view MS2snoop.R @ 6:77abacd33c31 draft

planemo upload commit 1f791337b9b8f08326c01bf4799f50493ef54f80
author workflow4metabolomics
date Fri, 30 Sep 2022 16:18:56 +0000
parents 78d5a12406c2
children 2a1f120a6874
line wrap: on
line source

#' read and process mspurity W4M files
#' create a summary of fragment for each precursor and a graphics of peseudo
#' spectra + correlation on which checking of fragment is based on
#' V3 try to identify and process multiple files for 1 precursor which may
#' occur if different collision energy are used
#' V4 elimination of correlation = NA. Correlation is done with precursor, if
#' precursor is not present correlation with most intense peak
#' author: Jean-Francois Martin
#' V5 is versionned, lintR-compliant, packaged, unit-tested, documented and
#' tested against data from other labs.
#' new maintainer: Lain Pavot - lain.pavot@inrae.fr
#'
#' @import optparse
#'


get_version <- function() {
  cmd <- commandArgs(trailingOnly = FALSE)
  root <- dirname(gsub("--file=", "", cmd[grep("--file=", cmd)]))
  readme <- readLines(file.path(root, "README.md"))
  version_line <- readme[grepl(" * **@version**: ", readme, fixed = TRUE)]
  return(gsub(".*: ", "", version_line))
}

defaults <- list(
  MS2SNOOP_VERSION = get_version(),
  MISSING_PARAMETER_ERROR = 1,
  BAD_PARAMETER_VALUE_ERROR = 2,
  MISSING_INPUT_FILE_ERROR = 3,
  NO_ANY_RESULT_ERROR = 255,
  DEFAULT_PRECURSOR_PATH = NULL,
  DEFAULT_FRAGMENTS_PATH = NULL,
  DEFAULT_COMPOUNDS_PATH = NULL,
  DEFAULT_OUTPUT_PATH = "compound_fragments_result.txt",
  DEFAULT_TOLMZ = 0.01,
  DEFAULT_TOLRT = 20,
  DEFAULT_MZDECIMAL = 3,
  DEFAULT_R_THRESHOLD = 0.85,
  DEFAULT_MINNUMBERSCAN = 8,
  DEFAULT_SEUIL_RA = 0.05,
  DEFAULT_FRAGMENTS_MATCH_DELTA = 10,
  DEFAULT_FRAGMENTS_MATCH_DELTA_UNIT = "ppm",
  DEFAULT_PDF_PATH = ""
)
env <- globalenv()
for (default in names(defaults)) {
  assign(default, defaults[[default]], envir = env)
  lockBinding(default, env)
}

########################################################################

get_formulas <- function(
  mzref,
  spectra,
  processing_parameters,
  background = !TRUE
) {
  if (is.vector(mzref) && length(mzref) > 1) {
    return(lapply(
      mzref,
      function(mz) {
        return(get_formulas(
          mzref = mz,
          spectra = spectra,
          processing_parameters = processing_parameters,
          background = background
        ))
      }
    ))
  }
  input <- sprintf(
    "%s-%s.ms",
    gsub("[[:space:]]", "_", processing_parameters$c_name),
    mzref
  )
  create_ms_file(input, mzref, spectra, processing_parameters)
  output <- sprintf(
    "out/%s-%s.out",
    gsub("[[:space:]]", "_", processing_parameters$c_name),
    mzref
  )
  command <- sprintf(
    paste(
      "sirius",
      "--noCite",
      "--noSummaries",
      "--loglevel=WARNING",
      "-i='%s'",
      "-o='%s'",
      "tree",
      ## loglevel is not working taken into account during
      ## sirius startup, so we filter outputs...
      "2>&1 | grep '^(WARNING|SEVERE)'"
    ),
    input,
    output
  )
  verbose_catf(
    ">> Sirius is running %swith the command: %s\n",
    if (background) "in the background " else "",
    command
  )
  system(
    command,
    wait = !background,
    ignore.stdout = background,
    ignore.stderr = background
  )
  return(extract_sirius_results(output, spectra$mz, processing_parameters))
}

create_ms_file <- function(
  path,
  mzref,
  spectra,
  processing_parameters
) {
  file_content <- paste(
    sprintf(">compound %s", processing_parameters$c_name),
    sprintf(">ionization %s", processing_parameters$ionization),
    sprintf(">parentmass %s", mzref),
    sprintf(">formula %s", processing_parameters$elemcomposition),
    sep = "\n"
  )
  displayed_file_content <- sprintf(
    "%s\n>collision\n%s",
    file_content,
    paste(
      sprintf(
        "%s %s",
        spectra[1:3, "mz"],
        spectra[1:3, "intensities"]
      ),
      collapse = "\n"
    )
  )
  if (nrow(spectra) > 3) {
    displayed_file_content <- sprintf(
      "%s\n[... %s more rows of mz and intensities ...]",
      displayed_file_content,
      nrow(spectra) - 3
    )
  }
  catf(
    ">> MS file created for %s with content:\n%s\n",
    processing_parameters$c_name,
    displayed_file_content
  )
  file_content <- sprintf(
    "%s\n\n>collision\n%s",
    file_content,
    paste(
      paste(spectra$mz, spectra$intensities),
      collapse = "\n"
    )
  )
  cat(file_content, file = path, append = FALSE)
}

extract_sirius_results <- function(
  output,
  mz_list,
  processing_parameters
) {

  delta <- processing_parameters$fragment_match_delta
  delta_unit <- tolower(processing_parameters$fragment_match_delta_unit)

  output <- list.dirs(output, recursive = FALSE)[[1]]

  spectra_out_dir <- sprintf("%s/spectra", output)
  spectra_filename <- sprintf(
    "%s/%s",
    spectra_out_dir,
    list.files(spectra_out_dir)[[1]]
  )

  trees_out_dir <- sprintf("%s/trees", output)
  trees_filename <- sprintf(
    "%s/%s",
    trees_out_dir,
    list.files(trees_out_dir)[[1]]
  )

  if (!is.null(spectra_filename)) {
    sirius_results <- get_csv_or_tsv(spectra_filename)
  } else {
    return(rep(NA, length(mz_list)))
  }
  if (!is.null(trees_filename)) {
    sirius_results <- cbind(sirius_results, extract_sirius_ppm(trees_filename))
  } else {
    return(rep(NA, length(mz_list)))
  }

  fragment_matchings <- data.frame(
    formula = NA,
    ppm = NA,
    mz = mz_list,
    error = NA
  )

  sirius_results <- filter_sirius_with_delta(
    sirius_results = sirius_results,
    original_mz = fragment_matchings$mz,
    delta = delta,
    delta_unit = delta_unit
  )

  for (index in seq_len(nrow(sirius_results))) {
    result <- sirius_results[index, ]
    filter <- which(order(abs(fragment_matchings$mz - result$mz)) == 1)
    fragment_matchings[filter, "formula"] <- result$formula
    fragment_matchings[filter, "ppm"] <- result$ppm
    catf(
      "[OK] Fragment with m/z=%s matches %s with a difference of %s ppm\n",
      fragment_matchings[filter, "mz"], result$formula, result$ppm
    )
  }
  return(fragment_matchings)
}

filter_sirius_with_delta <- function(
  sirius_results,
  original_mz,
  delta,
  delta_unit
) {
  if (is.numeric(delta) && !is.na(delta) && delta > 0) {
    if (delta_unit == "ppm") {
      filter <- abs(sirius_results$ppm) <= delta
      fine <- which(filter)
      not_fine <- which(!filter)
      catf(
        paste(
          "[KO] fragment %s (m/z=%s) eleminated because ppm=%s is greater",
          "than delta=%s\n"
        ),
        sirius_results[not_fine, ]$formula,
        sirius_results[not_fine, ]$mz,
        sirius_results[not_fine, ]$ppm,
        delta
      )
      sirius_results <- sirius_results[fine, ]
    } else if (delta_unit == "mz") {
      differences <- sapply(
        sirius_results$mz,
        function(mz) min(abs(original_mz - mz))
      )
      fine <- which(sapply(
        sirius_results$mz,
        function(mz) any(abs(original_mz - mz) <= delta)
      ))
      not_fine <- which(sapply(
        sirius_results$mz,
        function(mz) all(abs(original_mz - mz) > delta)
      ))
      catf(
        paste(
          "[KO] fragment %s eleminated because mz difference=%s is",
          "greater than delta=%s\n"
        ),
        sirius_results[not_fine, ]$formula,
        differences[not_fine],
        delta
      )
      sirius_results <- sirius_results[fine, ]
    }
  }
  return(sirius_results)
}

extract_sirius_ppm <- function(path) {
  json <- file(path, "r")
  suppressWarnings(json_lines <- readLines(json))
  close(json)
  json_lines <- json_lines[
    grepl("\\s+\"(massDeviation|recalibratedMass)\" :", json_lines)
  ]
  json_lines <- gsub("^\\s+\"[^\"]+\" : \"?", "", json_lines)
  ppms <- json_lines[seq(1, length(json_lines), 2)]
  mz <- json_lines[seq(2, length(json_lines), 2)]
  ppms <- as.numeric(gsub(" ppm .*", "", ppms))
  mz <- as.numeric(gsub(",$", "", mz))
  ordered <- order(mz)
  return(list(ppm = ppms[ordered], recalibrated_mz = mz[ordered]))
}

#' @title plot_pseudo_spectra
#' @param x
#' @param fid
#' @param sum_int
#' @param vmz
#' @param cor_abs_int
#' @param refcol
#' @param c_name
#' @description plot_pseudo_spectra
#' function to compute sum of intensities among scans for all
#' m/z kept (cor > r_threshold & minimum number of scans)
#' and plot pseudo spectra
#' x dataframe scan X fragments with scans number in the 1st column and
#' ions in next with intensities
#' fid file id when several a precursor has been detected in several files
plot_pseudo_spectra <- function(
  x,
  fid,
  sum_int,
  vmz,
  cor_abs_int,
  refcol,
  meaned_mz,
  processing_parameters
) {
  ## du fait de la difference de nombre de colonne entre la dataframe qui
  ## inclue les scans en 1ere col, mzRef se decale de 1
  refcol <- refcol - 1
  ## compute relative intensities max=100%
  rel_int <- sum_int[-1]
  rel_int <- rel_int / max(rel_int)

  if (processing_parameters$do_pdf) {
    ## define max value on vertical axis (need to increase in order to plot the
    ## label of fragments)
    ymax <- max(rel_int) + 0.2 * max(rel_int)

    par(mfrow = c(2, 1))
    plot(vmz, rel_int, type = "h", ylim = c(0, ymax),
      main = processing_parameters$c_name
    )
    ## low correl coef. will be display in grey
    cor_low <- which(round(cor_abs_int, 2) < processing_parameters$r_threshold)

    lbmzcor <- sprintf("%s(r=%s)", vmz, round(cor_abs_int, 2))

    if (length(cor_low) > 0) {
      text(
        vmz[cor_low],
        rel_int[cor_low],
        lbmzcor[cor_low],
        cex = 0.5,
        col = "grey",
        srt = 90,
        adj = 0
      )
      if (length(vmz) - length(cor_low) > 1) {
        text(
          vmz[-c(refcol, cor_low)],
          rel_int[-c(refcol, cor_low)],
          lbmzcor[-c(refcol, cor_low)],
          cex = 0.6,
          col = 1,
          srt = 90,
          adj = 0
        )
      }
    } else {
      if (length(vmz) > 1) {
        text(
          vmz[-c(refcol)],
          rel_int[-c(refcol)],
          lbmzcor[-c(refcol)],
          cex = 0.6,
          col = 1,
          srt = 90,
          adj = 0
        )
      }
    }

    text(
      vmz[refcol],
      rel_int[refcol],
      lbmzcor[refcol],
      cex = 0.8,
      col = 2,
      srt = 90,
      adj = 0
    )
  }

  ## prepare result file
  cor_valid <- (round(cor_abs_int, 2) >= processing_parameters$r_threshold)

  do_sirius <- TRUE
  verbose_catf("Checking sirius parameters...\n")
  if (is.null(processing_parameters$ionization)) {
    do_sirius <- FALSE
    verbose_catf("[KO] No ionization passed in parameter.\n")
  } else {
    verbose_catf("[OK] Ionization=%s.\n", processing_parameters$ionization)
  }
  if (is.na(processing_parameters$elemcomposition)) {
    do_sirius <- FALSE
    verbose_catf("[KO] Elemental composition is NA.\n")
  } else if (length(processing_parameters$elemcomposition) < 1) {
    do_sirius <- FALSE
    verbose_catf("[KO] No elemental composition is provided.\n")
  } else if (processing_parameters$elemcomposition == "") {
    do_sirius <- FALSE
    verbose_catf("[KO] Elemental composition is an empty string.\n")
  } else {
    verbose_catf(
      "[OK] Elemental composition=%s.\n",
      processing_parameters$elemcomposition
    )
  }

  cp_res_length <- length(vmz)
  ppm <- rep(NA, cp_res_length)
  formulas <- rep(NA, cp_res_length)
  if (do_sirius) {
    verbose_catf("Everything is ok, preparing for sirius.\n")
    formulas <- get_formulas(
      mzref = processing_parameters$mzref,
      spectra = data.frame(mz = meaned_mz, intensities = sum_int[-1]),
      processing_parameters = processing_parameters
    )
    if (nrow(formulas) == 0) {
      catf("No formula found.\n")
    } else {
      ppm <- formulas$ppm
      formulas <- formulas$formula
      catf(
        "Found %s formula for %s fragments\n",
        length(formulas[which(!(is.na(formulas)))]),
        cp_res_length
      )
    }
  } else {
    verbose_catf("Sirius cannot be run.\n")
  }
  cp_res <- data.frame(
    rep(processing_parameters$c_name, cp_res_length),
    rep(processing_parameters$inchikey, cp_res_length),
    rep(processing_parameters$elemcomposition, cp_res_length),
    formulas,
    meaned_mz,
    ppm,
    rep(fid, cp_res_length),
    cor_abs_int,
    sum_int[-1],
    rel_int,
    cor_valid
  )

  colnames(cp_res) <- c(
    "compoundName",
    "inchikey",
    "elemcomposition",
    "fragment",
    "fragment_mz",
    "ppm",
    "fileid",
    "CorWithPrecursor",
    "AbsoluteIntensity",
    "relativeIntensity",
    "corValid"
  )
  return(cp_res)
}

#'
#' @title extract_fragments
#'
#' @param precursors the precursor list from mspurity
#' @param fragments the fragments list from ms purity
# ' @param mzref
# ' @param rtref
# ' @param c_name
# ' @param inchikey
# ' @param elemcomposition
#' @param processing_parameters
#' @returns
#'
#' @description
#' function for extraction of fragments corresponding to precursors
#' detected by MSPurity
extract_fragments <- function( ## nolint cyclocomp_linter
  precursors,
  fragments,
  processing_parameters
) {
  ## filter precursor in the precursors file based on mz and rt in the
  ## compound list
  catf("processing %s\n", processing_parameters$c_name)
  verbose_catf("===\n")
  param <- processing_parameters
  selected_precursors <- which(
    (abs(precursors$precurMtchMZ - param$mzref) <= param$tolmz)
    & (abs(precursors$precurMtchRT - param$rtref) <= param$tolrt)
  )
  rm(param)

  verbose_catf(
    "> %s precursors selected with mz=%s±%s and rt=%s±%s\n",
    length(selected_precursors),
    processing_parameters$mzref,
    processing_parameters$tolmz,
    processing_parameters$rtref,
    processing_parameters$tolrt
  )

  ## check if there is the precursor in the file

  if (length(selected_precursors) < 1) {
    cat("> non detected in precursor file\n")
    show_end_processing()
    return(NULL)
  }

  precursors <- precursors[selected_precursors, ]

  ## check if fragments corresponding to precursor are found in several
  ## files (collision energy)
  ## this lead to a processing for each fileid
  file_ids <- as.character(sort(unique(precursors$fileid)))
  if (length(file_ids) > 1) {
    catf("> several files detected for this compounds :\n")
  } else if (length(file_ids) < 1 || nrow(precursors) < 1) {
    return(data.frame())
  }

  res_comp <- data.frame()
  for (curent_file_id in file_ids) {
    curent_precursors <- precursors[precursors$fileid == curent_file_id, ]
    selected_fragments <- fragments[
      fragments$grpid %in% as.character(curent_precursors$grpid)
      & fragments$fileid == curent_file_id,
    ]
    filtered_fragments <- selected_fragments[
      selected_fragments$ra > processing_parameters$seuil_ra,
    ]
    if (nrow(filtered_fragments) != 0) {
      res_comp_by_file <- process_file(
        curent_file_id = curent_file_id,
        precursor_mz = curent_precursors$mz,
        filtered_fragments = filtered_fragments,
        processing_parameters = processing_parameters
      )
      if (!is.null(res_comp_by_file)) {
        res_comp <- rbind(res_comp, res_comp_by_file)
      }
    } else {
      catf("No fragment found for in fragment file\n")
    }
  }
  return(unique(res_comp))
}

process_file <- function(
  curent_file_id,
  precursor_mz,
  filtered_fragments,
  processing_parameters
) {
  mznominal <- round(x = filtered_fragments$mz, digits = 0)
  meaned_mz <- round(
    aggregate(
      data.frame(
        mz = filtered_fragments$mz,
        mznominal = mznominal
      ),
      list(mznominal),
      FUN = mean
    )$mz,
    digits = processing_parameters$mzdecimal
  )
  filtered_fragments <- data.frame(filtered_fragments, mznominal)

  ## creation of cross table row=scan col=mz X=ra

  vmz <- as.character(sort(unique(filtered_fragments$mznominal)))

  ds_abs_int <- create_ds_abs_int(vmz, filtered_fragments)

  if (global_debug) {
    print(ds_abs_int)
  }

  ## elimination of mz with less than min_number_scan scans (user defined
  ## parameter)
  xmz <- rep(NA, ncol(ds_abs_int) - 1)
  sum_int <- rep(NA, ncol(ds_abs_int))
  nbxmz <- 0
  nb_scan_check <- min(nrow(ds_abs_int), processing_parameters$min_number_scan)

  for (j in 2:ncol(ds_abs_int)) {
    sum_int[j] <- sum(ds_abs_int[j], na.rm = TRUE)
    if (sum(!is.na(ds_abs_int[[j]])) < nb_scan_check) {
      nbxmz <- nbxmz + 1
      xmz[nbxmz] <- j
    }
  }

  xmz <- xmz[-which(is.na(xmz))]
  if (length(xmz) > 0) {
    ds_abs_int <- ds_abs_int[, -c(xmz)]
    sum_int <- sum_int[-c(xmz)]
    ## liste des mz keeped decale de 1 avec ds_abs_int
    vmz <- as.numeric(vmz[-c(xmz - 1)])
    meaned_mz <- meaned_mz[-c(xmz - 1)]
  }

  ## mz of precursor in data precursor to check correlation with
  mz_prec <- paste0(
    "mz",
    round(mean(precursor_mz), processing_parameters$mzdecimal)
  )
  ## reference ion for correlation computing = precursor OR maximum
  ## intensity ion in precursor is not present
  refcol <- which(colnames(ds_abs_int) == mz_prec)
  if (length(refcol) == 0) {
    refcol <- which(sum_int == max(sum_int, na.rm = TRUE))
  }

  if (processing_parameters$do_pdf) {
    start_pdf(processing_parameters, curent_file_id)
  }

  ## Pearson correlations between absolute intensities computing
  cor_abs_int <- rep(NA, length(vmz))

  if (length(refcol) > 0) {
    for (i in 2:length(ds_abs_int)) {
      cor_abs_int[i - 1] <- stats::cor(
        x = ds_abs_int[[refcol]],
        y = ds_abs_int[[i]],
        use = "pairwise.complete.obs",
        method = "pearson"
      )
      debug_catf(
        "Correlation between %s and %s: %s\n",
        paste(ds_abs_int[[refcol]], collapse = ";"),
        paste(ds_abs_int[[i]], collapse = ";"),
        paste(cor_abs_int[i - 1], collapse = ";")
      )
      if (processing_parameters$do_pdf) {
        pdf_plot_ds_abs_int(
          processing_parameters$c_name,
          ds_abs_int,
          refcol,
          i,
          round(cor_abs_int[i - 1], 2)
        )
      }
    }
    ## plot pseudo spectra
    res_comp_by_file <- plot_pseudo_spectra(
      x = ds_abs_int,
      fid = curent_file_id,
      sum_int = sum_int,
      vmz = vmz,
      cor_abs_int = cor_abs_int,
      refcol = refcol,
      meaned_mz = meaned_mz,
      processing_parameters = processing_parameters
    )
    catf(
      "%s has been processed and %s fragments have been found.\n",
      processing_parameters$c_name,
      nrow(res_comp_by_file)
    )
  } else {
    res_comp_by_file <- NULL
    cat(">> non detected in fragments file \n")
  }
  show_end_processing()
  if (processing_parameters$do_pdf) {
    end_pdf()
  }
  return(res_comp_by_file)
}

create_ds_abs_int <- function(vmz, filtered_fragments) {
  verbose_catf(
    ">> fragments: %s\n",
    paste(vmz, collapse = " ")
  )
  ds_abs_int <- create_int_mz(vmz[1], filtered_fragments)
  for (mz in vmz[-1]) {
    int_mz <- create_int_mz(mz, filtered_fragments)
    ds_abs_int <- merge(
      x = ds_abs_int,
      y = int_mz,
      by.x = 1,
      by.y = 1,
      all.x = TRUE,
      all.y = TRUE
    )
  }
  return(ds_abs_int)
}

create_int_mz <- function(mz, filtered_fragments) {
  ## absolute intensity
  int_mz <- filtered_fragments[
    filtered_fragments$mznominal == mz,
    c("acquisitionNum", "i")
  ]
  colnames(int_mz)[2] <- paste0("mz", mz)
  ## average intensities of mass in duplicate scans
  comp_scans <- aggregate(x = int_mz, by = list(int_mz[[1]]), FUN = mean)
  return(comp_scans[, -1])
}

show_end_processing <- function() {
  verbose_catf("==========\n")
  cat("\n")
}

start_pdf <- function(processing_parameters, curent_file_id) {
  if (!dir.exists(processing_parameters$pdf_path)) {
    dir.create(processing_parameters$pdf_path, recursive = TRUE)
  }
  pdf(
    file = sprintf(
      "%s/%s_processing_file%s.pdf",
      processing_parameters$pdf_path,
      processing_parameters$c_name,
      curent_file_id
    ),
    width = 8,
    height = 11
  )
  par(mfrow = c(3, 2))
}

pdf_plot_ds_abs_int <- function(c_name, ds_abs_int, refcol, i, r_coef) {
  plot(
    ds_abs_int[[refcol]],
    ds_abs_int[[i]],
     xlab = colnames(ds_abs_int)[refcol],
     ylab = colnames(ds_abs_int)[i],
     main = sprintf(
      "%s corr coeff r=%s", c_name, r_coef
    )
  )
}
end_pdf <- function() {
  dev.off()
}

set_global <- function(var, value) {
  assign(var, value, envir = globalenv())
}

set_debug <- function() {
  set_global("global_debug", TRUE)
}

unset_debug <- function() {
  set_global("global_debug", FALSE)
}

set_verbose <- function() {
  set_global("global_verbose", TRUE)
}

unset_verbose <- function() {
  set_global("global_verbose", FALSE)
}

verbose_catf <- function(...) {
  if (global_verbose) {
    cat(sprintf(...), sep = "")
  }
}


debug_catf <- function(...) {
  if (global_debug) {
    cat(sprintf(...), sep = "")
  }
}

catf <- function(...) {
  cat(sprintf(...), sep = "")
}

create_parser <- function() {
  parser <- optparse::OptionParser()
  parser <- optparse::add_option(
    parser,
    c("-v", "--verbose"),
    action = "store_true",
    default = FALSE,
    help = paste(
      "[default %default]",
      "Print extra output"
    )
  )
  parser <- optparse::add_option(
    parser,
    c("-V", "--version"),
    action = "store_true",
    default = FALSE,
    help = "Prints version and exits"
  )
  parser <- optparse::add_option(
    parser,
    c("-d", "--debug"),
    action = "store_true",
    default = FALSE,
    help = paste(
      "[default %default]",
      "Print debug outputs"
    )
  )
  parser <- optparse::add_option(
    parser,
    c("-o", "--output"),
    type = "character",
    default = DEFAULT_OUTPUT_PATH,
    action = "store",
    help = "Path to the output file [default %default]"
  )
  parser <- optparse::add_option(
    parser,
    c("-p", "--precursors"),
    type = "character",
    default = DEFAULT_PRECURSOR_PATH,
    action = "store",
    help = "Path to the precursors file [default %default]"
  )
  parser <- optparse::add_option(
    parser,
    c("-f", "--fragments"),
    type = "character",
    default = DEFAULT_FRAGMENTS_PATH,
    action = "store",
    help = "Path to the fragments file [default %default]"
  )
  parser <- optparse::add_option(
    parser,
    c("-c", "--compounds"),
    type = "character",
    default = DEFAULT_COMPOUNDS_PATH,
    action = "store",
    help = "Path to the compounds file [default %default]"
  )
  parser <- optparse::add_option(
    parser,
    c("--tolmz"),
    type = "numeric",
    action = "store",
    default = DEFAULT_TOLMZ,
    metavar = "number",
    help = paste(
      "[default %default]",
      "Tolerance for MZ (in Dalton) to match the standard in the compounds"
    )
  )
  parser <- optparse::add_option(
    parser,
    c("--tolrt"),
    type = "integer",
    action = "store",
    default = DEFAULT_TOLRT,
    metavar = "number",
    help = paste(
      "[default %default]",
      "RT (in seconds) to match the standard in the compounds"
    )
  )
  parser <- optparse::add_option(
    parser,
    c("--seuil_ra"),
    type = "numeric",
    action = "store",
    default = DEFAULT_SEUIL_RA,
    metavar = "number",
    help = paste(
      "[default %default]",
      "relative intensity threshold"
    ),
  )
  parser <- optparse::add_option(
    parser,
    c("--mzdecimal"),
    type = "integer",
    default = DEFAULT_MZDECIMAL,
    action = "store",
    help = paste(
      "[default %default]",
      "Number of decimal to write for MZ"
    ),
    metavar = "number"
  )
  parser <- optparse::add_option(
    parser,
    c("--r_threshold"),
    type = "integer",
    default = DEFAULT_R_THRESHOLD,
    action = "store",
    help = paste(
      "[default %default]",
      "R-Pearson correlation threshold between precursor and fragment",
      "absolute intensity"
    ),
    metavar = "number"
  )
  parser <- optparse::add_option(
    parser,
    c("--min_number_scan"),
    type = "numeric",
    action = "store",
    default = DEFAULT_MINNUMBERSCAN,
    help = paste(
      "[default %default]",
      "Fragments are kept if there are found in a minimum number",
      "of min_number_scan scans"
    ),
    metavar = "number"
  )
  parser <- optparse::add_option(
    parser,
    c("--pdf_path"),
    type = "character",
    default = DEFAULT_PDF_PATH,
    help = paste(
      "[default %default]",
      "PDF files output path"
    )
  )
  parser <- optparse::add_option(
    parser,
    c("--ionization"),
    type = "character",
    action = "store",
    default = "None",
    help = paste(
      "[default %default]",
      "Which ionization to use for sirius"
    ),
    metavar = "character"
  )
  parser <- optparse::add_option(
    parser,
    c("--fragment_match_delta"),
    type = "numeric",
    action = "store",
    default = DEFAULT_FRAGMENTS_MATCH_DELTA,
    help = paste(
      "[default %default]",
      "Fragment match delta"
    ),
    metavar = "numeric"
  )
  parser <- optparse::add_option(
    parser,
    c("--fragment_match_delta_unit"),
    type = "character",
    action = "store",
    default = DEFAULT_FRAGMENTS_MATCH_DELTA_UNIT,
    help = paste(
      "[default %default]",
      "Fragment match delta"
    ),
    metavar = "character"
  )
  return(parser)
}

stop_with_status <- function(msg, status) {
  sink(stderr())
  message(sprintf("Error: %s", msg))
  message(sprintf("Error code: %s", status))
  sink(NULL)
  base::quit(status = status)
}

check_args_validity <- function(args) { ## nolint cyclocomp_linter
  if (length(args$output) == 0 || nchar(args$output[1]) == 0) {
    stop_with_status(
      "Missing output parameters. Please set it with --output.",
      MISSING_PARAMETER_ERROR
    )
  }
  if (length(args$precursors) == 0 || nchar(args$precursors[1]) == 0) {
    stop_with_status(
      "Missing precursors parameters. Please set it with --precursors.",
      MISSING_PARAMETER_ERROR
    )
  }
  if (length(args$fragments) == 0 || nchar(args$fragments[1]) == 0) {
    stop_with_status(
      "Missing fragments parameters. Please set it with --fragments.",
      MISSING_PARAMETER_ERROR
    )
  }
  if (length(args$compounds) == 0 || nchar(args$compounds[1]) == 0) {
    stop_with_status(
      "Missing compounds parameters. Please set it with --compounds.",
      MISSING_PARAMETER_ERROR
    )
  }
  if (!file.exists(args$precursors)) {
    stop_with_status(
      sprintf(
        "Precursors file %s does not exist or cannot be accessed.",
        args$precursors
      ),
      MISSING_INPUT_FILE_ERROR
    )
  }
  if (!file.exists(args$fragments)) {
    stop_with_status(
      sprintf(
        "Fragments file %s does not exist or cannot be accessed.",
        args$fragments
      ),
      MISSING_INPUT_FILE_ERROR
    )
  }
  if (!file.exists(args$compounds)) {
    stop_with_status(
      sprintf(
        "Compounds file %s does not exist or cannot be accessed.",
        args$compounds
      ),
      MISSING_INPUT_FILE_ERROR
    )
  }
  if (in_galaxy_env()) {
    check_galaxy_args_validity(args)
  }
}

in_galaxy_env <- function() {
  sysvars <- Sys.getenv()
  sysvarnames <- names(sysvars)
  return(
    "_GALAXY_JOB_HOME_DIR" %in% sysvarnames
    || "_GALAXY_JOB_TMP_DIR" %in% sysvarnames
    || "GALAXY_MEMORY_MB" %in% sysvarnames
    || "GALAXY_MEMORY_MB_PER_SLOT" %in% sysvarnames
    || "GALAXY_SLOTS" %in% sysvarnames
  )
}

check_galaxy_args_validity <- function(args) {
  if (!file.exists(args$output)) {
    stop_with_status(
      sprintf(
        "Output file %s does not exist or cannot be accessed.",
        args$output
      ),
      MISSING_INPUT_FILE_ERROR
    )
  }
}

get_csv_or_tsv <- function(
  path,
  sep_stack = c("\t", ",", ";"),
  sep_names = c("tab", "comma", "semicolon"),
  header = TRUE,
  quote = "\""
) {
  sep <- determine_csv_or_tsv_sep(
    path = path,
    sep_stack = sep_stack,
    header = header,
    quote = quote
  )
  verbose_catf(
    "%s separator has been determined for %s.\n",
    sep_names[sep_stack == sep],
    path
  )
  return(read.table(
    file = path,
    sep = sep,
    header = header,
    quote = quote
  ))
}

determine_csv_or_tsv_sep <- function(
  path,
  sep_stack = c("\t", ",", ";"),
  header = TRUE,
  quote = "\""
) {
  count <- -1
  best_sep <- sep_stack[1]
  for (sep in sep_stack) {
    tryCatch({
      table <- read.table(
        file = path,
        sep = sep,
        header = header,
        quote = quote,
        nrows = 1
      )
      if (ncol(table) > count) {
        count <- ncol(table)
        best_sep <- sep
      }
    })
  }
  return(best_sep)
}

uniformize_columns <- function(df) {
  cols <- colnames(df)
  for (func in c(tolower)) {
    cols <- func(cols)
  }
  colnames(df) <- cols
  return(df)
}

handle_galaxy_param <- function(args) {
  for (param in names(args)) {
    if (is.character(args[[param]])) {
      args[[param]] <- gsub("__ob__", "[", args[[param]])
      args[[param]] <- gsub("__cb__", "]", args[[param]])
    }
  }
  return(args)
}

zip_pdfs <- function(processing_parameters) {
  if (processing_parameters$do_pdf) {
    if (zip <- Sys.getenv("R_ZIPCMD", "zip") == "") {
      catf("R could not fin the zip executable. Trying luck: zip = \"zip\"")
      zip <- "zip"
    } else {
      catf("Found zip executable at %s .", zip)
    }
    utils::zip(
      processing_parameters$pdf_zip_path,
      processing_parameters$pdf_path,
      zip = zip
    )
  }
}

main <- function(args) {
  if (args$version) {
    catf("%s\n", MS2SNOOP_VERSION)
    base::quit(status = 0)
  }
  if (in_galaxy_env()) {
    print(sessionInfo())
    cat("\n\n")
  }
  check_args_validity(args)
  args <- handle_galaxy_param(args)
  if (args$ionization == "None") {
    args$ionization <- NULL
  }
  if (args$debug) {
    set_debug()
  }
  if (args$verbose) {
    set_verbose()
  }
  precursors <- get_csv_or_tsv(args$precursors)
  fragments <- get_csv_or_tsv(args$fragments)
  compounds <- get_csv_or_tsv(args$compounds)

  compounds <- uniformize_columns(compounds)
  mandatory_columns <- c(
    "compound_name",
    "mz",
    "rtsec",
    "inchikey"
  )
  presents <- mandatory_columns %in% colnames(compounds)
  if (!all(presents)) {
    stop_with_status(
      sprintf(
        "Some columns are missing: %s",
        paste(mandatory_columns[which(!presents)], collapse = ", ")
      ),
      BAD_PARAMETER_VALUE_ERROR
    )
  }

  res_all <- data.frame()
  processing_parameters <- list(
    min_number_scan = args$min_number_scan,
    mzdecimal = args$mzdecimal,
    r_threshold = args$r_threshold,
    seuil_ra = args$seuil_ra,
    tolmz = args$tolmz,
    tolrt = args$tolrt,
    ionization = args$ionization,
    do_pdf = nchar(args$pdf_path) > 0,
    pdf_zip_path = args$pdf_path,
    pdf_path = tempdir(),
    fragment_match_delta = args$fragment_match_delta,
    fragment_match_delta_unit = args$fragment_match_delta_unit
  )
  for (i in seq_len(nrow(compounds))) {
    processing_parameters$mzref <- compounds[["mz"]][i]
    processing_parameters$rtref <- compounds[["rtsec"]][i]
    processing_parameters$c_name <- compounds[["compound_name"]][i]
    processing_parameters$inchikey <- compounds[["inchikey"]][i]
    processing_parameters$elemcomposition <- compounds[["elemcomposition"]][i]
    res_cor <- extract_fragments(
      precursors = precursors,
      fragments = fragments,
      processing_parameters = processing_parameters
    )
    if (!is.null(res_cor)) {
      res_all <- rbind(res_all, res_cor)
    }
  }

  if (nrow(res_all) == 0) {
    stop_with_status("No result at all!", NO_ANY_RESULT_ERROR)
  }

  write.table(
    x = res_all,
    file = args$output,
    sep = "\t",
    row.names = FALSE
  )
  zip_pdfs(processing_parameters)
  unlink(processing_parameters$pdf_path, recursive = TRUE)
}

global_debug <- FALSE
global_verbose <- FALSE
args <- optparse::parse_args(create_parser())
main(args)

warnings()