view rDiff/examples/results/variance_function_1.mat @ 2:233c30f91d66

updated python based GFF parsing module which will handle GTF/GFF/GFF3 file types
author vipints <vipin@cbio.mskcc.org>
date Tue, 08 Oct 2013 07:15:44 -0400
parents 0f80a5141704
children
line wrap: on
line source

# Created by Octave 3.6.2, Tue Feb 05 20:09:05 2013 UTC <galaxy@ip-10-149-27-54>
# name: VARIANCE1
# type: scalar struct
# ndims: 2
 1 1
# length: 5
# name: data
# type: scalar struct
# ndims: 2
 1 1
# length: 8
# name: x
# type: matrix
# rows: 276
# columns: 1
 -0.6833812334047907
 -0.6351935380498582
 0.0002676097647148204
 0.008984413270075901
 0.3854857835385831
 0.9214256247447771
 0.9671076008822687
 1.06730569344731
 1.222803256420449
 1.246504845993285
 1.249174167305002
 1.374217828403327
 1.383148643159435
 1.39211140742845
 1.504802707898532
 1.512742975636874
 1.793299997280322
 1.858720221866363
 1.870869249673204
 1.895207901374988
 1.94696029232134
 1.950840496518627
 1.951577816302224
 2.080982069732103
 2.111794189331381
 2.30130308654365
 2.346256887203381
 2.423243219746997
 2.443257168192183
 2.489255342621425
 2.535583503152155
 2.53837436521161
 2.59963426232541
 2.601138120612441
 2.604773166418073
 2.624591312399266
 2.638861121805705
 2.639717995071114
 2.666653324253649
 2.705628950974717
 2.709413262934348
 2.728673698313363
 2.743378032980916
 2.770913820248701
 2.775176264408742
 2.804384977892022
 2.832504558593536
 2.884517225879028
 2.890427891722309
 2.892025848445413
 2.913231418839616
 2.915325331748858
 2.947286052113701
 2.974114114210898
 2.974962534900434
 2.996712049498361
 2.996782416820018
 3.0647282235623
 3.067149629015368
 3.090788503971225
 3.11398884919686
 3.12787365655992
 3.142145597909063
 3.157104777475194
 3.178330382452176
 3.183089890645656
 3.188920263453963
 3.25881952530437
 3.281247080101629
 3.329598123749154
 3.330927208179796
 3.331024996520879
 3.348187622299709
 3.349904087274605
 3.367295942972851
 3.36746289554451
 3.382826559751085
 3.38444432440666
 3.419307790945601
 3.431652286106596
 3.442440475996615
 3.449189130596366
 3.449929420406366
 3.450754701200709
 3.46565467202683
 3.466434062810305
 3.480074864445704
 3.481913333815904
 3.484235528796702
 3.523418569293708
 3.524697107836651
 3.525728026748714
 3.525947853574447
 3.527159412222734
 3.53877924721809
 3.56551761864124
 3.596890627362499
 3.597334179074515
 3.602971021712368
 3.65062119724365
 3.674474454579012
 3.678752389818325
 3.678763116230078
 3.688328844823047
 3.700982292022176
 3.713304660860759
 3.716130268623892
 3.745619279014551
 3.748925960321961
 3.764367786634761
 3.784264106978202
 3.802426082202587
 3.824735114150635
 3.825707508317699
 3.831016123593371
 3.83711739421476
 3.848499954098443
 3.850874599611493
 3.855064078065424
 3.859374157671713
 3.863528276520088
 3.871263402499793
 3.880243633530991
 3.882530554148294
 3.890087569638467
 3.892720048124537
 3.899981718171424
 3.930573247565717
 3.931887785265438
 3.970354066093234
 3.970515795044499
 3.978357290248281
 3.992151015248081
 4.005479002485021
 4.023197887585891
 4.052175150346082
 4.052480000428031
 4.053853379531467
 4.075892563861373
 4.07753744390572
 4.085976934425602
 4.109797327447354
 4.111279568813716
 4.117157460113159
 4.137987410687454
 4.155863267944699
 4.166693999005181
 4.16744941210952
 4.196879601483558
 4.2044926354636
 4.206310369795395
 4.24022094145521
 4.248843565917821
 4.252210921486945
 4.262852832517678
 4.290827110034652
 4.294139337580926
 4.30592926367226
 4.310799125385514
 4.317183205701451
 4.331555392333135
 4.334353742609347
 4.338073406205408
 4.412744815974918
 4.423951294484441
 4.43460126701708
 4.453396882127109
 4.477697875664315
 4.500376248621553
 4.50876526814104
 4.51442882854796
 4.56954300834494
 4.594270394461617
 4.607701924981973
 4.60960436496965
 4.619934928374763
 4.625943458038219
 4.629658265979011
 4.634707563554457
 4.646791717153577
 4.669153767576629
 4.673014108700764
 4.68272846051556
 4.704777591865675
 4.705965173439033
 4.725850496348063
 4.747543709061567
 4.75461246209718
 4.798334892646747
 4.799914262780603
 4.804021044733257
 4.811634750492613
 4.813269048061025
 4.816363419135937
 4.819827246901278
 4.842946003273059
 4.844187086458591
 4.859705651650803
 4.859812404361672
 4.863934062496969
 4.867534450455582
 4.894080188778505
 4.896628942316751
 4.901527225964197
 4.912694799733611
 4.929810968690763
 4.933698410407108
 4.943091524385554
 4.943706905124013
 4.953092101738478
 4.966335035199676
 4.975994484577808
 4.996992016238126
 5.000515787228054
 5.006205516058236
 5.044856182869496
 5.050164254016807
 5.056245805348308
 5.079616233308949
 5.090714171531762
 5.093379459800494
 5.096763047049705
 5.106294181366582
 5.113939010744149
 5.142996964246954
 5.167482511225858
 5.181539998366291
 5.237167419637067
 5.2548878086207
 5.270430640739011
 5.280612431745435
 5.291469349209253
 5.295814236329918
 5.305219692852843
 5.313205979041787
 5.313435052025778
 5.332718793265369
 5.336361506203941
 5.337538079701318
 5.363479203421722
 5.377592863204739
 5.398102273865895
 5.40139132722789
 5.413875707182309
 5.438079308923196
 5.46383180502561
 5.470167623474696
 5.608182078677081
 5.614951260949585
 5.693390946703289
 5.708752001955319
 5.726847747587197
 5.773196754230931
 5.779818163653597
 5.803666122447944
 5.823045895483019
 5.85773948567858
 5.912150740388256
 5.918132746702433
 5.921898454987526
 5.945420608606575
 5.958372222465343
 6.024657514463746
 6.051915027830951
 6.132175470221938
 6.258030759426767
 6.352324586587449
 6.390181342954701
 6.431331081933479
 6.535241271013659
 6.59736839218635
 6.872128101338986
 6.924120633068402
 6.92557432177101
 6.930005887916956
 6.952728644624869


# name: y
# type: matrix
# rows: 276
# columns: 1
 0.5098619448660886
 0.5614458792100752
 0.0005354344191126676
 0.01821268593811656
 0.300125135105736
 0.6226456101523772
 5.790012164317421
 6.882614894599708
 2.928244242028988
 4.190711302206591
 0.2995616530371554
 17.23261410111295
 1.794026542150055
 2.360617288467401
 0.5572623255604892
 13.20152159602447
 0.1111746356041626
 1.595829705979434
 0.3233927878766432
 8.077489522620343
 0.1030762842837191
 8.947040131825315
 3.016315931133838
 0.1976437966296227
 15.47311815458021
 1.442791904480445
 0.979581837298045
 29.87227932611871
 12.97764035922703
 20.4435072256478
 18.21471964041553
 48.21858092449051
 1.41297250642486
 3.274309977134548
 5.925674133696653
 16.99509526122546
 1.843010440058799
 0.2592376401819984
 3.458358651048227
 15.7539642356789
 3.107706109581367
 9.580053098486419
 6.725510114976441
 6.170624771256398
 20.57397380665206
 5.561364513857107
 17.17176144974188
 8.887674192406642
 18.07268234111858
 3.849063313669099
 3.861436722749122
 8.850231011878519
 21.93447790910894
 45.98441120043708
 140.0088953160563
 0.06482648164717611
 0.841439055377299
 4.103961883308571
 2.560405750393033
 124.1886033190991
 13.44247443672744
 8.993487218620574
 19.64365489310051
 0.7118914951765414
 2.598345322347509
 3.283085039649825
 18.86665041326702
 51.93864294574792
 51.441285740258
 63.59768787839218
 2.091531432494282
 46.23386094018772
 1.395814465039317
 4.5
 0.0001900431189985708
 0.2810746969706186
 18.67471001321769
 0.0006979292989759984
 4.438319886752966
 5.237601716253023
 60.42858431296156
 37.26767995132049
 0.06516140813037113
 0.3214524723274196
 1.650555779444144
 4.396694943135049
 0.903641451836221
 43.30052363579657
 2.804111355861398
 83.90977767232167
 23.70674616091612
 0.1429087600638377
 48.07407801263168
 5.016841948711778
 49.61524565567376
 11.82265263276051
 1.026231401821365
 0.6112268811795358
 249.9876586205725
 0.2273354882406347
 3.276589482850615
 54.78120310547195
 5.982911718346099
 3.623715441379241
 1.789608320551799
 6.069630590964783
 3.410406646103851
 82.22800448783204
 20.11022669550441
 7.816088960080262
 0.2883919025007873
 10.67548248004392
 111.5290640552081
 10.00864044051327
 68.69055299798212
 11.78460386156929
 294.4809073631238
 23.99998402448317
 29.57235225438896
 6.854014318717571
 15.46213461897019
 8.565402876319306
 26.66213140467827
 93.38726668302101
 31.19419628516797
 8.433341608745263
 80.08503698914599
 35.81395756842375
 0.3233476628295432
 0.3492055305221813
 0.1527494793012827
 44.06836677073816
 25.73148751695291
 5.709803019864283
 99.2429160517087
 45.51701452734231
 1.774784677283192
 7.796727340949031
 20.91333402326189
 18
 201.4362745125418
 8.208415622339452
 1.367380575449007
 23.63590651465912
 34.61141346448374
 236.1791113925006
 60.9779286723651
 625.4968132566719
 127.5051133406701
 0.03413714024334135
 98.97722333990743
 158.4522012018566
 3.41535793811879
 111.1738318719641
 393.7791485816516
 14.80308840521456
 101.5674531669078
 38.64007145119295
 24.5
 42.86848581468963
 34.38714066922311
 54.59456481079737
 40.78027658226088
 2.858862456747437
 118.2487794185459
 463.6603814081025
 174.6817908959457
 82.81225870770531
 5.784924306597853
 9.883020911959306
 397.9898317565905
 112.5
 60.14204465112706
 546.9314016625565
 60.08604499239323
 64.78656295020969
 4.775025797206339
 14.64686765407009
 0.2440096903325543
 549.2979973859448
 211.8646040255697
 8.323714905438553
 29.2389044906079
 300.4286714954522
 335.033851728749
 236.9134385187773
 19.3259964786152
 124.2315426601552
 8.220994008233166
 0.5
 8
 312.7360524269463
 156.858472180786
 2.591867043863306
 67.17480337556589
 59.58973847910766
 32
 9.577667878791127
 578
 56.20615874801912
 0
 142.9783453661942
 298.8856585562471
 57.79378020275452
 1.476586999894243
 453.5486464995402
 50.33324089056941
 82.64077764918559
 32.67506893202144
 93.209185909593
 12.5
 130.5094553396254
 186.6201169833191
 2.234139366707373
 241.7793155172543
 213.5882189628277
 77.09760868930012
 128
 74.35779072677653
 1.151528038485153
 84.68581280829852
 0.3795900371882776
 7.431380318790831
 778.7657271065079
 14.1958493888998
 160.6411561931741
 210.0111289065943
 10.36323193293244
 144.5
 0.2048950887373653
 1999.250022236772
 124.7380815523628
 420.5
 343.4444401093227
 8
 1.801728624385869
 162
 313.8837916877746
 0
 2.541139840616955
 0.05351441629747863
 1.904495297825732
 417.7346959108357
 0.5
 1352
 2
 364.5
 139.169294801233
 144.5
 199.5377027326574
 0.03506029515081736
 8
 2234.627834591213
 975.896911148824
 0.360002547189904
 512
 29.91575360294924
 1012.5
 784.0268295459406
 8.183391814447306
 98
 0.1731518000579298
 3612.5
 514.5284767173813
 4330.297503866355
 123.1958169282804
 1364.860874146628
 2522.892576923072
 3362
 1458
 2503.87078382964
 2178
 760.5
 226.5406681080648
 364.5
 3200


# name: weights
# type: matrix
# rows: 276
# columns: 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1


# name: censor
# type: scalar
0


# name: baseline
# type: scalar
0


# name: style
# type: sq_string
# elements: 1
# length: 1
n


# name: scales
# type: scalar
1


# name: xlim
# type: matrix
# rows: 2
# columns: 1
 0
 0




# name: evaluation_structure
# type: scalar struct
# ndims: 2
 1 1
# length: 8
# name: type
# type: sq_string
# elements: 1
# length: 4
tree


# name: module
# type: scalar struct
# ndims: 2
 1 1
# length: 3
# name: name
# type: sq_string
# elements: 1
# length: 3
std


# name: directory
# type: null_sq_string
# elements: 0


# name: parameters
# type: scalar
0




# name: lower_left
# type: scalar
0


# name: upper_right
# type: scalar
0


# name: grid
# type: scalar
10


# name: cut
# type: scalar
0.8


# name: maxk
# type: scalar
1000


# name: derivative
# type: scalar
0




# name: smoothing_parameters
# type: scalar struct
# ndims: 2
 1 1
# length: 11
# name: alpha
# type: matrix
# rows: 1
# columns: 3
 0.7 0 0


# name: adaptive_criterion
# type: sq_string
# elements: 1
# length: 2
cp


# name: degree
# type: scalar
2


# name: family
# type: sq_string
# elements: 1
# length: 5
gamma


# name: link
# type: sq_string
# elements: 1
# length: 7
default


# name: kernel
# type: sq_string
# elements: 1
# length: 4
tcub


# name: kernel_type
# type: sq_string
# elements: 1
# length: 3
sph


# name: deren
# type: scalar
0


# name: deit
# type: sq_string
# elements: 1
# length: 7
default


# name: demint
# type: scalar
20


# name: debug
# type: scalar
0




# name: fit_points
# type: scalar struct
# ndims: 2
 1 1
# length: 6
# name: evaluation_points
# type: matrix
# rows: 1
# columns: 5
 -0.6833812334047907 6.952728644624869 3.134673705610039 1.225646236102624 5.043701175117453


# name: fitted_values
# type: matrix
# rows: 5
# columns: 11
 -0.4780349615759775 0.4587946918492114 0.09380772433542278 -0.1543985200998657 0.1085069753247653 -0.1844125625275044 -57.51542512411198 1.838442210570626 46.45377801533508 5.496650281465815 2
 0.00859546465794736 0.007463435776044136 0.0008117835380887783 0.0007249534430119331 0.002716168211500031 0.003149482487915661 -378.4377848891691 2.895747872410059 268.9166003580786 20.28403121746227 2
 -0.0297824890329883 -0.02733483136307369 0.02093604488816905 -0.004346713975171855 0.02556184535382897 -0.004016124707926654 -208.0739935791972 1.946885589084127 159.2390941728792 2.526600534106447 2
 0.06233179397904487 0.1244223524446979 0.005509507785338125 0.03660531158017293 0.01817563090439375 0.02794515347375807 -98.46773324014573 1.860487041131217 78.59199362705083 3.587622811958401 2
 -0.004917206421938047 0.01110022821252987 0.000330409508454102 -0.0003187189574629413 0.000980250805272323 -0.001671662903533849 -373.9952488212735 2.741261752696345 265.423616098305 9.408763927513387 2


# name: evaluation_vectors
# type: scalar struct
# ndims: 2
 1 1
# length: 4
# name: cell
# type: matrix
# rows: 2
# columns: 1
 0
 1


# name: splitvar
# type: matrix
# rows: 1
# columns: 5
 0 0 0 0 0


# name: lo
# type: matrix
# rows: 1
# columns: 5
 0 0 0 0 1


# name: hi
# type: matrix
# rows: 1
# columns: 5
 0 0 1 2 2




# name: fit_limits
# type: matrix
# rows: 1
# columns: 2
 -0.6833812334047907 6.952728644624869


# name: family_link
# type: matrix
# rows: 1
# columns: 2
 7 4


# name: kappa
# type: matrix
# rows: 1
# columns: 6
 -383.1157592790227 4.205160419924432 3.947487842478111 1 0 1




# name: parametric_component
# type: matrix
# rows: 1
# columns: 31
 4.01438090124264 4.039035554624711 1.185611582819957 0.08954622424519122 0.06019292349075954 0.1306893397024039 0.1563251713629077 0.3998478689518 0 -9.946965241061817e-10 0 0.9999999486648966 -3.24489640006e-15 -9.946965241061817e-10 -3.24489640006e-15 1.600152182383303 0.6491090428643189 0.3966294519227455 0.6491090265427149 -0.2804593165841786 0.9179788003366177 -0.2804594335615753 -0.7071067968934422 8.050863200882512e-08 0.7071067654796481 -0.1081198631397258 0.1438443421160909 0.112957298071852 0.06019292349075954 0.04447715216714684 0.03621200115668121