Mercurial > repos > workflow4metabolomics > mixmodel4repeated_measures
comparison mixmodel_script.R @ 0:a4d89d47646f draft default tip
planemo upload for repository https://github.com/workflow4metabolomics/tools-metabolomics commit 8d2ca678d973501b60479a8dc3f212eecd56eab8
author | workflow4metabolomics |
---|---|
date | Mon, 16 May 2022 09:25:01 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a4d89d47646f |
---|---|
1 ####### R functions to perform linear mixed model for repeated measures | |
2 ####### on a multi var dataset using 3 files as used in W4M | |
3 ############################################################################################################## | |
4 lmRepeated2FF <- function(ids, ifixfact, itime, isubject, ivd, ndim, nameVar=colnames(ids)[[ivd]], | |
5 pvalCutof = 0.05, dffOption, visu = visu, tit = "", least.confounded = FALSE, outlier.limit = 3) { | |
6 ### function to perform linear mixed model with 1 Fixed factor + Time + random factor subject | |
7 ### based on lmerTest package providing functions giving the same results as SAS proc mixed | |
8 options(scipen = 50, digits = 5) | |
9 | |
10 if (!is.numeric(ids[[ivd]])) stop("Dependant variable is not numeric") | |
11 if (!is.factor(ids[[ifixfact]])) stop("fixed factor is not a factor") | |
12 if (!is.factor(ids[[itime]])) stop("Repeated factor is not a factor") | |
13 if (!is.factor(ids[[isubject]])) stop("Random factor is not a factor") | |
14 | |
15 ## factors | |
16 time <- ids[[itime]] | |
17 fixfact <- ids[[ifixfact]] | |
18 subject <- ids[[isubject]] | |
19 # dependant variables | |
20 vd <- ids[[ivd]] | |
21 | |
22 # argument of the function instead of re re-running ndim <- defColRes(ids, ifixfact, itime) | |
23 # nfp : number of main factors + model infos (REML, varSubject) + normality test | |
24 nfp <- ndim[1]; | |
25 # ncff number of comparison of the fixed factor | |
26 nlff <- ndim[2]; ncff <- ndim[3] | |
27 # nct number of comparison of the time factor | |
28 nlt <- ndim[4]; nct <- ndim[5] | |
29 # nci number of comparison of the interaction | |
30 nli <- ndim[6]; nci <- ndim[7] | |
31 # number of all lmer results | |
32 nresT <- ncff + nct + nci | |
33 ## initialization of the result vector (1 line) | |
34 ## 4 * because nresf for : pvalues + Etimates + lower CI + Upper CI | |
35 res <- data.frame(array(rep(NA, (nfp + 4 * nresT)))) | |
36 colnames(res)[1] <- "resultLM" | |
37 | |
38 ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip | |
39 ### after excluding NA, table function is used to seek subjects with only 1 data | |
40 ids <- ids[!is.na(ids[[ivd]]), ] | |
41 skip <- length(which(table(ids[[isubject]]) == 1)) | |
42 | |
43 if (skip == 0) { | |
44 | |
45 mfl <- lmer(vd ~ time + fixfact + time:fixfact + (1 | subject), ids) # lmer remix | |
46 | |
47 rsum <- summary(mfl, ddf = dffOption) | |
48 ## test Shapiro Wilks on the residus of the model | |
49 rShapiro <- shapiro.test(rsum$residuals) | |
50 raov <- anova(mfl, ddf = dffOption) | |
51 dlsm1 <- data.frame(difflsmeans(mfl, test.effs = NULL)) | |
52 ddlsm1 <- dlsm1 | |
53 ## save rownames and factor names | |
54 rn <- rownames(ddlsm1) | |
55 fn <- ddlsm1[, c(1, 2)] | |
56 ## writing the results on a single line | |
57 namesFactEstim <- paste("estimate ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "") | |
58 namesFactPval <- paste("pvalue ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "") | |
59 namesInter <- rownames(ddlsm1)[-c(1:(nct + ncff))] | |
60 namesEstimate <- paste("estimate ", namesInter) | |
61 namespvalues <- paste("pvalue ", namesInter) | |
62 namesFactprinc <- c("pval_time", "pval_trt", "pval_inter") | |
63 namesFactEstim <- paste("estimate ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "") | |
64 | |
65 namesFactLowerCI <- paste("lowerCI ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "") | |
66 namesLowerCI <- paste("lowerCI ", namesInter, sep = "") | |
67 | |
68 namesFactUpperCI <- paste("UpperCI ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "") | |
69 namesUpperCI <- paste("UpperCI ", namesInter, sep = "") | |
70 | |
71 | |
72 ### lmer results on 1 vector row | |
73 # pvalue of shapiro Wilks test of the residuals | |
74 res[1, ] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals" | |
75 res[2, ] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance" | |
76 res[3, ] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML" | |
77 ### 3 principal factors pvalues results + shapiro test => nfp <- 4 | |
78 res[c((nfp - 2):nfp), ] <- raov[, 6] | |
79 rownames(res)[c((nfp - 2):nfp)] <- namesFactprinc | |
80 | |
81 #################### Residuals diagnostics for significants variables ######################### | |
82 ### Il at least 1 factor is significant and visu=TRUE NL graphics add to pdf | |
83 ## ajout JF du passage de la valeur de p-value cutoff | |
84 if (length(which(raov[, 6] <= pvalCutof)) > 0 & visu == "yes") { | |
85 diagmflF(mfl, title = tit, pvalCutof = pvalCutof, least.confounded = least.confounded, | |
86 outlier.limit = outlier.limit) | |
87 } | |
88 | |
89 # pvalue of fixed factor comparisons | |
90 nresf <- nresT | |
91 res[(nfp + 1):(nfp + nct), ] <- ddlsm1[c(1:nct), 9] | |
92 res[(nfp + nct + 1):(nfp + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 9] | |
93 rownames(res)[(nfp + 1):(nfp + nct + ncff)] <- namesFactPval | |
94 res[(nfp + nct + ncff + 1):(nfp + nresf), ] <- ddlsm1[(nct + ncff + 1):(nresT), 9] | |
95 rownames(res)[(nfp + nct + ncff + 1):(nfp + nresT)] <- namespvalues | |
96 # Estimate of the difference between levels of factors | |
97 res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 3] | |
98 res[(nfp + nresf + nct + 1):(nfp + nresf + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 3] | |
99 rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct + ncff)] <- namesFactEstim | |
100 res[(nfp + nresf + nct + ncff + 1):(nfp + 2 * nresf), ] <- ddlsm1[(nct + ncff + 1):(nresT), 3] | |
101 rownames(res)[(nfp + nresf + nct + ncff + 1):(nfp + 2 * nresf)] <- namesEstimate | |
102 # lower CI of the difference between levels of factors | |
103 nresf <- nresf + nresT | |
104 res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 7] | |
105 res[(nfp + nresf + nct + 1):(nfp + nresf + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 7] | |
106 rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct + ncff)] <- namesFactLowerCI | |
107 res[(nfp + nresf + nct + ncff + 1):(nfp + 2 * nresf), ] <- ddlsm1[(nct + ncff + 1):(nresf), 7] | |
108 rownames(res)[(nfp + nresf + nct + ncff + 1):(nfp + nresf + (nresf / 2))] <- namesLowerCI | |
109 # Upper CI of the difference between levels of factors | |
110 nresf <- nresf + nresT | |
111 res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 8] | |
112 res[(nfp + nresf + nct + 1):(nfp + nresf + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 8] | |
113 rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct + ncff)] <- namesFactUpperCI | |
114 res[(nfp + nresf + nct + ncff + 1):(nfp + nresf + (nresT)), ] <- ddlsm1[(nct + ncff + 1):(nresT), 8] | |
115 rownames(res)[(nfp + nresf + nct + ncff + 1):(nfp + nresf + (nresT))] <- namesUpperCI | |
116 | |
117 } else { | |
118 ## one of the subject has only one time, subject can't be a random variable | |
119 ## A repeated measure could be run instead function lme of package nlme, in next version? | |
120 res[1, ] <- NA | |
121 cat("\n Computing impossible for feature ", tit, ": at least one subject has only one time.\n") | |
122 } | |
123 tres <- data.frame(t(res)) | |
124 rownames(tres)[1] <- nameVar | |
125 cres <- list(tres, rn, fn) | |
126 return(cres) | |
127 } | |
128 | |
129 ############################################################################################################## | |
130 lmRepeated1FF <- function(ids, ifixfact = 0, itime, isubject, ivd, ndim, nameVar = colnames(ids)[[ivd]], | |
131 dffOption, pvalCutof = 0.05) { | |
132 ### function to perform linear mixed model with factor Time + random factor subject | |
133 ### based on lmerTest package providing functions giving the same results as SAS proc mixed | |
134 | |
135 | |
136 if (!is.numeric(ids[[ivd]])) stop("Dependant variable is not numeric") | |
137 if (!is.factor(ids[[itime]])) stop("Repeated factor is not a factor") | |
138 if (!is.factor(ids[[isubject]])) stop("Random factor is not a factor") | |
139 # Could be interesting here to add an experience plan check to give back a specific error message | |
140 # in case time points are missing for some individuals | |
141 | |
142 time <- ids[[itime]] | |
143 subject <- ids[[isubject]] | |
144 vd <- ids[[ivd]] ## dependant variables (quatitative) | |
145 | |
146 # nfp : nombre de facteurs principaux + model infos + normality test | |
147 nfp <- ndim[1] | |
148 # nlt number of time levels; nct number of comparisons of the time factor | |
149 nlt <- ndim[4] | |
150 nct <- ndim[5] | |
151 # number of all lmer results | |
152 nresT <- nct | |
153 ## initialization of the result vector (1 line) | |
154 res <- data.frame(array(rep(NA, (nfp + 4 * nresT)))) | |
155 colnames(res)[1] <- "resultLM" | |
156 | |
157 ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip | |
158 ### after excluding NA, table function is used to seek subjects with only 1 data | |
159 ids <- ids[!is.na(ids[[ivd]]), ] | |
160 skip <- length(which(table(ids[[isubject]]) == 1)) | |
161 | |
162 if (skip == 0) { | |
163 | |
164 mfl <- lmer(vd ~ time + (1 | subject), ids) # lmer remix | |
165 rsum <- summary(mfl, ddf = dffOption) | |
166 ## test Shapiro Wilks on the residus of the model | |
167 rShapiro <- shapiro.test(rsum$residuals) | |
168 raov <- anova(mfl, ddf = dffOption) | |
169 ## Sum of square : aov$'Sum Sq', Mean square : aov$`Mean Sq`, proba : aov$`Pr(>F)` | |
170 | |
171 ## Test of all differences estimates between levels as SAS proc mixed. | |
172 ## results are in diffs.lsmeans.table dataframe | |
173 ## test.effs=NULL perform all pairs comparisons including interaction effect | |
174 dlsm1 <- data.frame(difflsmeans(mfl, test.effs = NULL)) | |
175 ddlsm1 <- dlsm1 | |
176 ## save rownames and factor names | |
177 rn <- rownames(ddlsm1) | |
178 fn <- ddlsm1[, c(1, 2)] | |
179 ## writing the results on a single line | |
180 namesFactEstim <- paste("estimate ", rownames(ddlsm1)[c(1:(nct))], sep = "") | |
181 namesFactPval <- paste("pvalue ", rownames(ddlsm1)[c(1:(nct))], sep = "") | |
182 namesFactprinc <- "pval_time" | |
183 namesLowerCI <- paste("lowerCI ", rownames(ddlsm1)[c(1:(nct))], sep = "") | |
184 namesUpperCI <- paste("upperCI ", rownames(ddlsm1)[c(1:(nct))], sep = "") | |
185 | |
186 ### lmer results on 1 vector | |
187 # pvalue of shapiro Wilks test of the residuals | |
188 res[1, ] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals" | |
189 res[2, ] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance" | |
190 res[3, ] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML" | |
191 | |
192 ### factor time pvalue results + shapiro test | |
193 res[nfp, ] <- raov[, 6] | |
194 rownames(res)[nfp] <- namesFactprinc | |
195 | |
196 # pvalues of time factor levels comparisons | |
197 res[(nfp + 1):(nfp + nct), ] <- ddlsm1[c(1:nct), 9] | |
198 rownames(res)[(nfp + 1):(nfp + nct)] <- namesFactPval | |
199 | |
200 # Estimates of time factor levels | |
201 nresf <- nresT | |
202 res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 3] | |
203 rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct)] <- namesFactEstim | |
204 | |
205 # Lower CI of the difference between levels of factors | |
206 # nresf is incremeted | |
207 nresf <- nresf + nresT | |
208 res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 7] | |
209 rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct)] <- namesLowerCI | |
210 # Lower CI of the difference between levels of factors | |
211 # nresf is incremeted | |
212 nresf <- nresf + nresT | |
213 res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 8] | |
214 rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct)] <- namesUpperCI | |
215 | |
216 | |
217 } else { | |
218 ## one of the subject has only one time, subject can't be a random variable | |
219 ## A repeated measure could be run instead function lme of package nlme, next version | |
220 res[1, ] <- NA | |
221 cat("\n Computing impossible for feature ", colnames(ids)[4], ": at least one subject has only one time.\n") | |
222 } | |
223 tres <- data.frame(t(res)) | |
224 rownames(tres)[1] <- nameVar | |
225 cres <- list(tres, rn, fn) | |
226 return(cres) | |
227 | |
228 } | |
229 | |
230 ############################################################################################################## | |
231 defColRes <- function(ids, ifixfact, itime) { | |
232 ## define the size of the result file depending on the numbers of levels of the fixed and time factor. | |
233 ## Numbers of levels define the numbers of comparisons with pvalue and estimate of the difference. | |
234 ## The result file also contains the pvalue of the fixed factor, time factor and interaction | |
235 ## plus Shapiro normality test. This is define by nfp | |
236 ## subscript of fixed factor=0 means no other fixed factor than "time" | |
237 if (ifixfact > 0) { | |
238 nfp <- 6 # shapiro + subject variance + REML + time + fixfact + interaction | |
239 time <- ids[[itime]] | |
240 fixfact <- ids[[ifixfact]] | |
241 | |
242 cat("\n Levels fixfact: ", levels(fixfact)) | |
243 cat("\n Levels time: ", levels(time)) | |
244 | |
245 # ncff number of comparisons of the fixed factor (nlff number of levels of fixed factor) | |
246 nlff <- length(levels(fixfact)) | |
247 ncff <- (nlff * (nlff - 1)) / 2 | |
248 # nct number of comparison of the time factor (nlt number of levels of time factor) | |
249 nlt <- length(levels(time)) | |
250 nct <- (nlt * (nlt - 1)) / 2 | |
251 # nci number of comparison of the interaction | |
252 nli <- nlff * nlt | |
253 nci <- (nli * (nli - 1)) / 2 | |
254 ndim <- c(NA, NA, NA, NA, NA, NA, NA) | |
255 | |
256 ndim[1] <- nfp # pvalues of fixed factor, time factor and interaction (3columns) and shapiro test pvalue | |
257 ndim[2] <- nlff # number of levels of fixed factor | |
258 ndim[3] <- ncff # number of comparisons (2by2) of the fixed factor | |
259 ndim[4] <- nlt # number of levels of time factor | |
260 ndim[5] <- nct # number of comparisons (2by2) of the time factor | |
261 ndim[6] <- nli # number of levels of interaction | |
262 ndim[7] <- nci # number of comparisons (2by2) of the interaction | |
263 | |
264 } | |
265 else { | |
266 nfp <- 4 # Mandatory columns: shapiro + subject variance + REML + time | |
267 time <- ids[[itime]] | |
268 # nct number of comparison of the time factor | |
269 nlt <- length(levels(time)) | |
270 nct <- (nlt * (nlt - 1)) / 2 | |
271 ndim <- c(NA, NA, NA, NA, NA, NA, NA) | |
272 | |
273 ndim[1] <- nfp # pvalues of shapiro test + subject variance + REML + time factor | |
274 ndim[4] <- nlt # number of levels of time factor | |
275 ndim[5] <- nct # number of comparisons (2by2) of the time factor | |
276 } | |
277 return(ndim) | |
278 } | |
279 | |
280 ############################################################################################################## | |
281 lmixedm <- function(datMN, | |
282 samDF, | |
283 varDF, | |
284 fixfact, time, subject, | |
285 logtr = "none", | |
286 pvalCutof = 0.05, | |
287 pvalcorMeth = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")[7], | |
288 dffOption, | |
289 visu = "no", | |
290 least.confounded = FALSE, | |
291 outlier.limit = 3, | |
292 pdfC, | |
293 pdfE | |
294 ) { | |
295 sampids <- samDF | |
296 dataMatrix <- datMN | |
297 varids <- varDF | |
298 | |
299 options("scipen" = 50, "digits" = 5) | |
300 pvalCutof <- as.numeric(pvalCutof) | |
301 | |
302 cat("\n dff computation method=", dffOption) | |
303 ### Function running lmer function on a set of variables described in | |
304 ### 3 different dataframes as used by W4M | |
305 ### results are merge with the metadata variables varids | |
306 ### ifixfact, itime, isubject are subscripts of the dependant variables. if only time factor the ifixfat is set to 0 and no diag is performed (visu="no") | |
307 if (fixfact == "none") { | |
308 ifixfact <- 0 ; visu <- "no" | |
309 } else ifixfact <- which(colnames(sampids) == fixfact) | |
310 itime <- which(colnames(sampids) == time) | |
311 isubject <- which(colnames(sampids) == subject) | |
312 | |
313 lmmds <- dataMatrix | |
314 if (logtr != "log10" & logtr != "log2") logtr <- "none" | |
315 if (logtr == "log10") lmmds <- log10(lmmds + 1) | |
316 if (logtr == "log2") lmmds <- log2(lmmds + 1) | |
317 | |
318 dslm <- cbind(sampids, lmmds) | |
319 | |
320 nvar <- ncol(lmmds) | |
321 firstvar <- ncol(sampids) + 1 | |
322 lastvar <- firstvar + ncol(lmmds) - 1 | |
323 | |
324 if (ifixfact > 0) dslm[[ifixfact]] <- factor(dslm[[ifixfact]]) | |
325 dslm[[itime]] <- factor(dslm[[itime]]) | |
326 dslm[[isubject]] <- factor(dslm[[isubject]]) | |
327 ## call defColres to define the numbers of test and so the number of columns of results | |
328 ## depends on whether or not there is a fixed factor with time. If only time factor ifixfact=0 | |
329 if (ifixfact > 0) { | |
330 ndim <- defColRes(dslm[, c(ifixfact, itime)], ifixfact = 1, itime = 2) | |
331 nColRes <- ndim[1] + (4 * (ndim[3] + ndim[5] + ndim[7])) | |
332 firstpval <- ndim[1] - 2 | |
333 lastpval <- ndim[1] + ndim[3] + ndim[5] + ndim[7] | |
334 } else { | |
335 ndim <- defColRes(dslm[, itime], ifixfact = 0, itime = 1) | |
336 nColRes <- ndim[1] + (4 * (ndim[5])) | |
337 firstpval <- ndim[1] | |
338 lastpval <- ndim[1] + ndim[5] | |
339 } | |
340 ## initialisation of the result file | |
341 resLM <- data.frame(array(rep(NA, nvar * nColRes), dim = c(nvar, nColRes))) | |
342 rownames(resLM) <- rownames(varids) | |
343 | |
344 ## PDF initialisation | |
345 if (visu == "yes") { | |
346 pdf(pdfC, onefile = TRUE, height = 15, width = 30) | |
347 par(mfrow = c(1, 3)) | |
348 } | |
349 | |
350 | |
351 for (i in firstvar:lastvar) { | |
352 | |
353 subds <- dslm[, c(ifixfact, itime, isubject, i)] | |
354 | |
355 tryCatch({ | |
356 if (ifixfact > 0) | |
357 reslmer <- lmRepeated2FF(subds, ifixfact = 1, itime = 2, isubject = 3, ivd = 4, ndim = ndim, visu = visu, | |
358 tit = colnames(dslm)[i], pvalCutof = pvalCutof, | |
359 dffOption = dffOption, least.confounded = least.confounded, | |
360 outlier.limit = outlier.limit) | |
361 else | |
362 reslmer <- lmRepeated1FF(subds, ifixfact = 0, itime = 1, isubject = 2, ivd = 3, ndim = ndim, | |
363 pvalCutof = pvalCutof, dffOption = dffOption) | |
364 | |
365 resLM[i - firstvar + 1, ] <- reslmer[[1]] | |
366 }, error = function(e) { | |
367 cat("\nERROR with ", rownames(resLM)[i - firstvar + 1], ": ", conditionMessage(e), "\n") | |
368 } | |
369 ) | |
370 | |
371 } | |
372 | |
373 if (exists("reslmer")) { | |
374 colnames(resLM) <- colnames(reslmer[[1]]) | |
375 labelRow <- reslmer[[2]] | |
376 factorRow <- reslmer[[3]] | |
377 } else { | |
378 stop("\n- - - - -\nModel computation impossible for every single variables in the dataset: no result returned.\n- - - - -\n") | |
379 } | |
380 | |
381 if (visu == "yes") dev.off() | |
382 | |
383 | |
384 ## pvalue correction with p.adjust library multtest | |
385 ## Possible methods of pvalue correction | |
386 AdjustMeth <- c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") | |
387 if (length(which(pvalcorMeth == AdjustMeth)) == 0) pvalcorMeth <- "none" | |
388 | |
389 if (pvalcorMeth != "none") { | |
390 for (k in firstpval:lastpval) { | |
391 resLM[[k]] <- p.adjust(resLM[[k]], method = pvalcorMeth, n = dim(resLM[k])[[1]]) | |
392 | |
393 } | |
394 } | |
395 | |
396 ## for each variables, set pvalues to NA and estimates = 0 when pvalue of factor > pvalCutof value define by user | |
397 if (ifixfact > 0) { | |
398 ## time effect | |
399 resLM[which(resLM[, firstpval] > pvalCutof), c((lastpval + 1):(lastpval + ndim[5]))] <- 0 | |
400 resLM[which(resLM[, firstpval] > pvalCutof), c((ndim[1] + 1):(ndim[1] + ndim[5]))] <- NA | |
401 ## treatment effect | |
402 resLM[which(resLM[, firstpval + 1] > pvalCutof), c((lastpval + ndim[5] + 1):(lastpval + ndim[5] + ndim[3]))] <- 0 | |
403 resLM[which(resLM[, firstpval + 1] > pvalCutof), c((ndim[1] + ndim[5] + 1):(ndim[1] + ndim[5] + ndim[3]))] <- NA | |
404 ## interaction effect | |
405 resLM[which(resLM[, firstpval + 2] > pvalCutof), c((lastpval + ndim[5] + ndim[3] + 1):(lastpval + ndim[5] + ndim[3] + ndim[7]))] <- 0 | |
406 resLM[which(resLM[, firstpval + 2] > pvalCutof), c((ndim[1] + ndim[5] + ndim[3] + 1):(ndim[1] + ndim[5] + ndim[3] + ndim[7]))] <- NA | |
407 } else { | |
408 ## time effect only | |
409 resLM[which(resLM[, firstpval] > pvalCutof), c((lastpval + 1):(lastpval + ndim[5]))] <- 0 | |
410 resLM[which(resLM[, firstpval] > pvalCutof), c((firstpval + 1):(firstpval + ndim[5]))] <- NA | |
411 } | |
412 | |
413 ## for each variable, estimates plots are performed if at least one factor is significant after p-value correction | |
414 pdf(pdfE, onefile = TRUE, height = 15, width = 30) | |
415 | |
416 ## for each variable (in row) | |
417 for (i in seq_len(nrow(resLM))) { | |
418 | |
419 ## if any fixed factor + time factor | |
420 if (ifixfact > 0) | |
421 | |
422 ## if any main factor after p-value correction is significant -> plot estimates and time course | |
423 if (length(which(resLM[i, c(4:6)] < pvalCutof)) > 0) { | |
424 | |
425 ## Plot of time course by fixfact : data prep with factors and quantitative var to be plot | |
426 subv <- dslm[, colnames(dslm) == rownames(resLM)[i]] | |
427 subds <- data.frame(dslm[[ifixfact]], dslm[[itime]], dslm[[isubject]], subv) | |
428 libvar <- c(fixfact, time, subject) | |
429 colnames(subds) <- c(libvar, rownames(resLM)[i]) | |
430 | |
431 ## Plot of estimates with error bars for all fixed factors and interaction | |
432 rddlsm1 <- t(resLM[i, ]) | |
433 pval <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "pvalue"] | |
434 esti <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "estima"] | |
435 loci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "lowerC"] | |
436 upci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "UpperC"] | |
437 rddlsm1 <- data.frame(pval, esti, loci, upci, factorRow) | |
438 colnames(rddlsm1) <- c("p.value", "Estimate", "Lower.CI", "Upper.CI", colnames(factorRow)) | |
439 rownames(rddlsm1) <- labelRow | |
440 | |
441 ## function for plotting these 2 graphs | |
442 plot.res.Lmixed(rddlsm1, subds, title = rownames(resLM)[i], pvalCutof = pvalCutof) | |
443 | |
444 } | |
445 | |
446 ## if only a time factor | |
447 if (ifixfact == 0) | |
448 | |
449 ## if time factor after p-value correction is significant -> plot time course | |
450 if (length(which(resLM[i, 4] < pvalCutof)) > 0) { | |
451 | |
452 ## Plot of time course : data prep with factors and quantitative var to be plot | |
453 subv <- dslm[, colnames(dslm) == rownames(resLM)[i]] | |
454 subds <- data.frame(dslm[[itime]], dslm[[isubject]], subv) | |
455 libvar <- c(time, subject) | |
456 colnames(subds) <- c(libvar, rownames(resLM)[i]) | |
457 | |
458 ## Plot of estimates with error bars for all fixed factors and interaction | |
459 rddlsm1 <- t(resLM[i, ]) | |
460 pval <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "pvalue"] | |
461 esti <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "estima"] | |
462 loci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "lowerC"] | |
463 upci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "upperC"] | |
464 rddlsm1 <- data.frame(pval, esti, loci, upci, factorRow) | |
465 colnames(rddlsm1) <- c("p.value", "Estimate", "Lower.CI", "Upper.CI", colnames(factorRow)) | |
466 rownames(rddlsm1) <- labelRow | |
467 | |
468 ## function for plotting these 2 graphs | |
469 plot.res.Lmixed(rddlsm1, subds, title = rownames(resLM)[i], pvalCutof = pvalCutof) | |
470 | |
471 } | |
472 | |
473 } | |
474 dev.off() | |
475 | |
476 ## return result file with pvalues and estimates (exclude confidence interval used for plotting) | |
477 iCI <- which(substr(colnames(resLM), 4, 7) == "erCI") | |
478 resLM <- resLM[, - iCI] | |
479 resLM <- cbind(varids, resLM) | |
480 return(resLM) | |
481 } |