0
|
1 #!/usr/bin/env python
|
|
2
|
|
3 from galaxy import eggs
|
|
4
|
|
5 import sys, string
|
|
6 from rpy import *
|
|
7 import numpy
|
|
8
|
|
9 def stop_err(msg):
|
|
10 sys.stderr.write(msg)
|
|
11 sys.exit()
|
|
12
|
|
13 def sscombs(s):
|
|
14 if len(s) == 1:
|
|
15 return [s]
|
|
16 else:
|
|
17 ssc = sscombs(s[1:])
|
|
18 return [s[0]] + [s[0]+comb for comb in ssc] + ssc
|
|
19
|
|
20
|
|
21 infile = sys.argv[1]
|
|
22 y_col = int(sys.argv[2])-1
|
|
23 x_cols = sys.argv[3].split(',')
|
|
24 outfile = sys.argv[4]
|
|
25
|
|
26 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
|
|
27 fout = open(outfile,'w')
|
|
28
|
|
29 for i, line in enumerate( file ( infile )):
|
|
30 line = line.rstrip('\r\n')
|
|
31 if len( line )>0 and not line.startswith( '#' ):
|
|
32 elems = line.split( '\t' )
|
|
33 break
|
|
34 if i == 30:
|
|
35 break # Hopefully we'll never get here...
|
|
36
|
|
37 if len( elems )<1:
|
|
38 stop_err( "The data in your input dataset is either missing or not formatted properly." )
|
|
39
|
|
40 y_vals = []
|
|
41 x_vals = []
|
|
42
|
|
43 for k,col in enumerate(x_cols):
|
|
44 x_cols[k] = int(col)-1
|
|
45 x_vals.append([])
|
|
46 """
|
|
47 try:
|
|
48 float( elems[x_cols[k]] )
|
|
49 except:
|
|
50 try:
|
|
51 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] )
|
|
52 except:
|
|
53 msg = "This operation cannot be performed on non-numeric data."
|
|
54 stop_err( msg )
|
|
55 """
|
|
56 NA = 'NA'
|
|
57 for ind,line in enumerate( file( infile )):
|
|
58 if line and not line.startswith( '#' ):
|
|
59 try:
|
|
60 fields = line.split("\t")
|
|
61 try:
|
|
62 yval = float(fields[y_col])
|
|
63 except Exception, ey:
|
|
64 yval = r('NA')
|
|
65 #print >>sys.stderr, "ey = %s" %ey
|
|
66 y_vals.append(yval)
|
|
67 for k,col in enumerate(x_cols):
|
|
68 try:
|
|
69 xval = float(fields[col])
|
|
70 except Exception, ex:
|
|
71 xval = r('NA')
|
|
72 #print >>sys.stderr, "ex = %s" %ex
|
|
73 x_vals[k].append(xval)
|
|
74 except:
|
|
75 pass
|
|
76
|
|
77 x_vals1 = numpy.asarray(x_vals).transpose()
|
|
78 dat= r.list(x=array(x_vals1), y=y_vals)
|
|
79
|
|
80 set_default_mode(NO_CONVERSION)
|
|
81 try:
|
|
82 full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user
|
|
83 except RException, rex:
|
|
84 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.")
|
|
85 set_default_mode(BASIC_CONVERSION)
|
|
86
|
|
87 summary = r.summary(full)
|
|
88 fullr2 = summary.get('r.squared','NA')
|
|
89
|
|
90 if fullr2 == 'NA':
|
|
91 stop_error("Error in linear regression")
|
|
92
|
|
93 if len(x_vals) < 10:
|
|
94 s = ""
|
|
95 for ch in range(len(x_vals)):
|
|
96 s += str(ch)
|
|
97 else:
|
|
98 stop_err("This tool only works with less than 10 predictors.")
|
|
99
|
|
100 print >>fout, "#Model\tR-sq\tRCVE_Terms\tRCVE_Value"
|
|
101 all_combos = sorted(sscombs(s), key=len)
|
|
102 all_combos.reverse()
|
|
103 for j,cols in enumerate(all_combos):
|
|
104 #if len(cols) == len(s): #Same as the full model above
|
|
105 # continue
|
|
106 if len(cols) == 1:
|
|
107 x_vals1 = x_vals[int(cols)]
|
|
108 else:
|
|
109 x_v = []
|
|
110 for col in cols:
|
|
111 x_v.append(x_vals[int(col)])
|
|
112 x_vals1 = numpy.asarray(x_v).transpose()
|
|
113 dat= r.list(x=array(x_vals1), y=y_vals)
|
|
114 set_default_mode(NO_CONVERSION)
|
|
115 red = r.lm(r("y ~ x"), data= dat) #Reduced model
|
|
116 set_default_mode(BASIC_CONVERSION)
|
|
117 summary = r.summary(red)
|
|
118 redr2 = summary.get('r.squared','NA')
|
|
119 try:
|
|
120 rcve = (float(fullr2)-float(redr2))/float(fullr2)
|
|
121 except:
|
|
122 rcve = 'NA'
|
|
123 col_str = ""
|
|
124 for col in cols:
|
|
125 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " "
|
|
126 col_str.strip()
|
|
127 rcve_col_str = ""
|
|
128 for col in s:
|
|
129 if col not in cols:
|
|
130 rcve_col_str = rcve_col_str + str(int(x_cols[int(col)]) + 1) + " "
|
|
131 rcve_col_str.strip()
|
|
132 if len(cols) == len(s): #full model
|
|
133 rcve_col_str = "-"
|
|
134 rcve = "-"
|
|
135 try:
|
|
136 redr2 = "%.4f" %(float(redr2))
|
|
137 except:
|
|
138 pass
|
|
139 try:
|
|
140 rcve = "%.4f" %(float(rcve))
|
|
141 except:
|
|
142 pass
|
|
143 print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,rcve_col_str,rcve)
|