0
|
1 # oct 15 rpy replaced - temp fix until we get gnuplot working
|
|
2 # rpy deprecated - replace with RRun
|
|
3 # fixes to run functional test! oct1 2009
|
|
4 # needed to expand our path with os.path.realpath to get newpath working with
|
|
5 # all the fancy pdfnup stuff
|
|
6 # and a fix to pruneld to write output to where it should be
|
|
7 # smallish data in test-data/smallwga in various forms
|
|
8 # python ../tools/rgenetics/rgQC.py -i smallwga -o smallwga -s smallwga/smallwga.html -p smallwga
|
|
9 # child files are deprecated and broken as at july 19 2009
|
|
10 # need to move them to the html file extrafiles path
|
|
11 # found lots of corner cases with some illumina data where cnv markers were
|
|
12 # included
|
|
13 # and where affection status was all missing !
|
|
14 # added links to tab files showing worst 1/keepfrac markers and subjects
|
|
15 # ross lazarus january 2008
|
|
16 #
|
|
17 # added named parameters
|
|
18 # to ensure no silly slippages if non required parameter in the most general case
|
|
19 # some potentially useful things here reusable in complex scripts
|
|
20 # with lots'o'html (TM)
|
|
21 # aug 17 2007 rml
|
|
22 #
|
|
23 # added marker and subject and parenting april 14 rml
|
|
24 # took a while to get the absolute paths right for all the file munging
|
|
25 # as of april 16 seems to work..
|
|
26 # getting galaxy to serve images in html reports is a little tricky
|
|
27 # we don't want QC reports to be dozens of individual files, so need
|
|
28 # to use the url /static/rg/... since galaxy's web server will happily serve images
|
|
29 # from there
|
|
30 # galaxy passes output files as relative paths
|
|
31 # these have to be munged by rgQC.py before calling this
|
|
32 # galaxy will pass in 2 file names - one for the log
|
|
33 # and one for the final html report
|
|
34 # of the form './database/files/dataset_66.dat'
|
|
35 # we need to be working in that directory so our plink output files are there
|
|
36 # so these have to be munged by rgQC.py before calling this
|
|
37 # note no ped file passed so had to remove the -l option
|
|
38 # for plinkParse.py that makes a heterozygosity report from the ped
|
|
39 # file - needs fixing...
|
|
40 # new: importing manhattan/qqplot plotter
|
|
41 # def doManQQ(input_fname,chrom_col,offset_col,pval_cols,title,grey,ctitle,outdir):
|
|
42 # """ draw a qq for pvals and a manhattan plot if chrom/offset <> 0
|
|
43 # contains some R scripts as text strings - we substitute defaults into the calls
|
|
44 # to make them do our bidding - and save the resulting code for posterity
|
|
45 # this can be called externally, I guess...for QC eg?
|
|
46 # """
|
|
47 #
|
|
48 # rcmd = '%s%s' % (rcode,rcode2 % (input_fname,chrom_col,offset_col,pval_cols,title,grey))
|
|
49 # rlog,flist = RRun(rcmd=rcmd,title=ctitle,outdir=outdir)
|
|
50 # return rlog,flist
|
|
51
|
|
52
|
|
53 from optparse import OptionParser
|
|
54
|
|
55 import sys,os,shutil, glob, math, subprocess, time, operator, random, tempfile, copy, string
|
|
56 from os.path import abspath
|
|
57 from rgutils import galhtmlprefix, galhtmlpostfix, RRun, timenow, plinke, rexe, runPlink, pruneLD
|
|
58 import rgManQQ
|
|
59
|
|
60 prog = os.path.split(sys.argv[0])[1]
|
|
61 vers = '0.4 april 2009 rml'
|
|
62 idjoiner = '_~_~_' # need something improbable..
|
|
63 # many of these may need fixing for a new install
|
|
64
|
|
65 myversion = vers
|
|
66 keepfrac = 20 # fraction to keep after sorting by each interesting value
|
|
67
|
|
68 missvals = {'0':'0','N':'N','-9':'-9','-':'-'} # fix me if these change!
|
|
69
|
|
70 mogresize = "x300" # this controls the width for jpeg thumbnails
|
|
71
|
|
72
|
|
73
|
|
74
|
|
75 def makePlots(markers=[],subjects=[],newfpath='.',basename='test',nbreaks='20',nup=3,height=10,width=8,rgbin=''):
|
|
76 """
|
|
77 marker rhead = ['snp','chrom','maf','a1','a2','missfrac',
|
|
78 'p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel']
|
|
79 subject rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','Fest']
|
|
80 """
|
|
81
|
|
82
|
|
83 def rHist(plotme=[],outfname='',xlabname='',title='',basename='',nbreaks=50):
|
|
84 """ rHist <- function(plotme,froot,plotname,title,mfname,nbreaks=50)
|
|
85 # generic histogram and vertical boxplot in a 3:1 layout
|
|
86 # returns the graphic file name for inclusion in the web page
|
|
87 # broken out here for reuse
|
|
88 # ross lazarus march 2007
|
|
89 """
|
|
90 screenmat = (1,2,1,2) # create a 2x2 cabvas
|
|
91 widthlist = (80,20) # change to 4:1 ratio for histo and boxplot
|
|
92 rpy.r.pdf( outfname, height , width )
|
|
93 #rpy.r.layout(rpy.r.matrix(rpy.r.c(1,1,1,2), 1, 4, byrow = True)) # 3 to 1 vertical plot
|
|
94 m = rpy.r.matrix((1,1,1,2),nrow=1,ncol=4,byrow=True)
|
|
95 # in R, m = matrix(c(1,2),nrow=1,ncol=2,byrow=T)
|
|
96 rpy.r("layout(matrix(c(1,1,1,2),nrow=1,ncol=4,byrow=T))") # 4 to 1 vertical plot
|
|
97 maint = 'QC for %s - %s' % (basename,title)
|
|
98 rpy.r.hist(plotme,main=maint, xlab=xlabname,breaks=nbreaks,col="maroon",cex=0.8)
|
|
99 rpy.r.boxplot(plotme,main='',col="maroon",outline=False)
|
|
100 rpy.r.dev_off()
|
|
101
|
|
102 def rCum(plotme=[],outfname='',xlabname='',title='',basename='',nbreaks=100):
|
|
103 """
|
|
104 Useful to see what various cutoffs yield - plot percentiles
|
|
105 """
|
|
106 n = len(plotme)
|
|
107 maxveclen = 1000.0 # for reasonable pdf sizes!
|
|
108 yvec = copy.copy(plotme)
|
|
109 # arrives already in decending order of importance missingness or mendel count by subj or marker
|
|
110 xvec = range(n)
|
|
111 xvec = [100.0*(n-x)/n for x in xvec] # convert to centile
|
|
112 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
113 if n > maxveclen: # oversample part of the distribution
|
|
114 always = min(1000,n/20) # oversample smaller of lowest few hundred items or 5%
|
|
115 skip = int(n/maxveclen) # take 1 in skip to get about maxveclen points
|
|
116 samplei = [i for i in range(n) if (i % skip == 0) or (i < always)] # always oversample first sorted values
|
|
117 yvec = [yvec[i] for i in samplei] # always get first and last
|
|
118 xvec = [xvec[i] for i in samplei] # always get first and last
|
|
119 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure
|
|
120 rpy.r.pdf( outfname, height , width )
|
|
121 maint = 'QC for %s - %s' % (basename,title)
|
|
122 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5
|
|
123 rpy.r.plot(xvec,yvec,type='p',main=maint, ylab=xlabname, xlab='Sample Percentile',col="maroon",cex=0.8)
|
|
124 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted")
|
|
125 rpy.r.dev_off()
|
|
126
|
|
127 def rQQ(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
128 """
|
|
129 y is data for a qq plot and ends up on the x axis go figure
|
|
130 if sampling, oversample low values - all the top 1% ?
|
|
131 this version called with -log10 transformed hwe
|
|
132 """
|
|
133 nrows = len(plotme)
|
|
134 fn = float(nrows)
|
|
135 xvec = [-math.log10(x/fn) for x in range(1,(nrows+1))]
|
|
136 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line
|
|
137 maxveclen = 3000
|
|
138 yvec = copy.copy(plotme)
|
|
139 if nrows > maxveclen:
|
|
140 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
141 # oversample part of the distribution
|
|
142 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5%
|
|
143 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points
|
|
144 samplei = [i for i in range(nrows) if (i < always) or (i % skip == 0)]
|
|
145 # always oversample first sorted (here lowest) values
|
|
146 yvec = [yvec[i] for i in samplei] # always get first and last
|
|
147 xvec = [xvec[i] for i in samplei] # and sample xvec same way
|
|
148 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows)
|
|
149 else:
|
|
150 maint='Log QQ Plot(n=%d)' % (nrows)
|
|
151 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line
|
|
152 ylab = '%s' % xlabname
|
|
153 xlab = '-log10(Uniform 0-1)'
|
|
154 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure
|
|
155 rpy.r.pdf( outfname, height , width )
|
|
156 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5
|
|
157 rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8)
|
|
158 rpy.r.points(mx,mx,type='l')
|
|
159 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted")
|
|
160 rpy.r.dev_off()
|
|
161
|
|
162 def rMultiQQ(plotme = [],nsplits=5, outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
163 """
|
|
164 data must contain p,x,y as data for a qq plot, quantiles of x and y axis used to create a
|
|
165 grid of qq plots to show departure from null at extremes of data quality
|
|
166 Need to plot qqplot(p,unif) where the p's come from one x and one y quantile
|
|
167 and ends up on the x axis go figure
|
|
168 if sampling, oversample low values - all the top 1% ?
|
|
169 """
|
|
170 data = copy.copy(plotme)
|
|
171 nvals = len(data)
|
|
172 stepsize = nvals/nsplits
|
|
173 logstep = math.log10(stepsize) # so is 3 for steps of 1000
|
|
174 quints = range(0,nvals,stepsize) # quintile cutpoints for each layer
|
|
175 data.sort(key=itertools.itemgetter(1)) # into x order
|
|
176 rpy.r.pdf( outfname, height , width )
|
|
177 rpy.r("par(mfrow = c(%d,%d))" % (nsplits,nsplits))
|
|
178 yvec = [-math.log10(random.random()) for x in range(stepsize)]
|
|
179 yvec.sort() # size of each step is expected range for xvec under null?!
|
|
180 for rowstart in quints:
|
|
181 rowend = rowstart + stepsize
|
|
182 if nvals - rowend < stepsize: # finish last split
|
|
183 rowend = nvals
|
|
184 row = data[rowstart:rowend]
|
|
185 row.sort(key=itertools.itemgetter(2)) # into y order
|
|
186 for colstart in quints:
|
|
187 colend = colstart + stepsize
|
|
188 if nvals - colend < stepsize: # finish last split
|
|
189 colend = nvals
|
|
190 cell = row[colstart:colend]
|
|
191 xvec = [-math.log10(x[0]) for x in cell] # all the pvalues for this cell
|
|
192 rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,pch=19,col="maroon",cex=0.8)
|
|
193 rpy.r.points(c(0,logstep),c(0,logstep),type='l')
|
|
194 rpy.r.dev_off()
|
|
195
|
|
196
|
|
197 def rQQNorm(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
198 """
|
|
199 y is data for a qqnorm plot
|
|
200 if sampling, oversample low values - all the top 1% ?
|
|
201 """
|
|
202 rangeunif = len(plotme)
|
|
203 nunif = 1000
|
|
204 maxveclen = 3000
|
|
205 nrows = len(plotme)
|
|
206 data = copy.copy(plotme)
|
|
207 if nrows > maxveclen:
|
|
208 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
209 # oversample part of the distribution
|
|
210 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5%
|
|
211 skip = int((nrows-always)/float(maxveclen)) # take 1 in skip to get about maxveclen points
|
|
212 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)]
|
|
213 # always oversample first sorted (here lowest) values
|
|
214 yvec = [data[i] for i in samplei] # always get first and last
|
|
215 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows)
|
|
216 else:
|
|
217 yvec = data
|
|
218 maint='Log QQ Plot(n=%d)' % (nrows)
|
|
219 n = 1000
|
|
220 ylab = '%s' % xlabname
|
|
221 xlab = 'Normal'
|
|
222 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure
|
|
223 rpy.r.pdf( outfname, height , width )
|
|
224 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5
|
|
225 rpy.r.qqnorm(yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8)
|
|
226 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted")
|
|
227 rpy.r.dev_off()
|
|
228
|
|
229 def rMAFMissqq(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
230 """
|
|
231 layout qq plots for pvalues within rows of increasing MAF and columns of increasing missingness
|
|
232 like the GAIN qc tools
|
|
233 y is data for a qq plot and ends up on the x axis go figure
|
|
234 if sampling, oversample low values - all the top 1% ?
|
|
235 """
|
|
236 rangeunif = len(plotme)
|
|
237 nunif = 1000
|
|
238 fn = float(rangeunif)
|
|
239 xvec = [-math.log10(x/fn) for x in range(1,(rangeunif+1))]
|
|
240 skip = max(int(rangeunif/fn),1)
|
|
241 # force include last points
|
|
242 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line
|
|
243 maxveclen = 2000
|
|
244 nrows = len(plotme)
|
|
245 data = copy.copy(plotme)
|
|
246 data.sort() # low to high - oversample low values
|
|
247 if nrows > maxveclen:
|
|
248 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
249 # oversample part of the distribution
|
|
250 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5%
|
|
251 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points
|
|
252 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)]
|
|
253 # always oversample first sorted (here lowest) values
|
|
254 yvec = [data[i] for i in samplei] # always get first and last
|
|
255 xvec = [xvec[i] for i in samplei] # and sample xvec same way
|
|
256 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows)
|
|
257 else:
|
|
258 yvec = data
|
|
259 maint='Log QQ Plot(n=%d)' % (nrows)
|
|
260 n = 1000
|
|
261 mx = [0,log10(fn)] # if 1000, becomes 3 for the null line
|
|
262 ylab = '%s' % xlabname
|
|
263 xlab = '-log10(Uniform 0-1)'
|
|
264 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure
|
|
265 rpy.r.pdf( outfname, height , width )
|
|
266 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5
|
|
267 rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8)
|
|
268 rpy.r.points(mx,mx,type='l')
|
|
269 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted")
|
|
270 rpy.r.dev_off()
|
|
271
|
|
272
|
|
273 fdsto,stofile = tempfile.mkstemp()
|
|
274 sto = open(stofile,'w')
|
|
275 import rpy # delay to avoid rpy stdout chatter replacing galaxy file blurb
|
|
276 mog = 'mogrify'
|
|
277 pdfnup = 'pdfnup'
|
|
278 pdfjoin = 'pdfjoin'
|
|
279 shead = subjects.pop(0) # get rid of head
|
|
280 mhead = markers.pop(0)
|
|
281 maf = mhead.index('maf')
|
|
282 missfrac = mhead.index('missfrac')
|
|
283 logphweall = mhead.index('logp_hwe_all')
|
|
284 logphweunaff = mhead.index('logp_hwe_unaff')
|
|
285 # check for at least some unaffected rml june 2009
|
|
286 m_mendel = mhead.index('N_Mendel')
|
|
287 fracmiss = shead.index('FracMiss')
|
|
288 s_mendel = shead.index('Mendel_errors')
|
|
289 s_het = shead.index('F_Stat')
|
|
290 params = {}
|
|
291 hweres = [float(x[logphweunaff]) for x in markers if len(x[logphweunaff]) >= logphweunaff
|
|
292 and x[logphweunaff].upper() <> 'NA']
|
|
293 if len(hweres) <> 0:
|
|
294 xs = [logphweunaff, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het]
|
|
295 # plot for each of these cols
|
|
296 else: # try hwe all instead - maybe no affection status available
|
|
297 xs = [logphweall, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het]
|
|
298 ordplotme = [1,1,1,1,1,1,1] # ordered plots for everything!
|
|
299 oreverseme = [1,1,0,1,1,1,0] # so larger values are oversampled
|
|
300 qqplotme = [1,0,0,0,0,0,0] #
|
|
301 qnplotme = [0,0,0,0,0,0,1] #
|
|
302 nplots = len(xs)
|
|
303 xlabnames = ['log(p) HWE (unaff)', 'Missing Rate: Markers', 'Minor Allele Frequency',
|
|
304 'Marker Mendel Error Count', 'Missing Rate: Subjects',
|
|
305 'Subject Mendel Error Count','Subject Inbreeding (het) F Statistic']
|
|
306 plotnames = ['logphweunaff', 'missfrac', 'maf', 'm_mendel', 'fracmiss', 's_mendel','s_het']
|
|
307 ploturls = ['%s_%s.pdf' % (basename,x) for x in plotnames] # real plotnames
|
|
308 ordplotnames = ['%s_cum' % x for x in plotnames]
|
|
309 ordploturls = ['%s_%s.pdf' % (basename,x) for x in ordplotnames] # real plotnames
|
|
310 outfnames = [os.path.join(newfpath,ploturls[x]) for x in range(nplots)]
|
|
311 ordoutfnames = [os.path.join(newfpath,ordploturls[x]) for x in range(nplots)]
|
|
312 datasources = [markers,markers,markers,markers,subjects,subjects,subjects] # use this table
|
|
313 titles = ["Marker HWE","Marker Missing Genotype", "Marker MAF","Marker Mendel",
|
|
314 "Subject Missing Genotype","Subject Mendel",'Subject F Statistic']
|
|
315 html = []
|
|
316 pdflist = []
|
|
317 for n,column in enumerate(xs):
|
|
318 dat = [float(x[column]) for x in datasources[n] if len(x) >= column
|
|
319 and x[column][:2].upper() <> 'NA'] # plink gives both!
|
|
320 if sum(dat) <> 0: # eg nada for mendel if case control?
|
|
321 rHist(plotme=dat,outfname=outfnames[n],xlabname=xlabnames[n],
|
|
322 title=titles[n],basename=basename,nbreaks=nbreaks)
|
|
323 row = [titles[n],ploturls[n],outfnames[n] ]
|
|
324 html.append(row)
|
|
325 pdflist.append(outfnames[n])
|
|
326 if ordplotme[n]: # for missingness, hwe - plots to see where cutoffs will end up
|
|
327 otitle = 'Ranked %s' % titles[n]
|
|
328 dat.sort()
|
|
329 if oreverseme[n]:
|
|
330 dat.reverse()
|
|
331 rCum(plotme=dat,outfname=ordoutfnames[n],xlabname='Ordered %s' % xlabnames[n],
|
|
332 title=otitle,basename=basename,nbreaks=1000)
|
|
333 row = [otitle,ordploturls[n],ordoutfnames[n]]
|
|
334 html.append(row)
|
|
335 pdflist.append(ordoutfnames[n])
|
|
336 if qqplotme[n]: #
|
|
337 otitle = 'LogQQ plot %s' % titles[n]
|
|
338 dat.sort()
|
|
339 dat.reverse()
|
|
340 ofn = os.path.split(ordoutfnames[n])
|
|
341 ofn = os.path.join(ofn[0],'QQ%s' % ofn[1])
|
|
342 ofu = os.path.split(ordploturls[n])
|
|
343 ofu = os.path.join(ofu[0],'QQ%s' % ofu[1])
|
|
344 rQQ(plotme=dat,outfname=ofn,xlabname='QQ %s' % xlabnames[n],
|
|
345 title=otitle,basename=basename)
|
|
346 row = [otitle,ofu,ofn]
|
|
347 html.append(row)
|
|
348 pdflist.append(ofn)
|
|
349 elif qnplotme[n]:
|
|
350 otitle = 'F Statistic %s' % titles[n]
|
|
351 dat.sort()
|
|
352 dat.reverse()
|
|
353 ofn = os.path.split(ordoutfnames[n])
|
|
354 ofn = os.path.join(ofn[0],'FQNorm%s' % ofn[1])
|
|
355 ofu = os.path.split(ordploturls[n])
|
|
356 ofu = os.path.join(ofu[0],'FQNorm%s' % ofu[1])
|
|
357 rQQNorm(plotme=dat,outfname=ofn,xlabname='F QNorm %s' % xlabnames[n],
|
|
358 title=otitle,basename=basename)
|
|
359 row = [otitle,ofu,ofn]
|
|
360 html.append(row)
|
|
361 pdflist.append(ofn)
|
|
362 else:
|
|
363 print '#$# no data for # %d - %s, data[:10]=%s' % (n,titles[n],dat[:10])
|
|
364 if nup>0:
|
|
365 # pdfjoin --outfile chr1test.pdf `ls database/files/dataset_396_files/*.pdf`
|
|
366 # pdfnup chr1test.pdf --nup 3x3 --frame true --outfile chr1test3.pdf
|
|
367 filestojoin = ' '.join(pdflist) # all the file names so far
|
|
368 afname = '%s_All_Paged.pdf' % (basename)
|
|
369 fullafname = os.path.join(newfpath,afname)
|
|
370 expl = 'All %s QC Plots joined into a single pdf' % basename
|
|
371 vcl = '%s %s --outfile %s ' % (pdfjoin,filestojoin, fullafname)
|
|
372 # make single page pdf
|
|
373 x=subprocess.Popen(vcl,shell=True,cwd=newfpath,stderr=sto,stdout=sto)
|
|
374 retval = x.wait()
|
|
375 row = [expl,afname,fullafname]
|
|
376 html.insert(0,row) # last rather than second
|
|
377 nfname = '%s_All_%dx%d.pdf' % (basename,nup,nup)
|
|
378 fullnfname = os.path.join(newfpath,nfname)
|
|
379 expl = 'All %s QC Plots %d by %d to a page' % (basename,nup,nup)
|
|
380 vcl = '%s %s --nup %dx%d --frame true --outfile %s' % (pdfnup,afname,nup,nup,fullnfname)
|
|
381 # make thumbnail images
|
|
382 x=subprocess.Popen(vcl,shell=True,cwd=newfpath,stderr=sto,stdout=sto)
|
|
383 retval = x.wait()
|
|
384 row = [expl,nfname,fullnfname]
|
|
385 html.insert(1,row) # this goes second
|
|
386 vcl = '%s -format jpg -resize %s %s' % (mog, mogresize, os.path.join(newfpath,'*.pdf'))
|
|
387 # make thumbnail images
|
|
388 x=subprocess.Popen(vcl,shell=True,cwd=newfpath,stderr=sto,stdout=sto)
|
|
389 retval = x.wait()
|
|
390 sto.close()
|
|
391 cruft = open(stofile,'r').readlines()
|
|
392 return html,cruft # elements for an ordered list of urls or whatever..
|
|
393
|
|
394
|
|
395 def RmakePlots(markers=[],subjects=[],newfpath='.',basename='test',nbreaks='100',nup=3,height=8,width=10,rexe=''):
|
|
396 """
|
|
397 nice try but the R scripts are huge and take forever to run if there's a lot of data
|
|
398 marker rhead = ['snp','chrom','maf','a1','a2','missfrac',
|
|
399 'p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel']
|
|
400 subject rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','Fest']
|
|
401 """
|
|
402 colour = "maroon"
|
|
403
|
|
404 def rHist(plotme='',outfname='',xlabname='',title='',basename='',nbreaks=nbreaks):
|
|
405 """ rHist <- function(plotme,froot,plotname,title,mfname,nbreaks=50)
|
|
406 # generic histogram and vertical boxplot in a 3:1 layout
|
|
407 # returns the graphic file name for inclusion in the web page
|
|
408 # broken out here for reuse
|
|
409 # ross lazarus march 2007
|
|
410 """
|
|
411 R = []
|
|
412 maint = 'QC for %s - %s' % (basename,title)
|
|
413 screenmat = (1,2,1,2) # create a 2x2 canvas
|
|
414 widthlist = (80,20) # change to 4:1 ratio for histo and boxplot
|
|
415 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width))
|
|
416 R.append("layout(matrix(c(1,1,1,2),nrow=1,ncol=4,byrow=T))")
|
|
417 R.append("plotme = read.table(file='%s',head=F,sep='\t')" % plotme)
|
|
418 R.append('hist(plotme, main="%s",xlab="%s",breaks=%d,col="%s")' % (maint,xlabname,nbreaks,colour))
|
|
419 R.append('boxplot(plotme,main="",col="%s",outline=F)' % (colour) )
|
|
420 R.append('dev.off()')
|
|
421 return R
|
|
422
|
|
423 def rCum(plotme='',outfname='',xlabname='',title='',basename='',nbreaks=100):
|
|
424 """
|
|
425 Useful to see what various cutoffs yield - plot percentiles
|
|
426 """
|
|
427 R = []
|
|
428 n = len(plotme)
|
|
429 R.append("plotme = read.table(file='%s',head=T,sep='\t')" % plotme)
|
|
430 # arrives already in decending order of importance missingness or mendel count by subj or marker
|
|
431 maint = 'QC for %s - %s' % (basename,title)
|
|
432 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width))
|
|
433 R.append("par(lab=c(10,10,10))")
|
|
434 R.append('plot(plotme$xvec,plotme$yvec,type="p",main="%s",ylab="%s",xlab="Sample Percentile",col="%s")' % (maint,xlabname,colour))
|
|
435 R.append('dev.off()')
|
|
436 return R
|
|
437
|
|
438 def rQQ(plotme='', outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
439 """
|
|
440 y is data for a qq plot and ends up on the x axis go figure
|
|
441 if sampling, oversample low values - all the top 1% ?
|
|
442 this version called with -log10 transformed hwe
|
|
443 """
|
|
444 R = []
|
|
445 nrows = len(plotme)
|
|
446 fn = float(nrows)
|
|
447 xvec = [-math.log10(x/fn) for x in range(1,(nrows+1))]
|
|
448 #mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line
|
|
449 maxveclen = 3000
|
|
450 yvec = copy.copy(plotme)
|
|
451 if nrows > maxveclen:
|
|
452 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
453 # oversample part of the distribution
|
|
454 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5%
|
|
455 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points
|
|
456 if skip < 2:
|
|
457 skip = 2
|
|
458 samplei = [i for i in range(nrows) if (i < always) or (i % skip == 0)]
|
|
459 # always oversample first sorted (here lowest) values
|
|
460 yvec = [yvec[i] for i in samplei] # always get first and last
|
|
461 xvec = [xvec[i] for i in samplei] # and sample xvec same way
|
|
462 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows)
|
|
463 else:
|
|
464 maint='Log QQ Plot(n=%d)' % (nrows)
|
|
465 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line
|
|
466 ylab = '%s' % xlabname
|
|
467 xlab = '-log10(Uniform 0-1)'
|
|
468 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure
|
|
469 x = ['%f' % x for x in xvec]
|
|
470 R.append('xvec = c(%s)' % ','.join(x))
|
|
471 y = ['%f' % x for x in yvec]
|
|
472 R.append('yvec = c(%s)' % ','.join(y))
|
|
473 R.append('mx = c(0,%f)' % (math.log10(fn)))
|
|
474 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width))
|
|
475 R.append("par(lab=c(10,10,10))")
|
|
476 R.append('qqplot(xvec,yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour))
|
|
477 R.append('points(mx,mx,type="l")')
|
|
478 R.append('grid(col="lightgray",lty="dotted")')
|
|
479 R.append('dev.off()')
|
|
480 return R
|
|
481
|
|
482 def rMultiQQ(plotme = '',nsplits=5, outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
483 """
|
|
484 data must contain p,x,y as data for a qq plot, quantiles of x and y axis used to create a
|
|
485 grid of qq plots to show departure from null at extremes of data quality
|
|
486 Need to plot qqplot(p,unif) where the p's come from one x and one y quantile
|
|
487 and ends up on the x axis go figure
|
|
488 if sampling, oversample low values - all the top 1% ?
|
|
489 """
|
|
490 data = copy.copy(plotme)
|
|
491 nvals = len(data)
|
|
492 stepsize = nvals/nsplits
|
|
493 logstep = math.log10(stepsize) # so is 3 for steps of 1000
|
|
494 R.append('mx = c(0,%f)' % logstep)
|
|
495 quints = range(0,nvals,stepsize) # quintile cutpoints for each layer
|
|
496 data.sort(key=itertools.itemgetter(1)) # into x order
|
|
497 #rpy.r.pdf( outfname, h , w )
|
|
498 #rpy.r("par(mfrow = c(%d,%d))" % (nsplits,nsplits))
|
|
499 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width))
|
|
500 yvec = [-math.log10(random.random()) for x in range(stepsize)]
|
|
501 yvec.sort() # size of each step is expected range for xvec under null?!
|
|
502 y = ['%f' % x for x in yvec]
|
|
503 R.append('yvec = c(%s)' % ','.join(y))
|
|
504 for rowstart in quints:
|
|
505 rowend = rowstart + stepsize
|
|
506 if nvals - rowend < stepsize: # finish last split
|
|
507 rowend = nvals
|
|
508 row = data[rowstart:rowend]
|
|
509 row.sort(key=itertools.itemgetter(2)) # into y order
|
|
510 for colstart in quints:
|
|
511 colend = colstart + stepsize
|
|
512 if nvals - colend < stepsize: # finish last split
|
|
513 colend = nvals
|
|
514 cell = row[colstart:colend]
|
|
515 xvec = [-math.log10(x[0]) for x in cell] # all the pvalues for this cell
|
|
516 x = ['%f' % x for x in xvec]
|
|
517 R.append('xvec = c(%s)' % ','.join(x))
|
|
518 R.append('qqplot(xvec,yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour))
|
|
519 R.append('points(mx,mx,type="l")')
|
|
520 R.append('grid(col="lightgray",lty="dotted")')
|
|
521 #rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,pch=19,col="maroon",cex=0.8)
|
|
522 #rpy.r.points(c(0,logstep),c(0,logstep),type='l')
|
|
523 R.append('dev.off()')
|
|
524 #rpy.r.dev_off()
|
|
525 return R
|
|
526
|
|
527
|
|
528 def rQQNorm(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
529 """
|
|
530 y is data for a qqnorm plot
|
|
531 if sampling, oversample low values - all the top 1% ?
|
|
532 """
|
|
533 rangeunif = len(plotme)
|
|
534 nunif = 1000
|
|
535 maxveclen = 3000
|
|
536 nrows = len(plotme)
|
|
537 data = copy.copy(plotme)
|
|
538 if nrows > maxveclen:
|
|
539 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
540 # oversample part of the distribution
|
|
541 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5%
|
|
542 skip = int((nrows-always)/float(maxveclen)) # take 1 in skip to get about maxveclen points
|
|
543 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)]
|
|
544 # always oversample first sorted (here lowest) values
|
|
545 yvec = [data[i] for i in samplei] # always get first and last
|
|
546 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows)
|
|
547 else:
|
|
548 yvec = data
|
|
549 maint='Log QQ Plot(n=%d)' % (nrows)
|
|
550 n = 1000
|
|
551 ylab = '%s' % xlabname
|
|
552 xlab = 'Normal'
|
|
553 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure
|
|
554 #rpy.r.pdf( outfname, h , w )
|
|
555 #rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5
|
|
556 #rpy.r.qqnorm(yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8)
|
|
557 #rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted")
|
|
558 #rpy.r.dev_off()
|
|
559 y = ['%f' % x for x in yvec]
|
|
560 R.append('yvec = c(%s)' % ','.join(y))
|
|
561 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width))
|
|
562 R.append("par(lab=c(10,10,10))")
|
|
563 R.append('qqnorm(yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour))
|
|
564 R.append('grid(col="lightgray",lty="dotted")')
|
|
565 R.append('dev.off()')
|
|
566 return R
|
|
567
|
|
568 def rMAFMissqq(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''):
|
|
569 """
|
|
570 layout qq plots for pvalues within rows of increasing MAF and columns of increasing missingness
|
|
571 like the GAIN qc tools
|
|
572 y is data for a qq plot and ends up on the x axis go figure
|
|
573 if sampling, oversample low values - all the top 1% ?
|
|
574 """
|
|
575 rangeunif = len(plotme)
|
|
576 nunif = 1000
|
|
577 fn = float(rangeunif)
|
|
578 xvec = [-math.log10(x/fn) for x in range(1,(rangeunif+1))]
|
|
579 skip = max(int(rangeunif/fn),1)
|
|
580 # force include last points
|
|
581 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line
|
|
582 maxveclen = 2000
|
|
583 nrows = len(plotme)
|
|
584 data = copy.copy(plotme)
|
|
585 data.sort() # low to high - oversample low values
|
|
586 if nrows > maxveclen:
|
|
587 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
588 # oversample part of the distribution
|
|
589 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5%
|
|
590 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points
|
|
591 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)]
|
|
592 # always oversample first sorted (here lowest) values
|
|
593 yvec = [data[i] for i in samplei] # always get first and last
|
|
594 xvec = [xvec[i] for i in samplei] # and sample xvec same way
|
|
595 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows)
|
|
596 else:
|
|
597 yvec = data
|
|
598 maint='Log QQ Plot(n=%d)' % (nrows)
|
|
599 n = 1000
|
|
600 mx = [0,log10(fn)] # if 1000, becomes 3 for the null line
|
|
601 ylab = '%s' % xlabname
|
|
602 xlab = '-log10(Uniform 0-1)'
|
|
603 R.append('mx = c(0,%f)' % (math.log10(fn)))
|
|
604 x = ['%f' % x for x in xvec]
|
|
605 R.append('xvec = c(%s)' % ','.join(x))
|
|
606 y = ['%f' % x for x in yvec]
|
|
607 R.append('yvec = c(%s)' % ','.join(y))
|
|
608 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width))
|
|
609 R.append("par(lab=c(10,10,10))")
|
|
610 R.append('qqplot(xvec,yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour))
|
|
611 R.append('points(mx,mx,type="l")')
|
|
612 R.append('grid(col="lightgray",lty="dotted")')
|
|
613 R.append('dev.off()')
|
|
614
|
|
615
|
|
616 shead = subjects.pop(0) # get rid of head
|
|
617 mhead = markers.pop(0)
|
|
618 maf = mhead.index('maf')
|
|
619 missfrac = mhead.index('missfrac')
|
|
620 logphweall = mhead.index('logp_hwe_all')
|
|
621 logphweunaff = mhead.index('logp_hwe_unaff')
|
|
622 # check for at least some unaffected rml june 2009
|
|
623 m_mendel = mhead.index('N_Mendel')
|
|
624 fracmiss = shead.index('FracMiss')
|
|
625 s_mendel = shead.index('Mendel_errors')
|
|
626 s_het = shead.index('F_Stat')
|
|
627 params = {}
|
|
628 h = [float(x[logphweunaff]) for x in markers if len(x[logphweunaff]) >= logphweunaff
|
|
629 and x[logphweunaff].upper() <> 'NA']
|
|
630 if len(h) <> 0:
|
|
631 xs = [logphweunaff, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het]
|
|
632 # plot for each of these cols
|
|
633 else: # try hwe all instead - maybe no affection status available
|
|
634 xs = [logphweall, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het]
|
|
635 ordplotme = [1,1,1,1,1,1,1] # ordered plots for everything!
|
|
636 oreverseme = [1,1,0,1,1,1,0] # so larger values are oversampled
|
|
637 qqplotme = [1,0,0,0,0,0,0] #
|
|
638 qnplotme = [0,0,0,0,0,0,1] #
|
|
639 nplots = len(xs)
|
|
640 xlabnames = ['log(p) HWE (unaff)', 'Missing Rate: Markers', 'Minor Allele Frequency',
|
|
641 'Marker Mendel Error Count', 'Missing Rate: Subjects',
|
|
642 'Subject Mendel Error Count','Subject Inbreeding (het) F Statistic']
|
|
643 plotnames = ['logphweunaff', 'missfrac', 'maf', 'm_mendel', 'fracmiss', 's_mendel','s_het']
|
|
644 ploturls = ['%s_%s.pdf' % (basename,x) for x in plotnames] # real plotnames
|
|
645 ordplotnames = ['%s_cum' % x for x in plotnames]
|
|
646 ordploturls = ['%s_%s.pdf' % (basename,x) for x in ordplotnames] # real plotnames
|
|
647 outfnames = [os.path.join(newfpath,ploturls[x]) for x in range(nplots)]
|
|
648 ordoutfnames = [os.path.join(newfpath,ordploturls[x]) for x in range(nplots)]
|
|
649 datasources = [markers,markers,markers,markers,subjects,subjects,subjects] # use this table
|
|
650 titles = ["Marker HWE","Marker Missing Genotype", "Marker MAF","Marker Mendel",
|
|
651 "Subject Missing Genotype","Subject Mendel",'Subject F Statistic']
|
|
652 html = []
|
|
653 pdflist = []
|
|
654 R = []
|
|
655 for n,column in enumerate(xs):
|
|
656 dfn = '%d_%s.txt' % (n,titles[n])
|
|
657 dfilepath = os.path.join(newfpath,dfn)
|
|
658 dat = [float(x[column]) for x in datasources[n] if len(x) >= column
|
|
659 and x[column][:2].upper() <> 'NA'] # plink gives both!
|
|
660 if sum(dat) <> 0: # eg nada for mendel if case control?
|
|
661 plotme = file(dfilepath,'w')
|
|
662 plotme.write('\n'.join(['%f' % x for x in dat])) # pass as a file - copout!
|
|
663 tR = rHist(plotme=dfilepath,outfname=outfnames[n],xlabname=xlabnames[n],
|
|
664 title=titles[n],basename=basename,nbreaks=nbreaks)
|
|
665 R += tR
|
|
666 row = [titles[n],ploturls[n],outfnames[n] ]
|
|
667 html.append(row)
|
|
668 pdflist.append(outfnames[n])
|
|
669 if ordplotme[n]: # for missingness, hwe - plots to see where cutoffs will end up
|
|
670 otitle = 'Ranked %s' % titles[n]
|
|
671 dat.sort()
|
|
672 if oreverseme[n]:
|
|
673 dat.reverse()
|
|
674 ndat = len(dat)
|
|
675 xvec = range(ndat)
|
|
676 xvec = [100.0*(n-x)/n for x in xvec] # convert to centile
|
|
677 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points
|
|
678 maxveclen = 1000.0 # for reasonable pdf sizes!
|
|
679 if ndat > maxveclen: # oversample part of the distribution
|
|
680 always = min(1000,ndat/20) # oversample smaller of lowest few hundred items or 5%
|
|
681 skip = int(ndat/maxveclen) # take 1 in skip to get about maxveclen points
|
|
682 samplei = [i for i in range(ndat) if (i % skip == 0) or (i < always)] # always oversample first sorted values
|
|
683 yvec = [yvec[i] for i in samplei] # always get first and last
|
|
684 xvec = [xvec[i] for i in samplei] # always get first and last
|
|
685 plotme = file(dfilepath,'w')
|
|
686 plotme.write('xvec\tyvec\n')
|
|
687 plotme.write('\n'.join(['%f\t%f' % (xvec[i],y) for y in yvec])) # pass as a file - copout!
|
|
688 tR = rCum(plotme=dat,outfname=ordoutfnames[n],xlabname='Ordered %s' % xlabnames[n],
|
|
689 title=otitle,basename=basename,nbreaks=nbreaks)
|
|
690 R += tR
|
|
691 row = [otitle,ordploturls[n],ordoutfnames[n]]
|
|
692 html.append(row)
|
|
693 pdflist.append(ordoutfnames[n])
|
|
694 if qqplotme[n]: #
|
|
695 otitle = 'LogQQ plot %s' % titles[n]
|
|
696 dat.sort()
|
|
697 dat.reverse()
|
|
698 ofn = os.path.split(ordoutfnames[n])
|
|
699 ofn = os.path.join(ofn[0],'QQ%s' % ofn[1])
|
|
700 ofu = os.path.split(ordploturls[n])
|
|
701 ofu = os.path.join(ofu[0],'QQ%s' % ofu[1])
|
|
702 tR = rQQ(plotme=dat,outfname=ofn,xlabname='QQ %s' % xlabnames[n],
|
|
703 title=otitle,basename=basename)
|
|
704 R += tR
|
|
705 row = [otitle,ofu,ofn]
|
|
706 html.append(row)
|
|
707 pdflist.append(ofn)
|
|
708 elif qnplotme[n]:
|
|
709 otitle = 'F Statistic %s' % titles[n]
|
|
710 dat.sort()
|
|
711 dat.reverse()
|
|
712 ofn = os.path.split(ordoutfnames[n])
|
|
713 ofn = os.path.join(ofn[0],'FQNorm%s' % ofn[1])
|
|
714 ofu = os.path.split(ordploturls[n])
|
|
715 ofu = os.path.join(ofu[0],'FQNorm%s' % ofu[1])
|
|
716 tR = rQQNorm(plotme=dat,outfname=ofn,xlabname='F QNorm %s' % xlabnames[n],
|
|
717 title=otitle,basename=basename)
|
|
718 R += tR
|
|
719 row = [otitle,ofu,ofn]
|
|
720 html.append(row)
|
|
721 pdflist.append(ofn)
|
|
722 else:
|
|
723 print '#$# no data for # %d - %s, data[:10]=%s' % (n,titles[n],dat[:10])
|
|
724 rlog,flist = RRun(rcmd=R,title='makeQCplots',outdir=newfpath)
|
|
725 if nup>0:
|
|
726 # pdfjoin --outfile chr1test.pdf `ls database/files/dataset_396_files/*.pdf`
|
|
727 # pdfnup chr1test.pdf --nup 3x3 --frame true --outfile chr1test3.pdf
|
|
728 filestojoin = ' '.join(pdflist) # all the file names so far
|
|
729 afname = '%s_All_Paged.pdf' % (basename)
|
|
730 fullafname = os.path.join(newfpath,afname)
|
|
731 expl = 'All %s QC Plots joined into a single pdf' % basename
|
|
732 vcl = 'pdfjoin %s --outfile %s ' % (filestojoin, fullafname)
|
|
733 # make single page pdf
|
|
734 x=subprocess.Popen(vcl,shell=True,cwd=newfpath)
|
|
735 retval = x.wait()
|
|
736 row = [expl,afname,fullafname]
|
|
737 html.insert(0,row) # last rather than second
|
|
738 nfname = '%s_All_%dx%d.pdf' % (basename,nup,nup)
|
|
739 fullnfname = os.path.join(newfpath,nfname)
|
|
740 expl = 'All %s QC Plots %d by %d to a page' % (basename,nup,nup)
|
|
741 vcl = 'pdfnup %s --nup %dx%d --frame true --outfile %s' % (afname,nup,nup,fullnfname)
|
|
742 # make thumbnail images
|
|
743 x=subprocess.Popen(vcl,shell=True,cwd=newfpath)
|
|
744 retval = x.wait()
|
|
745 row = [expl,nfname,fullnfname]
|
|
746 html.insert(1,row) # this goes second
|
|
747 vcl = 'mogrify -format jpg -resize %s %s' % (mogresize, os.path.join(newfpath,'*.pdf'))
|
|
748 # make thumbnail images
|
|
749 x=subprocess.Popen(vcl,shell=True,cwd=newfpath)
|
|
750 retval = x.wait()
|
|
751 return html # elements for an ordered list of urls or whatever..
|
|
752
|
|
753 def countHet(bedf='fakeped_500000',linkageped=True,froot='fake500k',outfname="ahetf",logf='rgQC.log'):
|
|
754 """
|
|
755 NO LONGER USED - historical interest
|
|
756 count het loci for each subject to look for outliers = ? contamination
|
|
757 assume ped file is linkage format
|
|
758 need to make a ped file from the bed file we were passed
|
|
759 """
|
|
760 vcl = [plinke,'--bfile',bedf,'--recode','--out','%s_recode' % froot] # write a recoded ped file from the real .bed file
|
|
761 p=subprocess.Popen(' '.join(vcl),shell=True)
|
|
762 retval = p.wait()
|
|
763 f = open('%s_recode.recode.ped' % froot,'r')
|
|
764 if not linkageped:
|
|
765 head = f.next() # throw away header
|
|
766 hets = [] # simple count of het loci per subject. Expect poisson?
|
|
767 n = 1
|
|
768 for l in f:
|
|
769 n += 1
|
|
770 ll = l.strip().split()
|
|
771 if len(ll) > 6:
|
|
772 iid = idjoiner.join(ll[:2]) # fam_iid
|
|
773 gender = ll[4]
|
|
774 alleles = ll[6:]
|
|
775 nallele = len(alleles)
|
|
776 nhet = 0
|
|
777 for i in range(nallele/2):
|
|
778 a1=alleles[2*i]
|
|
779 a2=alleles[2*i+1]
|
|
780 if alleles[2*i] <> alleles[2*i+1]: # must be het
|
|
781 if not missvals.get(a1,None) and not missvals.get(a2,None):
|
|
782 nhet += 1
|
|
783 hets.append((nhet,iid,gender)) # for sorting later
|
|
784 f.close()
|
|
785 hets.sort()
|
|
786 hets.reverse() # biggest nhet now on top
|
|
787 f = open(outfname ,'w')
|
|
788 res = ['%d\t%s\t%s' % (x) for x in hets] # I love list comprehensions
|
|
789 res.insert(0,'nhetloci\tfamid_iid\tgender')
|
|
790 res.append('')
|
|
791 f.write('\n'.join(res))
|
|
792 f.close()
|
|
793
|
|
794
|
|
795
|
|
796 def subjectRep(froot='cleantest',outfname="srep",newfpath='.',logf = None):
|
|
797 """by subject (missingness = .imiss, mendel = .imendel)
|
|
798 assume replicates have an underscore in family id for
|
|
799 hapmap testing
|
|
800 For sorting, we need floats and integers
|
|
801 """
|
|
802 isexfile = '%s.sexcheck' % froot
|
|
803 imissfile = '%s.imiss' % froot
|
|
804 imendfile = '%s.imendel' % froot
|
|
805 ihetfile = '%s.het' % froot
|
|
806 logf.write('## subject reports starting at %s\n' % timenow())
|
|
807 outfile = os.path.join(newfpath,outfname)
|
|
808 idlist = []
|
|
809 imissdict = {}
|
|
810 imenddict = {}
|
|
811 isexdict = {}
|
|
812 ihetdict = {}
|
|
813 Tops = {}
|
|
814 Tnames = ['Ranked Subject Missing Genotype', 'Ranked Subject Mendel',
|
|
815 'Ranked Sex check', 'Ranked Inbreeding (het) F statistic']
|
|
816 Tsorts = [2,3,6,8]
|
|
817 Treverse = [True,True,True,False] # so first values are worser
|
|
818 #rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','Fest']
|
|
819 ## FID IID MISS_PHENO N_MISS N_GENO F_MISS
|
|
820 ## 1552042370_A 1552042370_A N 5480 549883 0.009966
|
|
821 ## 1552042410_A 1552042410_A N 1638 549883 0.002979
|
|
822
|
|
823 # ------------------missing--------------------
|
|
824 # imiss has FID IID MISS_PHENO N_MISS F_MISS
|
|
825 # we want F_MISS
|
|
826 try:
|
|
827 f = open(imissfile,'r')
|
|
828 except:
|
|
829 logf.write('# file %s is missing - talk about irony\n' % imissfile)
|
|
830 f = None
|
|
831 if f:
|
|
832 for n,line in enumerate(f):
|
|
833 ll = line.strip().split()
|
|
834 if n == 0:
|
|
835 head = [x.upper() for x in ll] # expect above
|
|
836 fidpos = head.index('FID')
|
|
837 iidpos = head.index('IID')
|
|
838 fpos = head.index('F_MISS')
|
|
839 elif len(ll) >= fpos: # full line
|
|
840 fid = ll[fidpos]
|
|
841 #if fid.find('_') == -1: # not replicate! - icondb ids have these...
|
|
842 iid = ll[iidpos]
|
|
843 fmiss = ll[fpos]
|
|
844 id = '%s%s%s' % (fid,idjoiner,iid)
|
|
845 imissdict[id] = fmiss
|
|
846 idlist.append(id)
|
|
847 f.close()
|
|
848 logf.write('## imissfile %s contained %d ids\n' % (imissfile,len(idlist)))
|
|
849 # ------------------mend-------------------
|
|
850 # *.imendel has FID IID N
|
|
851 # we want N
|
|
852 gotmend = True
|
|
853 try:
|
|
854 f = open(imendfile,'r')
|
|
855 except:
|
|
856 gotmend = False
|
|
857 for id in idlist:
|
|
858 imenddict[id] = '0'
|
|
859 if gotmend:
|
|
860 for n,line in enumerate(f):
|
|
861 ll = line.strip().split()
|
|
862 if n == 0:
|
|
863 head = [x.upper() for x in ll] # expect above
|
|
864 npos = head.index('N')
|
|
865 fidpos = head.index('FID')
|
|
866 iidpos = head.index('IID')
|
|
867 elif len(ll) >= npos: # full line
|
|
868 fid = ll[fidpos]
|
|
869 iid = ll[iidpos]
|
|
870 id = '%s%s%s' % (fid,idjoiner,iid)
|
|
871 nmend = ll[npos]
|
|
872 imenddict[id] = nmend
|
|
873 f.close()
|
|
874 else:
|
|
875 logf.write('## error No %s file - assuming not family data\n' % imendfile)
|
|
876 # ------------------sex check------------------
|
|
877 #[rerla@hg fresh]$ head /home/rerla/fresh/database/files/dataset_978_files/CAMP2007Dirty.sexcheck
|
|
878 # sexcheck has FID IID PEDSEX SNPSEX STATUS F
|
|
879 ##
|
|
880 ## FID Family ID
|
|
881 ## IID Individual ID
|
|
882 ## PEDSEX Sex as determined in pedigree file (1=male, 2=female)
|
|
883 ## SNPSEX Sex as determined by X chromosome
|
|
884 ## STATUS Displays "PROBLEM" or "OK" for each individual
|
|
885 ## F The actual X chromosome inbreeding (homozygosity) estimate
|
|
886 ##
|
|
887 ## A PROBLEM arises if the two sexes do not match, or if the SNP data or pedigree data are
|
|
888 ## ambiguous with regard to sex.
|
|
889 ## A male call is made if F is more than 0.8; a femle call is made if F is less than 0.2.
|
|
890 try:
|
|
891 f = open(isexfile,'r')
|
|
892 got_sexcheck = 1
|
|
893 except:
|
|
894 got_sexcheck = 0
|
|
895 if got_sexcheck:
|
|
896 for n,line in enumerate(f):
|
|
897 ll = line.strip().split()
|
|
898 if n == 0:
|
|
899 head = [x.upper() for x in ll] # expect above
|
|
900 fidpos = head.index('FID')
|
|
901 iidpos = head.index('IID')
|
|
902 pedsexpos = head.index('PEDSEX')
|
|
903 snpsexpos = head.index('SNPSEX')
|
|
904 statuspos = head.index('STATUS')
|
|
905 fpos = head.index('F')
|
|
906 elif len(ll) >= fpos: # full line
|
|
907 fid = ll[fidpos]
|
|
908 iid = ll[iidpos]
|
|
909 fest = ll[fpos]
|
|
910 pedsex = ll[pedsexpos]
|
|
911 snpsex = ll[snpsexpos]
|
|
912 stat = ll[statuspos]
|
|
913 id = '%s%s%s' % (fid,idjoiner,iid)
|
|
914 isexdict[id] = (pedsex,snpsex,stat,fest)
|
|
915 f.close()
|
|
916 else:
|
|
917 # this only happens if there are no subjects!
|
|
918 logf.write('No %s file - assuming no sex errors' % isexfile)
|
|
919 ##
|
|
920 ## FID IID O(HOM) E(HOM) N(NM) F
|
|
921 ## 457 2 490665 4.928e+05 722154 -0.009096
|
|
922 ## 457 3 464519 4.85e+05 710986 -0.0908
|
|
923 ## 1037 2 461632 4.856e+05 712025 -0.106
|
|
924 ## 1037 1 491845 4.906e+05 719353 0.005577
|
|
925 try:
|
|
926 f = open(ihetfile,'r')
|
|
927 except:
|
|
928 f = None
|
|
929 logf.write('## No %s file - did we run --het in plink?\n' % ihetfile)
|
|
930 if f:
|
|
931 for i,line in enumerate(f):
|
|
932 ll = line.strip().split()
|
|
933 if i == 0:
|
|
934 head = [x.upper() for x in ll] # expect above
|
|
935 fidpos = head.index('FID')
|
|
936 iidpos = head.index('IID')
|
|
937 fpos = head.index('F')
|
|
938 n = 0
|
|
939 elif len(ll) >= fpos: # full line
|
|
940 fid = ll[fidpos]
|
|
941 iid = ll[iidpos]
|
|
942 fhet = ll[fpos]
|
|
943 id = '%s%s%s' % (fid,idjoiner,iid)
|
|
944 ihetdict[id] = fhet
|
|
945 f.close() # now assemble and output result list
|
|
946 rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','XHomEst','F_Stat']
|
|
947 res = []
|
|
948 fres = [] # floats for sorting
|
|
949 for id in idlist: # for each snp in found order
|
|
950 fid,iid = id.split(idjoiner) # recover keys
|
|
951 f_missing = imissdict.get(id,'0.0')
|
|
952 nmend = imenddict.get(id,'0')
|
|
953 (pedsex,snpsex,status,fest) = isexdict.get(id,('0','0','0','0.0'))
|
|
954 fhet = ihetdict.get(id,'0.0')
|
|
955 res.append([fid,iid,f_missing,nmend,pedsex,snpsex,status,fest,fhet])
|
|
956 try:
|
|
957 ff_missing = float(f_missing)
|
|
958 except:
|
|
959 ff_missing = 0.0
|
|
960 try:
|
|
961 inmend = int(nmend)
|
|
962 except:
|
|
963 inmend = 0
|
|
964 try:
|
|
965 ffest = float(fest)
|
|
966 except:
|
|
967 fest = 0.0
|
|
968 try:
|
|
969 ffhet = float(fhet)
|
|
970 except:
|
|
971 ffhet = 0.0
|
|
972 fres.append([fid,iid,ff_missing,inmend,pedsex,snpsex,status,ffest,ffhet])
|
|
973 ntokeep = max(20,len(res)/keepfrac)
|
|
974 for i,col in enumerate(Tsorts):
|
|
975 fres.sort(key=operator.itemgetter(col))
|
|
976 if Treverse[i]:
|
|
977 fres.reverse()
|
|
978 repname = Tnames[i]
|
|
979 Tops[repname] = fres[0:ntokeep]
|
|
980 Tops[repname] = [map(str,x) for x in Tops[repname]]
|
|
981 Tops[repname].insert(0,rhead)
|
|
982 res.sort()
|
|
983 res.insert(0,rhead)
|
|
984 logf.write('### writing %s report with %s' % ( outfile,res[0]))
|
|
985 f = open(outfile,'w')
|
|
986 f.write('\n'.join(['\t'.join(x) for x in res]))
|
|
987 f.write('\n')
|
|
988 f.close()
|
|
989 return res,Tops
|
|
990
|
|
991 def markerRep(froot='cleantest',outfname="mrep",newfpath='.',logf=None,maplist=None ):
|
|
992 """by marker (hwe = .hwe, missingness=.lmiss, freq = .frq)
|
|
993 keep a list of marker order but keep all stats in dicts
|
|
994 write out a fake xls file for R or SAS etc
|
|
995 kinda clunky, but..
|
|
996 TODO: ensure stable if any file not found?
|
|
997 """
|
|
998 mapdict = {}
|
|
999 if maplist <> None:
|
|
1000 rslist = [x[1] for x in maplist]
|
|
1001 offset = [(x[0],x[3]) for x in maplist]
|
|
1002 mapdict = dict(zip(rslist,offset))
|
|
1003 hwefile = '%s.hwe' % froot
|
|
1004 lmissfile = '%s.lmiss' % froot
|
|
1005 freqfile = '%s.frq' % froot
|
|
1006 lmendfile = '%s.lmendel' % froot
|
|
1007 outfile = os.path.join(newfpath,outfname)
|
|
1008 markerlist = []
|
|
1009 chromlist = []
|
|
1010 hwedict = {}
|
|
1011 lmissdict = {}
|
|
1012 freqdict = {}
|
|
1013 lmenddict = {}
|
|
1014 Tops = {}
|
|
1015 Tnames = ['Ranked Marker MAF', 'Ranked Marker Missing Genotype', 'Ranked Marker HWE', 'Ranked Marker Mendel']
|
|
1016 Tsorts = [3,6,10,11]
|
|
1017 Treverse = [False,True,True,True] # so first values are worse(r)
|
|
1018 #res.append([rs,chrom,offset,maf,a1,a2,f_missing,hwe_all[0],hwe_all[1],hwe_unaff[0],hwe_unaff[1],nmend])
|
|
1019 #rhead = ['snp','chrom','maf','a1','a2','missfrac','p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel']
|
|
1020 # -------------------hwe--------------------------
|
|
1021 # hwe has SNP TEST GENO O(HET) E(HET) P_HWD
|
|
1022 # we want all hwe where P_HWD <> NA
|
|
1023 # ah changed in 1.04 to
|
|
1024 ## CHR SNP TEST A1 A2 GENO O(HET) E(HET) P
|
|
1025 ## 1 rs6671164 ALL 2 3 34/276/613 0.299 0.3032 0.6644
|
|
1026 ## 1 rs6671164 AFF 2 3 0/0/0 nan nan NA
|
|
1027 ## 1 rs6671164 UNAFF 2 3 34/276/613 0.299 0.3032 0.6644
|
|
1028 ## 1 rs4448553 ALL 2 3 8/176/748 0.1888 0.1848 0.5975
|
|
1029 ## 1 rs4448553 AFF 2 3 0/0/0 nan nan NA
|
|
1030 ## 1 rs4448553 UNAFF 2 3 8/176/748 0.1888 0.1848 0.5975
|
|
1031 ## 1 rs1990150 ALL 1 3 54/303/569 0.3272 0.3453 0.1067
|
|
1032 ## 1 rs1990150 AFF 1 3 0/0/0 nan nan NA
|
|
1033 ## 1 rs1990150 UNAFF 1 3 54/303/569 0.3272 0.3453 0.1067
|
|
1034 logf.write('## marker reports starting at %s\n' % timenow())
|
|
1035 try:
|
|
1036 f = open(hwefile,'r')
|
|
1037 except:
|
|
1038 f = None
|
|
1039 logf.write('## error - no hwefile %s found\n' % hwefile)
|
|
1040 if f:
|
|
1041 for i,line in enumerate(f):
|
|
1042 ll = line.strip().split()
|
|
1043 if i == 0: # head
|
|
1044 head = [x.upper() for x in ll] # expect above
|
|
1045 try:
|
|
1046 testpos = head.index('TEST')
|
|
1047 except:
|
|
1048 testpos = 2 # patch for 1.04 which has b0rken headers - otherwise use head.index('TEST')
|
|
1049 try:
|
|
1050 ppos = head.index('P')
|
|
1051 except:
|
|
1052 ppos = 8 # patch - for head.index('P')
|
|
1053 snppos = head.index('SNP')
|
|
1054 chrpos = head.index('CHR')
|
|
1055 logf.write('hwe header testpos=%d,ppos=%d,snppos=%d\n' % (testpos,ppos,snppos))
|
|
1056 elif len(ll) >= ppos: # full line
|
|
1057 ps = ll[ppos].upper()
|
|
1058 rs = ll[snppos]
|
|
1059 chrom = ll[chrpos]
|
|
1060 test = ll[testpos]
|
|
1061 if not hwedict.get(rs,None):
|
|
1062 hwedict[rs] = {}
|
|
1063 markerlist.append(rs)
|
|
1064 chromlist.append(chrom) # one place to find it?
|
|
1065 lpvals = 0
|
|
1066 if ps.upper() <> 'NA' and ps.upper() <> 'NAN': # worth keeping
|
|
1067 lpvals = '0'
|
|
1068 if ps <> '1':
|
|
1069 try:
|
|
1070 pval = float(ps)
|
|
1071 lpvals = '%f' % -math.log10(pval)
|
|
1072 except:
|
|
1073 pass
|
|
1074 hwedict[rs][test] = (ps,lpvals)
|
|
1075 else:
|
|
1076 logf.write('short line #%d = %s\n' % (i,ll))
|
|
1077 f.close()
|
|
1078 # ------------------missing--------------------
|
|
1079 """lmiss has
|
|
1080 CHR SNP N_MISS N_GENO F_MISS
|
|
1081 1 rs12354060 0 73 0
|
|
1082 1 rs4345758 1 73 0.0137
|
|
1083 1 rs2691310 73 73 1
|
|
1084 1 rs2531266 73 73 1
|
|
1085 # we want F_MISS"""
|
|
1086 try:
|
|
1087 f = open(lmissfile,'r')
|
|
1088 except:
|
|
1089 f = None
|
|
1090 if f:
|
|
1091 for i,line in enumerate(f):
|
|
1092 ll = line.strip().split()
|
|
1093 if i == 0:
|
|
1094 head = [x.upper() for x in ll] # expect above
|
|
1095 fracpos = head.index('F_MISS')
|
|
1096 npos = head.index('N_MISS')
|
|
1097 snppos = head.index('SNP')
|
|
1098 elif len(ll) >= fracpos: # full line
|
|
1099 rs = ll[snppos]
|
|
1100 fracval = ll[fracpos]
|
|
1101 lmissdict[rs] = fracval # for now, just that?
|
|
1102 else:
|
|
1103 lmissdict[rs] = 'NA'
|
|
1104 f.close()
|
|
1105 # ------------------freq-------------------
|
|
1106 # frq has CHR SNP A1 A2 MAF NM
|
|
1107 # we want maf
|
|
1108 try:
|
|
1109 f = open(freqfile,'r')
|
|
1110 except:
|
|
1111 f = None
|
|
1112 if f:
|
|
1113 for i,line in enumerate(f):
|
|
1114 ll = line.strip().split()
|
|
1115 if i == 0:
|
|
1116 head = [x.upper() for x in ll] # expect above
|
|
1117 mafpos = head.index('MAF')
|
|
1118 a1pos = head.index('A1')
|
|
1119 a2pos = head.index('A2')
|
|
1120 snppos = head.index('SNP')
|
|
1121 elif len(ll) >= mafpos: # full line
|
|
1122 rs = ll[snppos]
|
|
1123 a1 = ll[a1pos]
|
|
1124 a2 = ll[a2pos]
|
|
1125 maf = ll[mafpos]
|
|
1126 freqdict[rs] = (maf,a1,a2)
|
|
1127 f.close()
|
|
1128 # ------------------mend-------------------
|
|
1129 # lmend has CHR SNP N
|
|
1130 # we want N
|
|
1131 gotmend = True
|
|
1132 try:
|
|
1133 f = open(lmendfile,'r')
|
|
1134 except:
|
|
1135 gotmend = False
|
|
1136 for rs in markerlist:
|
|
1137 lmenddict[rs] = '0'
|
|
1138 if gotmend:
|
|
1139 for i,line in enumerate(f):
|
|
1140 ll = line.strip().split()
|
|
1141 if i == 0:
|
|
1142 head = [x.upper() for x in ll] # expect above
|
|
1143 npos = head.index('N')
|
|
1144 snppos = head.index('SNP')
|
|
1145 elif len(ll) >= npos: # full line
|
|
1146 rs = ll[snppos]
|
|
1147 nmend = ll[npos]
|
|
1148 lmenddict[rs] = nmend
|
|
1149 f.close()
|
|
1150 else:
|
|
1151 logf.write('No %s file - assuming not family data\n' % lmendfile)
|
|
1152 # now assemble result list
|
|
1153 rhead = ['snp','chromosome','offset','maf','a1','a2','missfrac','p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel']
|
|
1154 res = []
|
|
1155 fres = []
|
|
1156 for rs in markerlist: # for each snp in found order
|
|
1157 f_missing = lmissdict.get(rs,'NA')
|
|
1158 maf,a1,a2 = freqdict.get(rs,('NA','NA','NA'))
|
|
1159 hwe_all = hwedict[rs].get('ALL',('NA','NA')) # hope this doesn't change...
|
|
1160 hwe_unaff = hwedict[rs].get('UNAFF',('NA','NA'))
|
|
1161 nmend = lmenddict.get(rs,'NA')
|
|
1162 (chrom,offset)=mapdict.get(rs,('?','0'))
|
|
1163 res.append([rs,chrom,offset,maf,a1,a2,f_missing,hwe_all[0],hwe_all[1],hwe_unaff[0],hwe_unaff[1],nmend])
|
|
1164 ntokeep = max(10,len(res)/keepfrac)
|
|
1165
|
|
1166 def msortk(item=None):
|
|
1167 """
|
|
1168 deal with non numeric sorting
|
|
1169 """
|
|
1170 try:
|
|
1171 return float(item)
|
|
1172 except:
|
|
1173 return item
|
|
1174
|
|
1175 for i,col in enumerate(Tsorts):
|
|
1176 res.sort(key=msortk(lambda x:x[col]))
|
|
1177 if Treverse[i]:
|
|
1178 res.reverse()
|
|
1179 repname = Tnames[i]
|
|
1180 Tops[repname] = res[0:ntokeep]
|
|
1181 Tops[repname].insert(0,rhead)
|
|
1182 res.sort(key=lambda x: '%s_%10d' % (x[1].ljust(4,'0'),int(x[2]))) # in chrom offset order
|
|
1183 res.insert(0,rhead)
|
|
1184 f = open(outfile,'w')
|
|
1185 f.write('\n'.join(['\t'.join(x) for x in res]))
|
|
1186 f.close()
|
|
1187 return res,Tops
|
|
1188
|
|
1189
|
|
1190
|
|
1191
|
|
1192 def getfSize(fpath,outpath):
|
|
1193 """
|
|
1194 format a nice file size string
|
|
1195 """
|
|
1196 size = ''
|
|
1197 fp = os.path.join(outpath,fpath)
|
|
1198 if os.path.isfile(fp):
|
|
1199 n = float(os.path.getsize(fp))
|
|
1200 if n > 2**20:
|
|
1201 size = ' (%1.1f MB)' % (n/2**20)
|
|
1202 elif n > 2**10:
|
|
1203 size = ' (%1.1f KB)' % (n/2**10)
|
|
1204 elif n > 0:
|
|
1205 size = ' (%d B)' % (int(n))
|
|
1206 return size
|
|
1207
|
|
1208
|
|
1209 if __name__ == "__main__":
|
|
1210 u = """ called in xml as
|
|
1211 <command interpreter="python">
|
|
1212 rgQC.py -i '$input_file.extra_files_path/$input_file.metadata.base_name' -o "$out_prefix"
|
|
1213 -s '$html_file' -p '$html_file.files_path' -l '${GALAXY_DATA_INDEX_DIR}/rg/bin/plink'
|
|
1214 -r '${GALAXY_DATA_INDEX_DIR}/rg/bin/R'
|
|
1215 </command>
|
|
1216
|
|
1217 Prepare a qc report - eg:
|
|
1218 print "%s %s -i birdlped -o birdlped -l qc.log -s htmlf -m marker.xls -s sub.xls -p ./" % (sys.executable,prog)
|
|
1219
|
|
1220 """
|
|
1221 progname = os.path.basename(sys.argv[0])
|
|
1222 if len(sys.argv) < 9:
|
|
1223 print '%s requires 6 parameters - got %d = %s' % (progname,len(sys.argv),sys.argv)
|
|
1224 sys.exit(1)
|
|
1225 parser = OptionParser(usage=u, version="%prog 0.01")
|
|
1226 a = parser.add_option
|
|
1227 a("-i","--infile",dest="infile")
|
|
1228 a("-o","--oprefix",dest="opref")
|
|
1229 a("-l","--plinkexe",dest="plinke", default=plinke)
|
|
1230 a("-r","--rexe",dest="rexe", default=rexe)
|
|
1231 a("-s","--snps",dest="htmlf")
|
|
1232 #a("-m","--markerRaw",dest="markf")
|
|
1233 #a("-r","--rawsubject",dest="subjf")
|
|
1234 a("-p","--patho",dest="newfpath")
|
|
1235 (options,args) = parser.parse_args()
|
|
1236 basename = os.path.split(options.infile)[-1] # just want the file prefix to find the .xls files below
|
|
1237 killme = string.punctuation + string.whitespace
|
|
1238 trantab = string.maketrans(killme,'_'*len(killme))
|
|
1239 opref = options.opref.translate(trantab)
|
|
1240 alogh,alog = tempfile.mkstemp(suffix='.txt')
|
|
1241 plogh,plog = tempfile.mkstemp(suffix='.txt')
|
|
1242 alogf = open(alog,'w')
|
|
1243 plogf = open(plog,'w')
|
|
1244 ahtmlf = options.htmlf
|
|
1245 amarkf = 'MarkerDetails_%s.xls' % opref
|
|
1246 asubjf = 'SubjectDetails_%s.xls' % opref
|
|
1247 newfpath = options.newfpath
|
|
1248 newfpath = os.path.realpath(newfpath)
|
|
1249 try:
|
|
1250 os.makedirs(newfpath)
|
|
1251 except:
|
|
1252 pass
|
|
1253 ofn = basename
|
|
1254 bfn = options.infile
|
|
1255 try:
|
|
1256 mapf = '%s.bim' % bfn
|
|
1257 maplist = file(mapf,'r').readlines()
|
|
1258 maplist = [x.split() for x in maplist]
|
|
1259 except:
|
|
1260 maplist = None
|
|
1261 alogf.write('## error - cannot open %s to read map - no offsets will be available for output files')
|
|
1262 #rerla@beast galaxy]$ head test-data/tinywga.bim
|
|
1263 #22 rs2283802 0 21784722 4 2
|
|
1264 #22 rs2267000 0 21785366 4 2
|
|
1265 rgbin = os.path.split(rexe)[0] # get our rg bin path
|
|
1266 #plinktasks = [' --freq',' --missing',' --mendel',' --hardy',' --check-sex'] # plink v1 fixes that bug!
|
|
1267 # if we could, do all at once? Nope. Probably never.
|
|
1268 plinktasks = [['--freq',],['--hwe 0.0', '--missing','--hardy'],
|
|
1269 ['--mendel',],['--check-sex',]]
|
|
1270 vclbase = [options.plinke,'--noweb','--out',basename,'--bfile',bfn,'--mind','1.0','--geno','1.0','--maf','0.0']
|
|
1271 runPlink(logf=plogf,plinktasks=plinktasks,cd=newfpath, vclbase=vclbase)
|
|
1272 plinktasks = [['--bfile',bfn,'--indep-pairwise 40 20 0.5','--out %s' % basename],
|
|
1273 ['--bfile',bfn,'--extract %s.prune.in --make-bed --out ldp_%s' % (basename, basename)],
|
|
1274 ['--bfile ldp_%s --het --out %s' % (basename,basename)]]
|
|
1275 # subset of ld independent markers for eigenstrat and other requirements
|
|
1276 vclbase = [options.plinke,'--noweb']
|
|
1277 plogout = pruneLD(plinktasks=plinktasks,cd=newfpath,vclbase = vclbase)
|
|
1278 plogf.write('\n'.join(plogout))
|
|
1279 plogf.write('\n')
|
|
1280 repout = os.path.join(newfpath,basename)
|
|
1281 subjects,subjectTops = subjectRep(froot=repout,outfname=asubjf,newfpath=newfpath,
|
|
1282 logf=alogf) # writes the subject_froot.xls file
|
|
1283 markers,markerTops = markerRep(froot=repout,outfname=amarkf,newfpath=newfpath,
|
|
1284 logf=alogf,maplist=maplist) # marker_froot.xls
|
|
1285 nbreaks = 100
|
|
1286 s = '## starting plotpage, newfpath=%s,m=%s,s=%s/n' % (newfpath,markers[:2],subjects[:2])
|
|
1287 alogf.write(s)
|
|
1288 print s
|
|
1289 plotpage,cruft = makePlots(markers=markers,subjects=subjects,newfpath=newfpath,
|
|
1290 basename=basename,nbreaks=nbreaks,height=10,width=8,rgbin=rgbin)
|
|
1291 #plotpage = RmakePlots(markers=markers,subjects=subjects,newfpath=newfpath,basename=basename,nbreaks=nbreaks,rexe=rexe)
|
|
1292
|
|
1293 # [titles[n],plotnames[n],outfnames[n] ]
|
|
1294 html = []
|
|
1295 html.append('<table cellpadding="5" border="0">')
|
|
1296 size = getfSize(amarkf,newfpath)
|
|
1297 html.append('<tr><td colspan="3"><a href="%s" type="application/vnd.ms-excel">%s</a>%s tab delimited</td></tr>' % \
|
|
1298 (amarkf,'Click here to download the Marker QC Detail report file',size))
|
|
1299 size = getfSize(asubjf,newfpath)
|
|
1300 html.append('<tr><td colspan="3"><a href="%s" type="application/vnd.ms-excel">%s</a>%s tab delimited</td></tr>' % \
|
|
1301 (asubjf,'Click here to download the Subject QC Detail report file',size))
|
|
1302 for (title,url,ofname) in plotpage:
|
|
1303 ttitle = 'Ranked %s' % title
|
|
1304 dat = subjectTops.get(ttitle,None)
|
|
1305 if not dat:
|
|
1306 dat = markerTops.get(ttitle,None)
|
|
1307 imghref = '%s.jpg' % os.path.splitext(url)[0] # removes .pdf
|
|
1308 thumbnail = os.path.join(newfpath,imghref)
|
|
1309 if not os.path.exists(thumbnail): # for multipage pdfs, mogrify makes multiple jpgs - fugly hack
|
|
1310 imghref = '%s-0.jpg' % os.path.splitext(url)[0] # try the first jpg
|
|
1311 thumbnail = os.path.join(newfpath,imghref)
|
|
1312 if not os.path.exists(thumbnail):
|
|
1313 html.append('<tr><td colspan="3"><a href="%s">%s</a></td></tr>' % (url,title))
|
|
1314 else:
|
|
1315 html.append('<tr><td><a href="%s"><img src="%s" alt="%s" hspace="10" align="middle">' \
|
|
1316 % (url,imghref,title))
|
|
1317 if dat: # one or the other - write as an extra file and make a link here
|
|
1318 t = '%s.xls' % (ttitle.replace(' ','_'))
|
|
1319 fname = os.path.join(newfpath,t)
|
|
1320 f = file(fname,'w')
|
|
1321 f.write('\n'.join(['\t'.join(x) for x in dat])) # the report
|
|
1322 size = getfSize(t,newfpath)
|
|
1323 html.append('</a></td><td>%s</td><td><a href="%s">Worst data</a>%s</td></tr>' % (title,t,size))
|
|
1324 else:
|
|
1325 html.append('</a></td><td>%s</td><td> </td></tr>' % (title))
|
|
1326 html.append('</table><hr><h3>All output files from the QC run are available below</h3>')
|
|
1327 html.append('<table cellpadding="5" border="0">\n')
|
|
1328 flist = os.listdir(newfpath) # we want to catch 'em all
|
|
1329 flist.sort()
|
|
1330 for f in flist:
|
|
1331 fname = os.path.split(f)[-1]
|
|
1332 size = getfSize(fname,newfpath)
|
|
1333 html.append('<tr><td><a href="%s">%s</a>%s</td></tr>' % (fname,fname,size))
|
|
1334 html.append('</table>')
|
|
1335 alogf.close()
|
|
1336 plogf.close()
|
|
1337 llog = open(alog,'r').readlines()
|
|
1338 plogfile = open(plog,'r').readlines()
|
|
1339 os.unlink(alog)
|
|
1340 os.unlink(plog)
|
|
1341 llog += plogfile # add lines from pruneld log
|
|
1342 lf = file(ahtmlf,'w') # galaxy will show this as the default view
|
|
1343 lf.write(galhtmlprefix % progname)
|
|
1344 s = '\n<div>Output from Rgenetics QC report tool run at %s<br>\n' % (timenow())
|
|
1345 lf.write('<h4>%s</h4>\n' % s)
|
|
1346 lf.write('</div><div><h4>(Click any preview image to download a full sized PDF version)</h4><br><ol>\n')
|
|
1347 lf.write('\n'.join(html))
|
|
1348 lf.write('<h4>QC run log contents</h4>')
|
|
1349 lf.write('<pre>%s</pre>' % (''.join(llog))) # plink logs
|
|
1350 if len(cruft) > 0:
|
|
1351 lf.write('<h2>Blather from pdfnup follows:</h2><pre>%s</pre>' % (''.join(cruft))) # pdfnup
|
|
1352 lf.write('%s\n<hr>\n' % galhtmlpostfix)
|
|
1353 lf.close()
|
|
1354
|