35 * output: | |
36 * 1 coverage | |
37 * [2] intron cell array | |
38 * [3] pair coverage | |
39 * [4] pair list | |
40 * | |
41 * example call: | |
42 * [cov introns] = get_reads('polyA_left_I+_el15_mm1_spliced.bam', 'I', 10000, 12000, '-', 1, 30); | |
43 */ | |
44 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { | |
45 | |
46 if (nrhs<5 || nrhs>16 || (nlhs<1 || nlhs>4)) { | |
47 fprintf(stderr, "usage: [x [introns] [pair]] = get_reads(fname, chr, start, end, strand, [collapse], [subsample], [max intron length], [min exonlength], [max mismatches], [mapped], [spliced], [maxminlen], [pair], [only clipped], [all pairs]);\n"); | |
48 return; | |
49 } | |
50 | |
51 /* obligatory arguments | |
52 * **********************/ | |
53 char *fname = get_string(prhs[0]); | |
54 //fprintf(stdout, "arg1: %s\n", fname); | |
55 char *chr = get_string(prhs[1]); | |
56 //fprintf(stdout, "arg2: %s\n", chr); | |
57 int from_pos = get_int(prhs[2]); | |
58 //fprintf(stdout, "arg3: %d\n", from_pos); | |
59 int to_pos = get_int(prhs[3]); | |
60 //fprintf(stdout, "arg4: %d\n", to_pos); | |
61 char *strand = get_string(prhs[4]); | |
62 //fprintf(stdout, "arg5: %s\n", strand); | |
63 | |
64 if (from_pos>to_pos) | |
65 mexErrMsgTxt("Start (arg 3) must be <= end (arg 4)\n"); | |
66 | |
67 if (strand[0]!='+' && strand[0]!='-' && strand[0]!='0') | |
68 mexErrMsgTxt("Unknown strand (arg 5): either + or - or 0"); | |
69 | |
70 /* optional arguments | |
71 * ******************/ | |
72 int collapse = 0; | |
73 if (nrhs>=6) | |
74 collapse = get_int(prhs[5]); | |
75 | |
76 int subsample = 1000; | |
77 if (nrhs>=7) | |
78 subsample = get_int(prhs[6]); | |
79 | |
80 int intron_len_filter = 1e9; | |
81 if (nrhs>=8) | |
82 intron_len_filter = get_int(prhs[7]); | |
83 | |
84 int exon_len_filter = -1; | |
85 if (nrhs>=9) | |
86 exon_len_filter = get_int(prhs[8]); | |
87 | |
88 int filter_mismatch = 1e9; | |
89 if (nrhs>=10) | |
90 filter_mismatch = get_int(prhs[9]); | |
91 | |
92 int mapped = 1; | |
93 if (nrhs>=11) | |
94 mapped = get_int(prhs[10]); | |
95 | |
96 int spliced = 1; | |
97 if (nrhs>=12) | |
98 spliced = get_int(prhs[11]); | |
99 | |
100 int maxminlen = 0; | |
101 if (nrhs>=13) | |
102 maxminlen = get_int(prhs[12]); | |
103 | |
104 int pair_cov = 0; | |
105 if (nrhs>=14) | |
106 pair_cov = get_int(prhs[13]); | |
107 | |
108 int only_clipped = 0; | |
109 if (nrhs>=15) | |
110 only_clipped = get_int(prhs[14]); | |
111 | |
112 int no_pair_filter = 0; | |
113 if (nrhs>=16) | |
114 no_pair_filter = get_int(prhs[15]); | |
115 | |
116 | |
117 /* call function to get reads | |
118 * **************************/ | |
119 char region[MAXLINE]; | |
120 sprintf(region, "%s:%i-%i", chr, from_pos, to_pos); | |
121 | |
122 vector<CRead*> all_reads; | |
123 | |
124 get_reads_from_bam(fname, region, &all_reads, strand[0], subsample); | |
125 | |
126 for (int i=0; i<all_reads.size(); i++) { | |
127 all_reads[i]->strip_leftright_tag() ; | |
128 } | |
129 | |
130 /* filter reads | |
131 * **************/ | |
132 int left = 0; | |
133 int right = 0; | |
134 | |
135 vector<CRead*> reads; | |
136 for (int i=0; i<all_reads.size(); i++) { | |
137 if (all_reads[i]->left) | |
138 left++; | |
139 if (all_reads[i]->right) | |
140 right++; | |
141 //if (all_reads[i]->max_intron_len()<intron_len_filter && all_reads[i]->min_exon_len()>exon_len_filter && all_reads[i]->get_mismatches()<=filter_mismatch && all_reads[i]->multiple_alignment_index==0) | |
142 if (all_reads[i]->max_intron_len()<intron_len_filter && all_reads[i]->min_exon_len()>exon_len_filter && all_reads[i]->get_mismatches()<=filter_mismatch && (only_clipped==0 || all_reads[i]->is_clipped)) | |
143 reads.push_back(all_reads[i]); | |
144 } | |
145 | |
146 | |
147 /* prepare output | |
148 * **************/ | |
149 int num_rows = reads.size(); | |
150 int num_pos = to_pos-from_pos+1; | |
151 | |
152 if (pair_cov==1 && nlhs>=3) { | |
153 // sort reads by read_id | |
154 //printf("\n\nleft:%i right:%i \n\n", left, right); | |
155 //printf("\nreads[0]->read_id: %s\n", reads[0]->read_id); | |
156 sort(reads.begin(), reads.end(), CRead::compare_by_read_id); | |
157 } | |
158 | |
159 // read coverages collapsed | |
160 if (collapse) { | |
161 plhs[0] = mxCreateNumericMatrix(1, num_pos, mxUINT32_CLASS, mxREAL); | |
162 uint32_t *mask_ret = (uint32_t*) mxGetData(plhs[0]); | |
163 if (num_pos>0 && mask_ret==NULL) | |
164 mexErrMsgTxt("Error allocating memory\n"); | |
165 if (mapped && spliced) { | |
166 for (int i=0; i<reads.size(); i++) { | |
167 reads[i]->get_coverage(from_pos, to_pos, mask_ret); | |
168 } | |
169 } else { | |
170 for (int i=0; i<reads.size(); i++) { | |
171 ssize_t num_exons = reads[i]->block_starts.size(); | |
172 if ((num_exons==1 && mapped) || (num_exons>1 && spliced)) | |
173 reads[i]->get_coverage(from_pos, to_pos, mask_ret); | |
174 } | |
175 } | |
176 } | |
177 // reads not collapsed | |
178 else { | |
179 uint32_t nzmax = 0; // maximal number of nonzero elements | |
180 int len = to_pos-from_pos+1; | |
181 for (uint i=0; i<reads.size(); i++) | |
182 { | |
183 ssize_t num_exons = reads[i]->block_starts.size(); | |
184 if (!((mapped && spliced) || (num_exons==1 && mapped) || (num_exons>1 && spliced))) | |
185 { | |
186 continue; | |
187 } | |
188 for (uint n = 0; n < reads[i]->block_starts.size(); n++) | |
189 { | |
190 uint32_t from, to; | |
191 if (reads[i]->block_starts[n]+reads[i]->start_pos-from_pos >= 0) | |
192 from = reads[i]->block_starts[n]+reads[i]->start_pos-from_pos; | |
193 else | |
194 from = 0; | |
195 if (reads[i]->block_starts[n]+reads[i]->start_pos-from_pos+reads[i]->block_lengths[n] >= 0) | |
196 to = reads[i]->block_starts[n]+reads[i]->start_pos-from_pos+reads[i]->block_lengths[n]; | |
197 else | |
198 to = 0; | |
199 for (int bp=from; bp<to&bp<len; bp++) | |
200 { | |
201 nzmax++; | |
202 } | |
203 } | |
204 } | |
205 // 1st row: row indices | |
206 // 2nd row: column indices | |
207 plhs[0] = mxCreateDoubleMatrix(2, nzmax, mxREAL); | |
208 double *mask_ret = (double*) mxGetData(plhs[0]); | |
209 if (nzmax>0 && mask_ret==NULL) | |
210 mexErrMsgTxt("Error allocating memory\n"); | |
211 uint32_t mask_ret_c = 0; // counter | |
212 for (uint i=0; i<reads.size(); i++) | |
213 { | |
214 ssize_t num_exons = reads[i]->block_starts.size(); | |
215 if (!((mapped && spliced) || (num_exons==1 && mapped) || (num_exons>1 && spliced))) | |
216 { | |
217 continue; | |
218 } | |
219 reads[i]->get_reads_sparse(from_pos, to_pos, mask_ret, mask_ret_c, i); | |
220 } | |
221 if (mask_ret_c!=2*nzmax) | |
222 mexErrMsgTxt("Error filling index arrays for sparse matrix\n"); | |
223 } | |
224 // introns | |
225 if (maxminlen==0 && nlhs>=2) { | |
226 vector<int> intron_list; | |
227 for (int i=0; i<reads.size(); i++) { | |
228 reads[i]->get_introns(&intron_list); | |
229 } | |
230 | |
231 plhs[1] = mxCreateNumericMatrix(2, intron_list.size()/2, mxUINT32_CLASS, mxREAL); | |
232 uint32_t *p_intron_list = (uint32_t*) mxGetData(plhs[1]); | |
233 for (int p = 0; p<intron_list.size(); p++) { | |
234 p_intron_list[p] = intron_list[p]; | |
235 } | |
236 intron_list.clear(); | |
237 } else if (nlhs>=2) { | |
238 vector<uint32_t> intron_starts; | |
239 vector<uint32_t> intron_ends; | |
240 vector<uint32_t> block_len1; | |
241 vector<uint32_t> block_len2; | |
242 for (int i=0; i<reads.size(); i++) { | |
243 reads[i]->get_introns(&intron_starts, &intron_ends, &block_len1, &block_len2); | |
244 } | |
245 | |
246 plhs[1] = mxCreateNumericMatrix(4, intron_starts.size(), mxINT32_CLASS, mxREAL); | |
247 uint32_t *p_intron_list = (uint32_t*) mxGetData(plhs[1]); | |
248 for (int p = 0; p<intron_starts.size(); p++) { | |
249 p_intron_list[4*p] = intron_starts[p]; | |
250 p_intron_list[(4*p)+1] = intron_ends[p]; | |
251 p_intron_list[(4*p)+2] = block_len1[p]; | |
252 p_intron_list[(4*p)+3] = block_len2[p]; | |
253 } | |
254 intron_starts.clear() ; | |
255 intron_ends.clear() ; | |
256 block_len1.clear() ; | |
257 block_len2.clear() ; | |
258 } | |
259 if (pair_cov==1 && nlhs>=3) { | |
260 plhs[2] = mxCreateNumericMatrix(1, num_pos, mxUINT32_CLASS, mxREAL); | |
261 uint32_t *p_pair_map = (uint32_t*) mxGetData(plhs[2]); | |
262 if (num_pos>0 && p_pair_map==NULL) | |
263 mexErrMsgTxt("Error allocating memory\n"); | |
264 | |
265 vector<int> pair_ids; | |
266 | |
267 int take_cnt = 0; | |
268 int discard_cnt = 0; | |
269 int discard_strand_cnt = 0; | |
270 //printf("reads.size(): %i\n", reads.size()); | |
271 // find consecutive reads with the same id | |
272 for (int i=0; i<((int) reads.size())-1; i++) | |
273 { | |
274 //printf("reads[%i]->read_id: %s\n", i, reads[i]->read_id); | |
275 int j = i+1; | |
276 while(j<reads.size() && strcmp(reads[i]->read_id, reads[j]->read_id) == 0) | |
277 { | |
278 if ((reads[i]->left && reads[j]->right) || (reads[j]->left && reads[i]->right) && (reads[i]->reverse != reads[j]->reverse)) | |
279 { | |
280 if (reads[i]->get_last_position()==-1 || reads[j]->get_last_position()==-1) | |
281 break; | |
282 if (false)//(reads[i]->strand[0]=='0' && reads[j]->strand[0]=='0' ) | |
283 { | |
284 // discard pairs without strand information | |
285 discard_strand_cnt++; | |
286 } | |
287 else if (reads[i]->get_last_position()<reads[j]->start_pos && reads[j]->start_pos-reads[i]->get_last_position()<60000) | |
288 { | |
289 int from = std::max(0, reads[i]->get_last_position()-from_pos); | |
290 int to = std::min(num_pos-1, reads[j]->start_pos-from_pos); | |
291 pair_ids.push_back(i); | |
292 pair_ids.push_back(j); | |
293 for (int k=from; k<to; k++) | |
294 p_pair_map[k]++; | |
295 take_cnt++; | |
296 } | |
297 else if (reads[i]->start_pos>reads[j]->get_last_position() && reads[j]->get_last_position()-reads[i]->start_pos<60000) | |
298 { | |
299 int from = std::max(0, reads[j]->get_last_position()-from_pos); | |
300 int to = std::min(num_pos-1, reads[i]->start_pos-from_pos); | |
301 pair_ids.push_back(i); | |
302 pair_ids.push_back(j); | |
303 for (int k=from; k<to; k++) | |
304 p_pair_map[k]++; | |
305 take_cnt++; | |
306 } | |
307 else | |
308 { | |
309 if (no_pair_filter>0 && reads[i]->start_pos<reads[j]->start_pos) | |
310 { | |
311 pair_ids.push_back(i); | |
312 pair_ids.push_back(j); | |
313 take_cnt++; | |
314 } | |
315 else if (no_pair_filter>0) | |
316 { | |
317 pair_ids.push_back(j); | |
318 pair_ids.push_back(i); | |
319 take_cnt++; | |
320 } | |
321 else | |
322 discard_cnt++; | |
323 //printf("istart:%i, ilast:%i jstart:%i, jlast: %i\n", reads[i]->start_pos, reads[i]->get_last_position(), reads[j]->start_pos, reads[j]->get_last_position()); | |
324 } | |
325 } | |
326 else | |
327 discard_cnt++; | |
328 j++; | |
329 } | |
330 } | |
331 //printf("take:%i, discard:%i discard_strand_cnt:%i\n", take_cnt, discard_cnt+discard_strand_cnt, discard_strand_cnt); | |
332 | |
333 if (nlhs>=4) { | |
334 plhs[3] = mxCreateNumericMatrix(2, pair_ids.size()/2, mxUINT32_CLASS, mxREAL); | |
335 uint32_t *pair_ids_ret = (uint32_t*) mxGetData(plhs[3]); | |
336 if (pair_ids.size()>0 && pair_ids_ret==NULL) | |
337 mexErrMsgTxt("Error allocating memory\n"); | |
338 for (int i=0; i<pair_ids.size(); i++) { | |
339 pair_ids_ret[i] = pair_ids[i]; | |
340 } | |
341 } | |
342 } | |
343 for (int i=0; i<all_reads.size(); i++) | |
344 delete all_reads[i]; | |
345 } | |
346 |