20
|
1 <tool id="metaintv" name="binned-average">
|
|
2 <description>from bigwig</description>
|
|
3 <command interpreter="python">binnedAverage.py $bwfile $intvfile $nbin $outfile $outplot </command>
|
|
4 <inputs>
|
|
5 <param name="intvfile" format="bed" type="data" label="BED file (require strand in column 6)"/>
|
|
6 <param name="bwfile" format="bigwig" type="data" label="BigWig file"/>
|
|
7 <param name="nbin" type="integer" value="20" label="number of bins"/>
|
|
8
|
|
9 </inputs>
|
|
10 <outputs>
|
|
11 <data format="tabular" name="outfile" label="${tool.name} on ${on_string}[data]"/>
|
|
12 <data format="pdf" name="outplot" label="${tool.name} on ${on_string}[plot]"/>
|
|
13 </outputs>
|
|
14 <help>
|
|
15
|
|
16 .. class:: infomark
|
|
17
|
|
18 Each interval is binned and the average base-resolution score/coverage/density in the bigwig file is added as new columns appended at the end of the original file .
|
|
19
|
|
20 **Example**
|
|
21
|
|
22 If your original data has the following format:
|
|
23
|
|
24 +-----+-----+---+------+
|
|
25 |chrom|start|end|other2|
|
|
26 +-----+-----+---+------+
|
|
27
|
|
28 and you choose to divide each interval into 3 bins and return the mean scores of each bin, your output will look like this:
|
|
29
|
|
30 +-----+-----+---+------+-----+-----+-----+
|
|
31 |chrom|start|end|other2|mean1|mean2|mean3|
|
|
32 +-----+-----+---+------+-----+-----+-----+
|
|
33
|
|
34
|
|
35 </help>
|
|
36 </tool>
|