comparison tools/regVariation/best_regression_subsets.py @ 0:9071e359b9a3

Uploaded
author xuebing
date Fri, 09 Mar 2012 19:37:19 -0500
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:9071e359b9a3
1 #!/usr/bin/env python
2
3 from galaxy import eggs
4
5 import sys, string
6 from rpy import *
7 import numpy
8
9 def stop_err(msg):
10 sys.stderr.write(msg)
11 sys.exit()
12
13 infile = sys.argv[1]
14 y_col = int(sys.argv[2])-1
15 x_cols = sys.argv[3].split(',')
16 outfile = sys.argv[4]
17 outfile2 = sys.argv[5]
18 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
19 fout = open(outfile,'w')
20
21 for i, line in enumerate( file ( infile )):
22 line = line.rstrip('\r\n')
23 if len( line )>0 and not line.startswith( '#' ):
24 elems = line.split( '\t' )
25 break
26 if i == 30:
27 break # Hopefully we'll never get here...
28
29 if len( elems )<1:
30 stop_err( "The data in your input dataset is either missing or not formatted properly." )
31
32 y_vals = []
33 x_vals = []
34
35 for k,col in enumerate(x_cols):
36 x_cols[k] = int(col)-1
37 x_vals.append([])
38
39 NA = 'NA'
40 for ind,line in enumerate( file( infile )):
41 if line and not line.startswith( '#' ):
42 try:
43 fields = line.split("\t")
44 try:
45 yval = float(fields[y_col])
46 except Exception, ey:
47 yval = r('NA')
48 y_vals.append(yval)
49 for k,col in enumerate(x_cols):
50 try:
51 xval = float(fields[col])
52 except Exception, ex:
53 xval = r('NA')
54 x_vals[k].append(xval)
55 except:
56 pass
57
58 response_term = ""
59
60 x_vals1 = numpy.asarray(x_vals).transpose()
61
62 dat= r.list(x=array(x_vals1), y=y_vals)
63
64 r.library("leaps")
65
66 set_default_mode(NO_CONVERSION)
67 try:
68 leaps = r.regsubsets(r("y ~ x"), data= r.na_exclude(dat))
69 except RException, rex:
70 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.")
71 set_default_mode(BASIC_CONVERSION)
72
73 summary = r.summary(leaps)
74 tot = len(x_vals)
75 pattern = "["
76 for i in range(tot):
77 pattern = pattern + 'c' + str(int(x_cols[int(i)]) + 1) + ' '
78 pattern = pattern.strip() + ']'
79 print >>fout, "#Vars\t%s\tR-sq\tAdj. R-sq\tC-p\tbic" %(pattern)
80 for ind,item in enumerate(summary['outmat']):
81 print >>fout, "%s\t%s\t%s\t%s\t%s\t%s" %(str(item).count('*'), item, summary['rsq'][ind], summary['adjr2'][ind], summary['cp'][ind], summary['bic'][ind])
82
83
84 r.pdf( outfile2, 8, 8 )
85 r.plot(leaps, scale="Cp", main="Best subsets using Cp Criterion")
86 r.plot(leaps, scale="r2", main="Best subsets using R-sq Criterion")
87 r.plot(leaps, scale="adjr2", main="Best subsets using Adjusted R-sq Criterion")
88 r.plot(leaps, scale="bic", main="Best subsets using bic Criterion")
89
90 r.dev_off()