Mercurial > repos > workflow4metabolomics > camera_groupfwhm
view CAMERA_groupFWHM.R @ 0:6aea0427511e draft default tip
planemo upload commit 24d44ee26b7c23380c2b42fae2f7f6e58472100d
author | workflow4metabolomics |
---|---|
date | Sun, 24 Nov 2024 21:28:57 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript # ----- PACKAGE ----- cat("\tSESSION INFO\n") # Import the different functions source_local <- function(fname) { argv <- commandArgs(trailingOnly = FALSE) base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) source(paste(base_dir, fname, sep = "/")) } source_local("lib.r") pkgs <- c("CAMERA", "xcms", "multtest", "batch") loadAndDisplayPackages(pkgs) cat("\n\n") # ----- ARGUMENTS ----- cat("\tARGUMENTS INFO\n") args <- parseCommandArgs(evaluate = FALSE) # interpretation of arguments given in command line as an R list of objects write.table(as.matrix(args), col.names = FALSE, quote = FALSE, sep = "\t") cat("\n\n") print("Arguments retrieved from the command line:") print(args) # Function to convert "NA" strings to actual NA values and string lists to numeric lists convertStringToNumeric <- function(x) { # Force conversion to character x <- as.character(x) if (x == "NA") { return(NA) } else if (grepl("^[0-9]+$", x)) { # If the string represents a single numeric value return(as.numeric(x)) } else { # Convert string representation of a list to a numeric vector # Use a regular expression to split by common separators return(as.numeric(unlist(strsplit(x, "[,;\\s]+")))) } } # Convert only the 'sample' element in args args$sample <- convertStringToNumeric(args$sample) print("Argument types:") print(sapply(args, class)) # Check if the image file exists if (!file.exists(args$image)) { stop("The RData file does not exist: ", args$image) } # ----- PROCESSING INFILE ----- # Load the RData file (it should contain the xset object, typically an xcmsSet or XCMSnExp) load(args$image) args$image <- NULL # Save arguments to generate a report if (!exists("listOFlistArguments")) listOFlistArguments <- list() listOFlistArguments[[format(Sys.time(), "%y%m%d-%H:%M:%S_groupFWHM")]] <- args # We unzip automatically the chromatograms from the zip files. if (!exists("zipfile")) zipfile <- NULL if (!exists("singlefile")) singlefile <- NULL rawFilePath <- getRawfilePathFromArguments(singlefile, zipfile, args) zipfile <- rawFilePath$zipfile singlefile <- rawFilePath$singlefile args <- rawFilePath$args print(paste("singlefile :", singlefile)) if (!is.null(singlefile)) { directory <- retrieveRawfileInTheWorkingDir(singlefile, zipfile) } # If the xdata object exists, convert it to xcmsSet if (exists("xdata")) { phenoData <- xdata@phenoData xset <- getxcmsSetObject(xdata) } if (!exists("xdata")) stop("\n\nERROR: The RData doesn't contain any object called 'xdata'. This RData should have been created by an old version of XMCS 2.*") # Verification of a group step before doing the fillpeaks job. if (dim(xdata@phenoData@data)[1] > 1) { if (!hasFeatures(xdata)) stop("You must always do a group step after a retcor. Otherwise it won't work for the groupFWHM step") } else { print("Only one file in the phenoData keep xset as is") } # Convert the xset object to xsAnnotate using CAMERA cat("Converting xset object to xsAnnotate...\n") xsa <- xsAnnotate(xset, sample = args$sample, nSlaves = as.numeric(args$nSlaves), polarity = args$polarity) print(paste0("All samples in xset object: ", paste(seq_along(xset@filepaths), collapse = ", "))) print(paste0("Selected samples: ", paste(xsa@sample, collapse = ", "))) print(paste0("Run in parallel mode (0 = disabled): ", paste(xsa@runParallel))) print(paste0("Polarity: ", xsa@polarity)) # Apply the groupFWHM function with the parameters cat("Applying groupFWHM...\n") xa <- groupFWHM(xsa, sigma = as.numeric(args$sigma), perfwhm = as.numeric(args$perfwhm), intval = args$intval) # Extract the list of annotated peaks peakList <- getPeaklist(xa, intval = args$intval) if (length(phenoData@data$sample_name) == 1) { peakList$name <- make.unique(paste0("M", round(peakList[, "mz"], 0), "T", round(peakList[, "rt"], 0)), "_") variableMetadata <- peakList[, c("name", setdiff(names(peakList), "name"))] variableMetadata <- formatIonIdentifiers(variableMetadata, numDigitsRT = args$numDigitsRT, numDigitsMZ = args$numDigitsMZ) } else { names_default <- groupnames(xa@xcmsSet, mzdec = 0, rtdec = 0) # Names without decimals names_custom <- groupnames(xa@xcmsSet, mzdec = args$numDigitsMZ, rtdec = args$numDigitsRT) # Names with "x" decimals variableMetadata <- data.frame( name = names_default, name_custom = names_custom, stringsAsFactors = FALSE ) variableMetadata <- cbind(variableMetadata, peakList[, !(make.names(colnames(peakList)) %in% c(make.names(sampnames(xa@xcmsSet))))]) } if (!exists("RTinMinute")) RTinMinute <- FALSE if (args$convertRTMinute && RTinMinute == FALSE) { RTinMinute <- TRUE variableMetadata <- RTSecondToMinute(variableMetadata = variableMetadata, convertRTMinute = args$convertRTMinute) } # Save the peak list to a TSV file output_file_tsv <- "variableMetadata.tsv" write.table(variableMetadata, file = output_file_tsv, sep = "\t", row.names = FALSE, quote = FALSE) # Save the xsAnnotate object output_file_RData <- "camera_fwhm.RData" objects2save <- c("xa", "variableMetadata", "listOFlistArguments", "zipfile", "singlefile", "RTinMinute", "phenoData") save(list = objects2save[objects2save %in% ls()], file = output_file_RData) cat("Output files generated:", output_file_tsv, "and", output_file_RData, "\n")