Mercurial > repos > xuebing > sharplabtool
comparison tools/regVariation/linear_regression.py @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9071e359b9a3 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 from galaxy import eggs | |
4 import sys, string | |
5 from rpy import * | |
6 import numpy | |
7 | |
8 def stop_err(msg): | |
9 sys.stderr.write(msg) | |
10 sys.exit() | |
11 | |
12 infile = sys.argv[1] | |
13 y_col = int(sys.argv[2])-1 | |
14 x_cols = sys.argv[3].split(',') | |
15 outfile = sys.argv[4] | |
16 outfile2 = sys.argv[5] | |
17 | |
18 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
19 fout = open(outfile,'w') | |
20 elems = [] | |
21 for i, line in enumerate( file ( infile )): | |
22 line = line.rstrip('\r\n') | |
23 if len( line )>0 and not line.startswith( '#' ): | |
24 elems = line.split( '\t' ) | |
25 break | |
26 if i == 30: | |
27 break # Hopefully we'll never get here... | |
28 | |
29 if len( elems )<1: | |
30 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
31 | |
32 y_vals = [] | |
33 x_vals = [] | |
34 | |
35 for k,col in enumerate(x_cols): | |
36 x_cols[k] = int(col)-1 | |
37 x_vals.append([]) | |
38 | |
39 NA = 'NA' | |
40 for ind,line in enumerate( file( infile )): | |
41 if line and not line.startswith( '#' ): | |
42 try: | |
43 fields = line.split("\t") | |
44 try: | |
45 yval = float(fields[y_col]) | |
46 except: | |
47 yval = r('NA') | |
48 y_vals.append(yval) | |
49 for k,col in enumerate(x_cols): | |
50 try: | |
51 xval = float(fields[col]) | |
52 except: | |
53 xval = r('NA') | |
54 x_vals[k].append(xval) | |
55 except: | |
56 pass | |
57 | |
58 x_vals1 = numpy.asarray(x_vals).transpose() | |
59 | |
60 dat= r.list(x=array(x_vals1), y=y_vals) | |
61 | |
62 set_default_mode(NO_CONVERSION) | |
63 try: | |
64 linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) | |
65 except RException, rex: | |
66 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
67 set_default_mode(BASIC_CONVERSION) | |
68 | |
69 coeffs=linear_model.as_py()['coefficients'] | |
70 yintercept= coeffs['(Intercept)'] | |
71 summary = r.summary(linear_model) | |
72 | |
73 co = summary.get('coefficients', 'NA') | |
74 """ | |
75 if len(co) != len(x_vals)+1: | |
76 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
77 """ | |
78 | |
79 try: | |
80 yintercept = r.round(float(yintercept), digits=10) | |
81 pvaly = r.round(float(co[0][3]), digits=10) | |
82 except: | |
83 pass | |
84 | |
85 print >>fout, "Y-intercept\t%s" %(yintercept) | |
86 print >>fout, "p-value (Y-intercept)\t%s" %(pvaly) | |
87 | |
88 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
89 try: | |
90 slope = r.round(float(coeffs['x']), digits=10) | |
91 except: | |
92 slope = 'NA' | |
93 try: | |
94 pval = r.round(float(co[1][3]), digits=10) | |
95 except: | |
96 pval = 'NA' | |
97 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) | |
98 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) | |
99 else: #Multiple regression case with >1 predictors | |
100 ind=1 | |
101 while ind < len(coeffs.keys()): | |
102 try: | |
103 slope = r.round(float(coeffs['x'+str(ind)]), digits=10) | |
104 except: | |
105 slope = 'NA' | |
106 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope) | |
107 try: | |
108 pval = r.round(float(co[ind][3]), digits=10) | |
109 except: | |
110 pval = 'NA' | |
111 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) | |
112 ind+=1 | |
113 | |
114 rsq = summary.get('r.squared','NA') | |
115 adjrsq = summary.get('adj.r.squared','NA') | |
116 fstat = summary.get('fstatistic','NA') | |
117 sigma = summary.get('sigma','NA') | |
118 | |
119 try: | |
120 rsq = r.round(float(rsq), digits=5) | |
121 adjrsq = r.round(float(adjrsq), digits=5) | |
122 fval = r.round(fstat['value'], digits=5) | |
123 fstat['value'] = str(fval) | |
124 sigma = r.round(float(sigma), digits=10) | |
125 except: | |
126 pass | |
127 | |
128 print >>fout, "R-squared\t%s" %(rsq) | |
129 print >>fout, "Adjusted R-squared\t%s" %(adjrsq) | |
130 print >>fout, "F-statistic\t%s" %(fstat) | |
131 print >>fout, "Sigma\t%s" %(sigma) | |
132 | |
133 r.pdf( outfile2, 8, 8 ) | |
134 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
135 sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept) | |
136 try: | |
137 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") | |
138 r.abline(a=yintercept, b=slope, col="red") | |
139 except: | |
140 pass | |
141 else: | |
142 r.pairs(dat, main="Scatterplot Matrix", col="blue") | |
143 try: | |
144 r.plot(linear_model) | |
145 except: | |
146 pass | |
147 r.dev_off() |