Mercurial > repos > xuebing > sharplabtool
comparison tools/regVariation/linear_regression.py @ 0:9071e359b9a3
Uploaded
| author | xuebing |
|---|---|
| date | Fri, 09 Mar 2012 19:37:19 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:9071e359b9a3 |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 from galaxy import eggs | |
| 4 import sys, string | |
| 5 from rpy import * | |
| 6 import numpy | |
| 7 | |
| 8 def stop_err(msg): | |
| 9 sys.stderr.write(msg) | |
| 10 sys.exit() | |
| 11 | |
| 12 infile = sys.argv[1] | |
| 13 y_col = int(sys.argv[2])-1 | |
| 14 x_cols = sys.argv[3].split(',') | |
| 15 outfile = sys.argv[4] | |
| 16 outfile2 = sys.argv[5] | |
| 17 | |
| 18 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
| 19 fout = open(outfile,'w') | |
| 20 elems = [] | |
| 21 for i, line in enumerate( file ( infile )): | |
| 22 line = line.rstrip('\r\n') | |
| 23 if len( line )>0 and not line.startswith( '#' ): | |
| 24 elems = line.split( '\t' ) | |
| 25 break | |
| 26 if i == 30: | |
| 27 break # Hopefully we'll never get here... | |
| 28 | |
| 29 if len( elems )<1: | |
| 30 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 31 | |
| 32 y_vals = [] | |
| 33 x_vals = [] | |
| 34 | |
| 35 for k,col in enumerate(x_cols): | |
| 36 x_cols[k] = int(col)-1 | |
| 37 x_vals.append([]) | |
| 38 | |
| 39 NA = 'NA' | |
| 40 for ind,line in enumerate( file( infile )): | |
| 41 if line and not line.startswith( '#' ): | |
| 42 try: | |
| 43 fields = line.split("\t") | |
| 44 try: | |
| 45 yval = float(fields[y_col]) | |
| 46 except: | |
| 47 yval = r('NA') | |
| 48 y_vals.append(yval) | |
| 49 for k,col in enumerate(x_cols): | |
| 50 try: | |
| 51 xval = float(fields[col]) | |
| 52 except: | |
| 53 xval = r('NA') | |
| 54 x_vals[k].append(xval) | |
| 55 except: | |
| 56 pass | |
| 57 | |
| 58 x_vals1 = numpy.asarray(x_vals).transpose() | |
| 59 | |
| 60 dat= r.list(x=array(x_vals1), y=y_vals) | |
| 61 | |
| 62 set_default_mode(NO_CONVERSION) | |
| 63 try: | |
| 64 linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) | |
| 65 except RException, rex: | |
| 66 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
| 67 set_default_mode(BASIC_CONVERSION) | |
| 68 | |
| 69 coeffs=linear_model.as_py()['coefficients'] | |
| 70 yintercept= coeffs['(Intercept)'] | |
| 71 summary = r.summary(linear_model) | |
| 72 | |
| 73 co = summary.get('coefficients', 'NA') | |
| 74 """ | |
| 75 if len(co) != len(x_vals)+1: | |
| 76 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
| 77 """ | |
| 78 | |
| 79 try: | |
| 80 yintercept = r.round(float(yintercept), digits=10) | |
| 81 pvaly = r.round(float(co[0][3]), digits=10) | |
| 82 except: | |
| 83 pass | |
| 84 | |
| 85 print >>fout, "Y-intercept\t%s" %(yintercept) | |
| 86 print >>fout, "p-value (Y-intercept)\t%s" %(pvaly) | |
| 87 | |
| 88 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
| 89 try: | |
| 90 slope = r.round(float(coeffs['x']), digits=10) | |
| 91 except: | |
| 92 slope = 'NA' | |
| 93 try: | |
| 94 pval = r.round(float(co[1][3]), digits=10) | |
| 95 except: | |
| 96 pval = 'NA' | |
| 97 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) | |
| 98 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) | |
| 99 else: #Multiple regression case with >1 predictors | |
| 100 ind=1 | |
| 101 while ind < len(coeffs.keys()): | |
| 102 try: | |
| 103 slope = r.round(float(coeffs['x'+str(ind)]), digits=10) | |
| 104 except: | |
| 105 slope = 'NA' | |
| 106 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope) | |
| 107 try: | |
| 108 pval = r.round(float(co[ind][3]), digits=10) | |
| 109 except: | |
| 110 pval = 'NA' | |
| 111 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) | |
| 112 ind+=1 | |
| 113 | |
| 114 rsq = summary.get('r.squared','NA') | |
| 115 adjrsq = summary.get('adj.r.squared','NA') | |
| 116 fstat = summary.get('fstatistic','NA') | |
| 117 sigma = summary.get('sigma','NA') | |
| 118 | |
| 119 try: | |
| 120 rsq = r.round(float(rsq), digits=5) | |
| 121 adjrsq = r.round(float(adjrsq), digits=5) | |
| 122 fval = r.round(fstat['value'], digits=5) | |
| 123 fstat['value'] = str(fval) | |
| 124 sigma = r.round(float(sigma), digits=10) | |
| 125 except: | |
| 126 pass | |
| 127 | |
| 128 print >>fout, "R-squared\t%s" %(rsq) | |
| 129 print >>fout, "Adjusted R-squared\t%s" %(adjrsq) | |
| 130 print >>fout, "F-statistic\t%s" %(fstat) | |
| 131 print >>fout, "Sigma\t%s" %(sigma) | |
| 132 | |
| 133 r.pdf( outfile2, 8, 8 ) | |
| 134 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
| 135 sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept) | |
| 136 try: | |
| 137 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") | |
| 138 r.abline(a=yintercept, b=slope, col="red") | |
| 139 except: | |
| 140 pass | |
| 141 else: | |
| 142 r.pairs(dat, main="Scatterplot Matrix", col="blue") | |
| 143 try: | |
| 144 r.plot(linear_model) | |
| 145 except: | |
| 146 pass | |
| 147 r.dev_off() |
