Mercurial > repos > xuebing > sharplabtool
comparison tools/discreteWavelet/execute_dwt_var_perClass.pl @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9071e359b9a3 |
---|---|
1 #!/usr/bin/perl -w | |
2 | |
3 use warnings; | |
4 use IO::Handle; | |
5 use POSIX qw(floor ceil); | |
6 | |
7 # example: perl execute_dwt_var_perClass.pl hg18_NCNR_10bp_3flanks_deletionHotspot_data_del.txt deletionHotspot 3flanks del | |
8 | |
9 $usage = "execute_dwt_var_perClass.pl [TABULAR.in] [TABULAR.out] [TABULAR.out] [PDF.out] \n"; | |
10 die $usage unless @ARGV == 4; | |
11 | |
12 #get the input arguments | |
13 my $inputFile = $ARGV[0]; | |
14 my $firstOutputFile = $ARGV[1]; | |
15 my $secondOutputFile = $ARGV[2]; | |
16 my $thirdOutputFile = $ARGV[3]; | |
17 | |
18 open (INPUT, "<", $inputFile) || die("Could not open file $inputFile \n"); | |
19 open (OUTPUT1, ">", $firstOutputFile) || die("Could not open file $firstOutputFile \n"); | |
20 open (OUTPUT2, ">", $secondOutputFile) || die("Could not open file $secondOutputFile \n"); | |
21 open (OUTPUT3, ">", $thirdOutputFile) || die("Could not open file $thirdOutputFile \n"); | |
22 open (ERROR, ">", "error.txt") or die ("Could not open file error.txt \n"); | |
23 | |
24 #save all error messages into the error file $errorFile using the error file handle ERROR | |
25 STDERR -> fdopen( \*ERROR, "w" ) or die ("Could not direct errors to the error file error.txt \n"); | |
26 | |
27 # choosing meaningful names for the output files | |
28 $max_dwt = $firstOutputFile; | |
29 $pvalue = $secondOutputFile; | |
30 $pdf = $thirdOutputFile; | |
31 | |
32 # count the number of columns in the input file | |
33 while($buffer = <INPUT>){ | |
34 #if ($buffer =~ m/interval/){ | |
35 chomp($buffer); | |
36 $buffer =~ s/^#\s*//; | |
37 @contrl = split(/\t/, $buffer); | |
38 last; | |
39 #} | |
40 } | |
41 print "The number of columns in the input file is: " . (@contrl) . "\n"; | |
42 print "\n"; | |
43 | |
44 # count the number of motifs in the input file | |
45 $count = 0; | |
46 for ($i = 0; $i < @contrl; $i++){ | |
47 $count++; | |
48 print "# $contrl[$i]\n"; | |
49 } | |
50 print "The number of motifs in the input file is: $count \n"; | |
51 | |
52 # check if the number of motifs is not a multiple of 12, and round up is so | |
53 $count2 = ($count/12); | |
54 if ($count2 =~ m/(\D)/){ | |
55 print "the number of motifs is not a multiple of 12 \n"; | |
56 $count2 = ceil($count2); | |
57 } | |
58 else { | |
59 print "the number of motifs is a multiple of 12 \n"; | |
60 } | |
61 print "There will be $count2 subfiles\n\n"; | |
62 | |
63 # split infile into subfiles only 12 motif per file for R plotting | |
64 for ($x = 1; $x <= $count2; $x++){ | |
65 $a = (($x - 1) * 12 + 1); | |
66 $b = $x * 12; | |
67 | |
68 if ($x < $count2){ | |
69 print "# data.short $x <- data_test[, +c($a:$b)]; \n"; | |
70 } | |
71 else{ | |
72 print "# data.short $x <- data_test[, +c($a:ncol(data_test)]; \n"; | |
73 } | |
74 } | |
75 | |
76 print "\n"; | |
77 print "There are 4 output files: \n"; | |
78 print "The first output file is a pdf file\n"; | |
79 print "The second output file is a max_dwt file\n"; | |
80 print "The third output file is a pvalues file\n"; | |
81 print "The fourth output file is a test_final_pvalues file\n"; | |
82 | |
83 # write R script | |
84 $r_script = "get_dwt_varPermut_getMax.r"; | |
85 print "The R file name is: $r_script \n"; | |
86 | |
87 open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n"; | |
88 | |
89 print Rcmd " | |
90 ###################################################################### | |
91 # plot power spectra, i.e. wavelet variance by class | |
92 # add code to create null bands by permuting the original data series | |
93 # get class of maximum significant variance per feature | |
94 # generate plots and table matrix of variance including p-values | |
95 ###################################################################### | |
96 library(\"Rwave\"); | |
97 library(\"wavethresh\"); | |
98 library(\"waveslim\"); | |
99 | |
100 options(echo = FALSE) | |
101 | |
102 # normalize data | |
103 norm <- function(data){ | |
104 v <- (data-mean(data))/sd(data); | |
105 if(sum(is.na(v)) >= 1){ | |
106 v<-data; | |
107 } | |
108 return(v); | |
109 } | |
110 | |
111 dwt_var_permut_getMax <- function(data, names, filter = 4, bc = \"symmetric\", method = \"kendall\", wf = \"haar\", boundary = \"reflection\") { | |
112 max_var = NULL; | |
113 matrix = NULL; | |
114 title = NULL; | |
115 final_pvalue = NULL; | |
116 short.levels = NULL; | |
117 scale = NULL; | |
118 | |
119 print(names); | |
120 | |
121 par(mfcol = c(length(names), length(names)), mar = c(0, 0, 0, 0), oma = c(4, 3, 3, 2), xaxt = \"s\", cex = 1, las = 1); | |
122 | |
123 short.levels <- wd(data[, 1], filter.number = filter, bc = bc)\$nlevels; | |
124 | |
125 title <- c(\"motif\"); | |
126 for (i in 1:short.levels){ | |
127 title <- c(title, paste(i, \"var\", sep = \"_\"), paste(i, \"pval\", sep = \"_\"), paste(i, \"test\", sep = \"_\")); | |
128 } | |
129 print(title); | |
130 | |
131 # normalize the raw data | |
132 data<-apply(data,2,norm); | |
133 | |
134 for(i in 1:length(names)){ | |
135 for(j in 1:length(names)){ | |
136 temp = NULL; | |
137 results = NULL; | |
138 wave1.dwt = NULL; | |
139 out = NULL; | |
140 | |
141 out <- vector(length = length(title)); | |
142 temp <- vector(length = short.levels); | |
143 | |
144 if(i < j) { | |
145 plot(temp, type = \"n\", axes = FALSE, xlab = NA, ylab = NA); | |
146 box(col = \"grey\"); | |
147 grid(ny = 0, nx = NULL); | |
148 } else { | |
149 if (i > j){ | |
150 plot(temp, type = \"n\", axes = FALSE, xlab = NA, ylab = NA); | |
151 box(col = \"grey\"); | |
152 grid(ny = 0, nx = NULL); | |
153 } else { | |
154 | |
155 wave1.dwt <- dwt(data[, i], wf = wf, short.levels, boundary = boundary); | |
156 | |
157 temp_row = (short.levels + 1 ) * -1; | |
158 temp_col = 1; | |
159 temp <- wave.variance(wave1.dwt)[temp_row, temp_col]; | |
160 | |
161 #permutations code : | |
162 feature1 = NULL; | |
163 null = NULL; | |
164 var_25 = NULL; | |
165 var_975 = NULL; | |
166 med = NULL; | |
167 | |
168 feature1 = data[, i]; | |
169 for (k in 1:1000) { | |
170 nk_1 = NULL; | |
171 null.levels = NULL; | |
172 var = NULL; | |
173 null_wave1 = NULL; | |
174 | |
175 nk_1 = sample(feature1, length(feature1), replace = FALSE); | |
176 null.levels <- wd(nk_1, filter.number = filter, bc = bc)\$nlevels; | |
177 var <- vector(length = length(null.levels)); | |
178 null_wave1 <- dwt(nk_1, wf = wf, short.levels, boundary = boundary); | |
179 var<- wave.variance(null_wave1)[-8, 1]; | |
180 null= rbind(null, var); | |
181 } | |
182 null <- apply(null, 2, sort, na.last = TRUE); | |
183 var_25 <- null[25, ]; | |
184 var_975 <- null[975, ]; | |
185 med <- (apply(null, 2, median, na.rm = TRUE)); | |
186 | |
187 # plot | |
188 results <- cbind(temp, var_25, var_975); | |
189 matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2), axes = F); | |
190 | |
191 # get pvalues by comparison to null distribution | |
192 out <- (names[i]); | |
193 for (m in 1:length(temp)){ | |
194 print(paste(\"scale\", m, sep = \" \")); | |
195 print(paste(\"var\", temp[m], sep = \" \")); | |
196 print(paste(\"med\", med[m], sep = \" \")); | |
197 pv = tail = NULL; | |
198 out <- c(out, format(temp[m], digits = 3)); | |
199 if (temp[m] >= med[m]){ | |
200 # R tail test | |
201 print(\"R\"); | |
202 tail <- \"R\"; | |
203 pv <- (length(which(null[, m] >= temp[m])))/(length(na.exclude(null[, m]))); | |
204 | |
205 } else { | |
206 if (temp[m] < med[m]){ | |
207 # L tail test | |
208 print(\"L\"); | |
209 tail <- \"L\"; | |
210 pv <- (length(which(null[, m] <= temp[m])))/(length(na.exclude(null[, m]))); | |
211 } | |
212 } | |
213 out <- c(out, pv); | |
214 print(pv); | |
215 out <- c(out, tail); | |
216 } | |
217 final_pvalue <-rbind(final_pvalue, out); | |
218 | |
219 | |
220 # get variances outside null bands by comparing temp to null | |
221 ## temp stores variance for each scale, and null stores permuted variances for null bands | |
222 for (n in 1:length(temp)){ | |
223 if (temp[n] <= var_975[n]){ | |
224 temp[n] <- NA; | |
225 } else { | |
226 temp[n] <- temp[n]; | |
227 } | |
228 } | |
229 matrix <- rbind(matrix, temp) | |
230 } | |
231 } | |
232 # labels | |
233 if (i == 1){ | |
234 mtext(names[j], side = 2, line = 0.5, las = 3, cex = 0.25); | |
235 } | |
236 if (j == 1){ | |
237 mtext(names[i], side = 3, line = 0.5, cex = 0.25); | |
238 } | |
239 if (j == length(names)){ | |
240 axis(1, at = (1:short.levels), las = 3, cex.axis = 0.5); | |
241 } | |
242 } | |
243 } | |
244 colnames(final_pvalue) <- title; | |
245 #write.table(final_pvalue, file = \"test_final_pvalue.txt\", sep = \"\\t\", quote = FALSE, row.names = FALSE, append = TRUE); | |
246 | |
247 # get maximum variance larger than expectation by comparison to null bands | |
248 varnames <- vector(); | |
249 for(i in 1:length(names)){ | |
250 name1 = paste(names[i], \"var\", sep = \"_\") | |
251 varnames <- c(varnames, name1) | |
252 } | |
253 rownames(matrix) <- varnames; | |
254 colnames(matrix) <- (1:short.levels); | |
255 max_var <- names; | |
256 scale <- vector(length = length(names)); | |
257 for (x in 1:nrow(matrix)){ | |
258 if (length(which.max(matrix[x, ])) == 0){ | |
259 scale[x] <- NA; | |
260 } | |
261 else{ | |
262 scale[x] <- colnames(matrix)[which.max(matrix[x, ])]; | |
263 } | |
264 } | |
265 max_var <- cbind(max_var, scale); | |
266 write.table(max_var, file = \"$max_dwt\", sep = \"\\t\", quote = FALSE, row.names = FALSE, append = TRUE); | |
267 return(final_pvalue); | |
268 }\n"; | |
269 | |
270 print Rcmd " | |
271 # execute | |
272 # read in data | |
273 | |
274 data_test = NULL; | |
275 data_test <- read.delim(\"$inputFile\"); | |
276 | |
277 pdf(file = \"$pdf\", width = 11, height = 8); | |
278 | |
279 # loop to read and execute on all $count2 subfiles | |
280 final = NULL; | |
281 for (x in 1:$count2){ | |
282 sub = NULL; | |
283 sub_names = NULL; | |
284 a = NULL; | |
285 b = NULL; | |
286 | |
287 a = ((x - 1) * 12 + 1); | |
288 b = x * 12; | |
289 | |
290 if (x < $count2){ | |
291 sub <- data_test[, +c(a:b)]; | |
292 sub_names <- colnames(data_test)[a:b]; | |
293 final <- rbind(final, dwt_var_permut_getMax(sub, sub_names)); | |
294 } | |
295 else{ | |
296 sub <- data_test[, +c(a:ncol(data_test))]; | |
297 sub_names <- colnames(data_test)[a:ncol(data_test)]; | |
298 final <- rbind(final, dwt_var_permut_getMax(sub, sub_names)); | |
299 | |
300 } | |
301 } | |
302 | |
303 dev.off(); | |
304 | |
305 write.table(final, file = \"$pvalue\", sep = \"\\t\", quote = FALSE, row.names = FALSE); | |
306 | |
307 #eof\n"; | |
308 | |
309 close Rcmd; | |
310 | |
311 system("echo \"wavelet ANOVA started on \`hostname\` at \`date\`\"\n"); | |
312 system("R --no-restore --no-save --no-readline < $r_script > $r_script.out"); | |
313 system("echo \"wavelet ANOVA ended on \`hostname\` at \`date\`\"\n"); | |
314 | |
315 #close the input and output and error files | |
316 close(ERROR); | |
317 close(OUTPUT3); | |
318 close(OUTPUT2); | |
319 close(OUTPUT1); | |
320 close(INPUT); |