Mercurial > repos > xuebing > sharplabtool
comparison tools/regVariation/rcve.py @ 0:9071e359b9a3
Uploaded
| author | xuebing |
|---|---|
| date | Fri, 09 Mar 2012 19:37:19 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:9071e359b9a3 |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 from galaxy import eggs | |
| 4 | |
| 5 import sys, string | |
| 6 from rpy import * | |
| 7 import numpy | |
| 8 | |
| 9 def stop_err(msg): | |
| 10 sys.stderr.write(msg) | |
| 11 sys.exit() | |
| 12 | |
| 13 def sscombs(s): | |
| 14 if len(s) == 1: | |
| 15 return [s] | |
| 16 else: | |
| 17 ssc = sscombs(s[1:]) | |
| 18 return [s[0]] + [s[0]+comb for comb in ssc] + ssc | |
| 19 | |
| 20 | |
| 21 infile = sys.argv[1] | |
| 22 y_col = int(sys.argv[2])-1 | |
| 23 x_cols = sys.argv[3].split(',') | |
| 24 outfile = sys.argv[4] | |
| 25 | |
| 26 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
| 27 fout = open(outfile,'w') | |
| 28 | |
| 29 for i, line in enumerate( file ( infile )): | |
| 30 line = line.rstrip('\r\n') | |
| 31 if len( line )>0 and not line.startswith( '#' ): | |
| 32 elems = line.split( '\t' ) | |
| 33 break | |
| 34 if i == 30: | |
| 35 break # Hopefully we'll never get here... | |
| 36 | |
| 37 if len( elems )<1: | |
| 38 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 39 | |
| 40 y_vals = [] | |
| 41 x_vals = [] | |
| 42 | |
| 43 for k,col in enumerate(x_cols): | |
| 44 x_cols[k] = int(col)-1 | |
| 45 x_vals.append([]) | |
| 46 """ | |
| 47 try: | |
| 48 float( elems[x_cols[k]] ) | |
| 49 except: | |
| 50 try: | |
| 51 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] ) | |
| 52 except: | |
| 53 msg = "This operation cannot be performed on non-numeric data." | |
| 54 stop_err( msg ) | |
| 55 """ | |
| 56 NA = 'NA' | |
| 57 for ind,line in enumerate( file( infile )): | |
| 58 if line and not line.startswith( '#' ): | |
| 59 try: | |
| 60 fields = line.split("\t") | |
| 61 try: | |
| 62 yval = float(fields[y_col]) | |
| 63 except Exception, ey: | |
| 64 yval = r('NA') | |
| 65 #print >>sys.stderr, "ey = %s" %ey | |
| 66 y_vals.append(yval) | |
| 67 for k,col in enumerate(x_cols): | |
| 68 try: | |
| 69 xval = float(fields[col]) | |
| 70 except Exception, ex: | |
| 71 xval = r('NA') | |
| 72 #print >>sys.stderr, "ex = %s" %ex | |
| 73 x_vals[k].append(xval) | |
| 74 except: | |
| 75 pass | |
| 76 | |
| 77 x_vals1 = numpy.asarray(x_vals).transpose() | |
| 78 dat= r.list(x=array(x_vals1), y=y_vals) | |
| 79 | |
| 80 set_default_mode(NO_CONVERSION) | |
| 81 try: | |
| 82 full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user | |
| 83 except RException, rex: | |
| 84 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") | |
| 85 set_default_mode(BASIC_CONVERSION) | |
| 86 | |
| 87 summary = r.summary(full) | |
| 88 fullr2 = summary.get('r.squared','NA') | |
| 89 | |
| 90 if fullr2 == 'NA': | |
| 91 stop_error("Error in linear regression") | |
| 92 | |
| 93 if len(x_vals) < 10: | |
| 94 s = "" | |
| 95 for ch in range(len(x_vals)): | |
| 96 s += str(ch) | |
| 97 else: | |
| 98 stop_err("This tool only works with less than 10 predictors.") | |
| 99 | |
| 100 print >>fout, "#Model\tR-sq\tRCVE_Terms\tRCVE_Value" | |
| 101 all_combos = sorted(sscombs(s), key=len) | |
| 102 all_combos.reverse() | |
| 103 for j,cols in enumerate(all_combos): | |
| 104 #if len(cols) == len(s): #Same as the full model above | |
| 105 # continue | |
| 106 if len(cols) == 1: | |
| 107 x_vals1 = x_vals[int(cols)] | |
| 108 else: | |
| 109 x_v = [] | |
| 110 for col in cols: | |
| 111 x_v.append(x_vals[int(col)]) | |
| 112 x_vals1 = numpy.asarray(x_v).transpose() | |
| 113 dat= r.list(x=array(x_vals1), y=y_vals) | |
| 114 set_default_mode(NO_CONVERSION) | |
| 115 red = r.lm(r("y ~ x"), data= dat) #Reduced model | |
| 116 set_default_mode(BASIC_CONVERSION) | |
| 117 summary = r.summary(red) | |
| 118 redr2 = summary.get('r.squared','NA') | |
| 119 try: | |
| 120 rcve = (float(fullr2)-float(redr2))/float(fullr2) | |
| 121 except: | |
| 122 rcve = 'NA' | |
| 123 col_str = "" | |
| 124 for col in cols: | |
| 125 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " " | |
| 126 col_str.strip() | |
| 127 rcve_col_str = "" | |
| 128 for col in s: | |
| 129 if col not in cols: | |
| 130 rcve_col_str = rcve_col_str + str(int(x_cols[int(col)]) + 1) + " " | |
| 131 rcve_col_str.strip() | |
| 132 if len(cols) == len(s): #full model | |
| 133 rcve_col_str = "-" | |
| 134 rcve = "-" | |
| 135 try: | |
| 136 redr2 = "%.4f" %(float(redr2)) | |
| 137 except: | |
| 138 pass | |
| 139 try: | |
| 140 rcve = "%.4f" %(float(rcve)) | |
| 141 except: | |
| 142 pass | |
| 143 print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,rcve_col_str,rcve) |
