comparison CAMERA_groupFWHM.R @ 0:6aea0427511e draft default tip

planemo upload commit 24d44ee26b7c23380c2b42fae2f7f6e58472100d
author workflow4metabolomics
date Sun, 24 Nov 2024 21:28:57 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:6aea0427511e
1 #!/usr/bin/env Rscript
2
3 # ----- PACKAGE -----
4 cat("\tSESSION INFO\n")
5
6 # Import the different functions
7 source_local <- function(fname) {
8 argv <- commandArgs(trailingOnly = FALSE)
9 base_dir <- dirname(substring(argv[grep("--file=", argv)], 8))
10 source(paste(base_dir, fname, sep = "/"))
11 }
12 source_local("lib.r")
13
14 pkgs <- c("CAMERA", "xcms", "multtest", "batch")
15 loadAndDisplayPackages(pkgs)
16 cat("\n\n")
17 # ----- ARGUMENTS -----
18 cat("\tARGUMENTS INFO\n")
19
20 args <- parseCommandArgs(evaluate = FALSE) # interpretation of arguments given in command line as an R list of objects
21 write.table(as.matrix(args), col.names = FALSE, quote = FALSE, sep = "\t")
22
23 cat("\n\n")
24
25 print("Arguments retrieved from the command line:")
26 print(args)
27
28 # Function to convert "NA" strings to actual NA values and string lists to numeric lists
29 convertStringToNumeric <- function(x) {
30 # Force conversion to character
31 x <- as.character(x)
32
33 if (x == "NA") {
34 return(NA)
35 } else if (grepl("^[0-9]+$", x)) {
36 # If the string represents a single numeric value
37 return(as.numeric(x))
38 } else {
39 # Convert string representation of a list to a numeric vector
40 # Use a regular expression to split by common separators
41 return(as.numeric(unlist(strsplit(x, "[,;\\s]+"))))
42 }
43 }
44
45 # Convert only the 'sample' element in args
46 args$sample <- convertStringToNumeric(args$sample)
47
48 print("Argument types:")
49 print(sapply(args, class))
50
51 # Check if the image file exists
52 if (!file.exists(args$image)) {
53 stop("The RData file does not exist: ", args$image)
54 }
55
56 # ----- PROCESSING INFILE -----
57
58 # Load the RData file (it should contain the xset object, typically an xcmsSet or XCMSnExp)
59 load(args$image)
60 args$image <- NULL
61
62 # Save arguments to generate a report
63 if (!exists("listOFlistArguments")) listOFlistArguments <- list()
64 listOFlistArguments[[format(Sys.time(), "%y%m%d-%H:%M:%S_groupFWHM")]] <- args
65
66 # We unzip automatically the chromatograms from the zip files.
67 if (!exists("zipfile")) zipfile <- NULL
68 if (!exists("singlefile")) singlefile <- NULL
69 rawFilePath <- getRawfilePathFromArguments(singlefile, zipfile, args)
70 zipfile <- rawFilePath$zipfile
71 singlefile <- rawFilePath$singlefile
72 args <- rawFilePath$args
73
74 print(paste("singlefile :", singlefile))
75 if (!is.null(singlefile)) {
76 directory <- retrieveRawfileInTheWorkingDir(singlefile, zipfile)
77 }
78
79 # If the xdata object exists, convert it to xcmsSet
80 if (exists("xdata")) {
81 phenoData <- xdata@phenoData
82 xset <- getxcmsSetObject(xdata)
83 }
84
85 if (!exists("xdata")) stop("\n\nERROR: The RData doesn't contain any object called 'xdata'. This RData should have been created by an old version of XMCS 2.*")
86
87 # Verification of a group step before doing the fillpeaks job.
88 if (dim(xdata@phenoData@data)[1] > 1) {
89 if (!hasFeatures(xdata)) stop("You must always do a group step after a retcor. Otherwise it won't work for the groupFWHM step")
90 } else {
91 print("Only one file in the phenoData keep xset as is")
92 }
93
94 # Convert the xset object to xsAnnotate using CAMERA
95 cat("Converting xset object to xsAnnotate...\n")
96 xsa <- xsAnnotate(xset, sample = args$sample, nSlaves = as.numeric(args$nSlaves), polarity = args$polarity)
97
98 print(paste0("All samples in xset object: ", paste(seq_along(xset@filepaths), collapse = ", ")))
99 print(paste0("Selected samples: ", paste(xsa@sample, collapse = ", ")))
100 print(paste0("Run in parallel mode (0 = disabled): ", paste(xsa@runParallel)))
101 print(paste0("Polarity: ", xsa@polarity))
102
103 # Apply the groupFWHM function with the parameters
104 cat("Applying groupFWHM...\n")
105 xa <- groupFWHM(xsa, sigma = as.numeric(args$sigma), perfwhm = as.numeric(args$perfwhm), intval = args$intval)
106
107 # Extract the list of annotated peaks
108 peakList <- getPeaklist(xa, intval = args$intval)
109
110 if (length(phenoData@data$sample_name) == 1) {
111 peakList$name <- make.unique(paste0("M", round(peakList[, "mz"], 0), "T", round(peakList[, "rt"], 0)), "_")
112 variableMetadata <- peakList[, c("name", setdiff(names(peakList), "name"))]
113 variableMetadata <- formatIonIdentifiers(variableMetadata, numDigitsRT = args$numDigitsRT, numDigitsMZ = args$numDigitsMZ)
114 } else {
115 names_default <- groupnames(xa@xcmsSet, mzdec = 0, rtdec = 0) # Names without decimals
116 names_custom <- groupnames(xa@xcmsSet, mzdec = args$numDigitsMZ, rtdec = args$numDigitsRT) # Names with "x" decimals
117
118 variableMetadata <- data.frame(
119 name = names_default,
120 name_custom = names_custom,
121 stringsAsFactors = FALSE
122 )
123 variableMetadata <- cbind(variableMetadata, peakList[, !(make.names(colnames(peakList)) %in% c(make.names(sampnames(xa@xcmsSet))))])
124 }
125
126 if (!exists("RTinMinute")) RTinMinute <- FALSE
127
128 if (args$convertRTMinute && RTinMinute == FALSE) {
129 RTinMinute <- TRUE
130 variableMetadata <- RTSecondToMinute(variableMetadata = variableMetadata, convertRTMinute = args$convertRTMinute)
131 }
132
133 # Save the peak list to a TSV file
134 output_file_tsv <- "variableMetadata.tsv"
135 write.table(variableMetadata, file = output_file_tsv, sep = "\t", row.names = FALSE, quote = FALSE)
136
137 # Save the xsAnnotate object
138 output_file_RData <- "camera_fwhm.RData"
139 objects2save <- c("xa", "variableMetadata", "listOFlistArguments", "zipfile", "singlefile", "RTinMinute", "phenoData")
140 save(list = objects2save[objects2save %in% ls()], file = output_file_RData)
141
142 cat("Output files generated:", output_file_tsv, "and", output_file_RData, "\n")