0
|
1 <tool id="hgv_lps" name="LPS" version="1.0.0">
|
|
2 <description>LASSO-Patternsearch algorithm</description>
|
|
3
|
|
4 <command interpreter="bash">
|
|
5 lps_tool_wrapper.sh $lambda_fac $input_file $label_column $output_file $log_file
|
|
6 Initialization 0
|
|
7 #if $advanced.options == "true":
|
|
8 Sample $advanced.sample
|
|
9 Verbosity $advanced.verbosity
|
|
10 Standardize $advanced.standardize
|
|
11 initialLambda $advanced.initialLambda
|
|
12 #if $advanced.continuation.continuation == "1":
|
|
13 Continuation $advanced.continuation.continuation
|
|
14 continuationSteps $advanced.continuation.continuationSteps
|
|
15 accurateIntermediates $advanced.continuation.accurateIntermediates
|
|
16 #end if
|
|
17 printFreq $advanced.printFreq
|
|
18 #if $advanced.newton.newton == "1":
|
|
19 Newton $advanced.newton.newton
|
|
20 NewtonThreshold $advanced.newton.newtonThreshold
|
|
21 #end if
|
|
22 HessianSampleFraction $advanced.hessianSampleFraction
|
|
23 BB 0
|
|
24 Monotone 0
|
|
25 FullGradient $advanced.fullGradient
|
|
26 GradientFraction $advanced.gradientFraction
|
|
27 InitialAlpha $advanced.initialAlpha
|
|
28 AlphaIncrease $advanced.alphaIncrease
|
|
29 AlphaDecrease $advanced.alphaDecrease
|
|
30 AlphaMax $advanced.alphaMax
|
|
31 c1 $advanced.c1
|
|
32 MaxIter $advanced.maxIter
|
|
33 StopTol $advanced.stopTol
|
|
34 IntermediateTol $advanced.intermediateTol
|
|
35 FinalOnly $advanced.finalOnly
|
|
36 #end if
|
|
37 </command>
|
|
38
|
|
39 <inputs>
|
|
40 <param name="input_file" type="data" format="tabular" label="Dataset"/>
|
|
41 <param name="label_column" type="data_column" data_ref="input_file" numerical="true" label="Label column" help="Column containing outcome labels: +1 or -1."/>
|
|
42 <param name="lambda_fac" label="Lambda_fac" type="float" value="0.03" help="Target value of the regularization parameter, expressed as a fraction of the calculated lambda_max.">
|
|
43 <validator type="in_range" message="0.00 < lambda_fac <= 1.00" min="0.00" max="1.00"/>
|
|
44 </param>
|
|
45 <conditional name="advanced">
|
|
46 <param name="options" type="select" label="Advanced Options">
|
|
47 <option value="false" selected="true">Hide advanced options</option>
|
|
48 <option value="true">Show advanced options</option>
|
|
49 </param>
|
|
50 <when value="false">
|
|
51 <!-- no options -->
|
|
52 </when>
|
|
53 <when value="true">
|
|
54 <!-- HARDCODED: 'Sample' we don't support passing an array -->
|
|
55 <param name="sample" type="float" value="1.0" label="Sample fraction" help="Sample this fraction of the data set.">
|
|
56 <validator type="in_range" message="0.0 <= sample <= 1.0" min="0.0" max="1.0"/>
|
|
57 </param>
|
|
58 <!-- HARDCODED: 'Initialization' = 0 :: Initialize at beta=0 -->
|
|
59 <param name="verbosity" type="select" format="integer" label="Verbosity">
|
|
60 <option value="0" selected="true">Little output</option>
|
|
61 <option value="1">More output</option>
|
|
62 <option value="2">Still more output</option>
|
|
63 </param>
|
|
64 <param name="standardize" type="select" format="integer" label="Standardize" help="Scales and shifts each column so that it has mean zero and variance 1.">
|
|
65 <option value="0" selected="true">Don't standardize</option>
|
|
66 <option value="1">Standardize</option>
|
|
67 </param>
|
|
68 <param name="initialLambda" type="float" value="0.8" label="Initial lambda" help="First value of lambda to be used in the continuation scheme, expressed as a fraction of lambda_max.">
|
|
69 <validator type="in_range" message="0.0 < initialLambda < 1.0" min="0.0" max="1.0"/>
|
|
70 </param>
|
|
71 <conditional name="continuation">
|
|
72 <param name="continuation" type="select" format="integer" label="Continuation" help="Use continuation strategy to start with a larger value of lambda, decreasing it successively to lambda_fac.">
|
|
73 <option value="0" selected="true">Don't use continuation</option>
|
|
74 <option value="1">Use continuation</option>
|
|
75 </param>
|
|
76 <when value="0">
|
|
77 <!-- no options -->
|
|
78 </when>
|
|
79 <when value="1">
|
|
80 <param name="continuationSteps" type="integer" value="5" label="Continuation steps" help="Number of lambda values to use in continuation <em>prior</em> to target value lambda_fac."/>
|
|
81
|
|
82 <param name="accurateIntermediates" type="select" format="integer" label="Accurate intermediates" help="Indicates whether accurate solutions are required for lambda values other than the target value lambda_fac.">
|
|
83 <option value="0" selected="true">Don't need accurate intemediates</option>
|
|
84 <option value="1">Calculate accurate intermediates</option>
|
|
85 </param>
|
|
86 </when>
|
|
87 </conditional> <!-- name="continuation" -->
|
|
88 <param name="printFreq" type="integer" value="1" label="Print frequency" help="Print a progress report every NI iterations, where NI is the supplied value of this parameter.">
|
|
89 <validator type="in_range" message="printFreq >= 1" min="1"/>
|
|
90 </param>
|
|
91 <conditional name="newton">
|
|
92 <param name="newton" type="select" format="integer" label="Projected Newton steps">
|
|
93 <option value="0" selected="true">No Newton steps</option>
|
|
94 <option value="1">Try projected Newton steps</option>
|
|
95 </param>
|
|
96 <when value="0">
|
|
97 <!-- no options -->
|
|
98 </when>
|
|
99 <when value="1">
|
|
100 <param name="newtonThreshold" type="integer" value="500" label="Newton threshold" help="Maximum size of free variable subvector for Newton."/>
|
|
101 </when>
|
|
102 </conditional>
|
|
103 <param name="hessianSampleFraction" type="float" value="1.0" label="Hessian sample fraction" help="Fraction of terms to use in approximate Hessian calculation.">
|
|
104 <validator type="in_range" message="0.01 < hessianSampleFraction <= 1.00" min="0.01" max="1.00"/>
|
|
105 </param>
|
|
106 <!-- HARDCODED: 'BB' = 0 :: don't use Barzilai-Borwein steps -->
|
|
107 <!-- HARDCODED: 'Monotone' = 0 :: don't force monotonicity -->
|
|
108 <param name="fullGradient" type="select" format="integer" label="Partial gradient vector selection">
|
|
109 <option value="0">Use randomly selected partial gradient, including current active components ("biased")</option>
|
|
110 <option value="1">Use full gradient vector at every step</option>
|
|
111 <option value="2">Randomly selected partial gradient, without regard to current active set ("unbiased")</option>
|
|
112 </param>
|
|
113 <param name="gradientFraction" type="float" value="0.1" label="Gradient fraction" help="Fraction of inactive gradient vector to evaluate.">
|
|
114 <validator type="in_range" message="0.0 < gradientFraction <= 1" min="0.0" max="1.0"/>
|
|
115 </param>
|
|
116 <param name="initialAlpha" type="float" value="1.0" label="Initial value of alpha"/>
|
|
117 <param name="alphaIncrease" type="float" value="2.0" label="Alpha increase" help="Factor by which to increase alpha after descent not obtained."/>
|
|
118 <param name="alphaDecrease" type="float" value="0.8" label="Alpha decrease" help="Factor by which to decrease alpha after successful first-order step."/>
|
|
119 <param name="alphaMax" type="float" value="1e12" label="Alpha max" help="Maximum value of alpha; terminate with error if we exceed this."/>
|
|
120 <param name="c1" type="float" value="1e-3" help="Parameter defining the margin by which the first-order step is required to decrease before being taken.">
|
|
121 <validator type="in_range" message="0.0 < c1 < 1.0" min="0.0" max="1.0"/>
|
|
122 </param>
|
|
123 <param name="maxIter" type="integer" value="10000" label="Maximum number of iterations" help="Terminate with error if we exceed this."/>
|
|
124 <param name="stopTol" type="float" value="1e-6" label="Stop tolerance" help="Convergence tolerance for target value of lambda."/>
|
|
125 <param name="intermediateTol" type="float" value="1e-4" label="Intermediate tolerance" help="Convergence tolerance for intermediate values of lambda."/>
|
|
126 <param name="finalOnly" type="select" format="integer" label="Final only">
|
|
127 <option value="0" selected="true">Return information for all intermediate values</option>
|
|
128 <option value="1">Just return information at the last lambda</option>
|
|
129 </param>
|
|
130 </when> <!-- value="advanced" -->
|
|
131 </conditional> <!-- name="advanced" -->
|
|
132 </inputs>
|
|
133
|
|
134 <outputs>
|
|
135 <data name="output_file" format="tabular" label="${tool.name} on ${on_string}: results"/>
|
|
136 <data name="log_file" format="txt" label="${tool.name} on ${on_string}: log"/>
|
|
137 </outputs>
|
|
138
|
|
139 <requirements>
|
|
140 <requirement type="package">lps_tool</requirement>
|
|
141 </requirements>
|
|
142
|
|
143 <tests>
|
|
144 <test>
|
|
145 <param name="input_file" value="lps_arrhythmia.tabular"/>
|
|
146 <param name="label_column" value="280"/>
|
|
147 <param name="lambda_fac" value="0.03"/>
|
|
148 <param name="options" value="true"/>
|
|
149 <param name="sample" value="1.0"/>
|
|
150 <param name="verbosity" value="1"/>
|
|
151 <param name="standardize" value="0"/>
|
|
152 <param name="initialLambda" value="0.9"/>
|
|
153 <param name="continuation" value="1"/>
|
|
154 <param name="continuationSteps" value="10"/>
|
|
155 <param name="accurateIntermediates" value="0"/>
|
|
156 <param name="printFreq" value="1"/>
|
|
157 <param name="newton" value="1"/>
|
|
158 <param name="newtonThreshold" value="500"/>
|
|
159 <param name="hessianSampleFraction" value="1.0"/>
|
|
160 <param name="fullGradient" value="1"/>
|
|
161 <param name="gradientFraction" value="0.5"/>
|
|
162 <param name="initialAlpha" value="1.0"/>
|
|
163 <param name="alphaIncrease" value="2.0"/>
|
|
164 <param name="alphaDecrease" value="0.8"/>
|
|
165 <param name="alphaMax" value="1e12"/>
|
|
166 <param name="c1" value="1e-3"/>
|
|
167 <param name="maxIter" value="2500"/>
|
|
168 <param name="stopTol" value="1e-6"/>
|
|
169 <param name="intermediateTol" value="1e-6"/>
|
|
170 <param name="finalOnly" value="0"/>
|
|
171 <output name="ouput_file" file="lps_arrhythmia_beta.tabular"/>
|
|
172 <output name="log_file" file="lps_arrhythmia_log.txt"/>
|
|
173 </test>
|
|
174 </tests>
|
|
175
|
|
176 <help>
|
|
177 **Dataset formats**
|
|
178
|
|
179 The input and output datasets are tabular_. The columns are described below.
|
|
180 There is a second output dataset (a log) that is in text_ format.
|
|
181 (`Dataset missing?`_)
|
|
182
|
|
183 .. _tabular: ./static/formatHelp.html#tab
|
|
184 .. _text: ./static/formatHelp.html#text
|
|
185 .. _Dataset missing?: ./static/formatHelp.html
|
|
186
|
|
187 -----
|
|
188
|
|
189 **What it does**
|
|
190
|
|
191 The LASSO-Patternsearch algorithm fits your dataset to an L1-regularized
|
|
192 logistic regression model. A benefit of using L1-regularization is
|
|
193 that it typically yields a weight vector with relatively few non-zero
|
|
194 coefficients.
|
|
195
|
|
196 For example, say you have a dataset containing M rows (subjects)
|
|
197 and N columns (attributes) where one of these N attributes is binary,
|
|
198 indicating whether or not the subject has some property of interest P.
|
|
199 In simple terms, LPS calculates a weight for each of the other attributes
|
|
200 in your dataset. This weight indicates how "relevant" that attribute
|
|
201 is for predicting whether or not a given subject has property P.
|
|
202 The L1-regularization causes most of these weights to be equal to zero,
|
|
203 which means LPS will find a "small" subset of the remaining N-1 attributes
|
|
204 in your dataset that can be used to predict P.
|
|
205
|
|
206 In other words, LPS can be used for feature selection.
|
|
207
|
|
208 The input dataset is tabular, and must contain a label column which
|
|
209 indicates whether or not a given row has property P. In the current
|
|
210 version of this tool, P must be encoded using +1 and -1. The Lambda_fac
|
|
211 parameter ranges from 0 to 1, and controls how sparse the weight
|
|
212 vector will be. At the low end, when Lambda_fac = 0, there will be
|
|
213 no regularization. At the high end, when Lambda_fac = 1, there will be
|
|
214 "too much" regularization, and all of the weights will equal zero.
|
|
215
|
|
216 The LPS tool creates two output datasets. The first, called the results
|
|
217 file, is a tabular dataset containing one column of weights for each
|
|
218 value of the regularization parameter lambda that was tried. The weight
|
|
219 columns are in order from left to right by decreasing values of lambda.
|
|
220 The first N-1 rows in each column are the weights for the N-1 attributes
|
|
221 in your input dataset. The final row is a constant, the intercept.
|
|
222
|
|
223 Let **x** be a row from your input dataset and let **b** be a column
|
|
224 from the results file. To compute the probability that row **x** has
|
|
225 a label value of +1:
|
|
226
|
|
227 Probability(row **x** has label value = +1) = 1 / [1 + exp{**x** \* **b**\[1..N-1\] + **b**\[N\]}]
|
|
228
|
|
229 where **x** \* **b**\[1..N-1\] represents matrix multiplication.
|
|
230
|
|
231 The second output dataset, called the log file, is a text file which
|
|
232 contains additional data about the fitted L1-regularized logistic
|
|
233 regression model. These data include the number of features, the
|
|
234 computed value of lambda_max, the actual values of lambda used, the
|
|
235 optimal values of the log-likelihood and regularized log-likelihood
|
|
236 functions, the number of non-zeros, and the number of iterations.
|
|
237
|
|
238 Website: http://pages.cs.wisc.edu/~swright/LPS/
|
|
239
|
|
240 -----
|
|
241
|
|
242 **Example**
|
|
243
|
|
244 - input file::
|
|
245
|
|
246 +1 1 0 0 0 0 1 0 1 1 ...
|
|
247 +1 1 1 1 0 0 1 0 1 1 ...
|
|
248 +1 1 0 1 0 1 0 1 0 1 ...
|
|
249 etc.
|
|
250
|
|
251 - output results file::
|
|
252
|
|
253 0
|
|
254 0
|
|
255 0
|
|
256 0
|
|
257 0.025541
|
|
258 etc.
|
|
259
|
|
260 - output log file::
|
|
261
|
|
262 Data set has 100 vectors with 50 features.
|
|
263 calculateLambdaMax: n=50, m=100, m+=50, m-=50
|
|
264 computed value of lambda_max: 5.0000e-01
|
|
265
|
|
266 lambda=2.96e-02 solution:
|
|
267 optimal log-likelihood function value: 6.46e-01
|
|
268 optimal *regularized* log-likelihood function value: 6.79e-01
|
|
269 number of nonzeros at the optimum: 5
|
|
270 number of iterations required: 43
|
|
271 etc.
|
|
272
|
|
273 -----
|
|
274
|
|
275 **References**
|
|
276
|
|
277 Koh K, Kim S-J, Boyd S. (2007)
|
|
278 An interior-point method for large-scale l1-regularized logistic regression.
|
|
279 Journal of Machine Learning Research. 8:1519-1555.
|
|
280
|
|
281 Shi W, Wahba G, Wright S, Lee K, Klein R, Klein B. (2008)
|
|
282 LASSO-Patternsearch algorithm with application to ophthalmology and genomic data.
|
|
283 Stat Interface. 1(1):137-153.
|
|
284
|
|
285 <!--
|
|
286 Wright S, Novak R, Figueiredo M. (2009)
|
|
287 Sparse reconstruction via separable approximation.
|
|
288 IEEE Transactions on Signal Processing. 57:2479-2403.
|
|
289
|
|
290 Shi J, Yin W, Osher S, Sajda P. (2010)
|
|
291 A fast hybrid algorithm for large scale l1-regularized logistic regression.
|
|
292 Journal of Machine Learning Research. 11:713-741.
|
|
293
|
|
294 Byrd R, Chin G, Neveitt W, Nocedal J. (2010)
|
|
295 On the use of stochastic Hessian information in unconstrained optimization.
|
|
296 Technical Report. Northwestern University. June 16, 2010.
|
|
297
|
|
298 Wright S. (2010)
|
|
299 Accelerated block-coordinate relaxation for regularized optimization.
|
|
300 Technical Report. University of Wisconsin. August 10, 2010.
|
|
301 -->
|
|
302
|
|
303 </help>
|
|
304 </tool>
|