Mercurial > repos > xuebing > sharplabtool
comparison tools/regVariation/rcve.py @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9071e359b9a3 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 from galaxy import eggs | |
4 | |
5 import sys, string | |
6 from rpy import * | |
7 import numpy | |
8 | |
9 def stop_err(msg): | |
10 sys.stderr.write(msg) | |
11 sys.exit() | |
12 | |
13 def sscombs(s): | |
14 if len(s) == 1: | |
15 return [s] | |
16 else: | |
17 ssc = sscombs(s[1:]) | |
18 return [s[0]] + [s[0]+comb for comb in ssc] + ssc | |
19 | |
20 | |
21 infile = sys.argv[1] | |
22 y_col = int(sys.argv[2])-1 | |
23 x_cols = sys.argv[3].split(',') | |
24 outfile = sys.argv[4] | |
25 | |
26 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
27 fout = open(outfile,'w') | |
28 | |
29 for i, line in enumerate( file ( infile )): | |
30 line = line.rstrip('\r\n') | |
31 if len( line )>0 and not line.startswith( '#' ): | |
32 elems = line.split( '\t' ) | |
33 break | |
34 if i == 30: | |
35 break # Hopefully we'll never get here... | |
36 | |
37 if len( elems )<1: | |
38 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
39 | |
40 y_vals = [] | |
41 x_vals = [] | |
42 | |
43 for k,col in enumerate(x_cols): | |
44 x_cols[k] = int(col)-1 | |
45 x_vals.append([]) | |
46 """ | |
47 try: | |
48 float( elems[x_cols[k]] ) | |
49 except: | |
50 try: | |
51 msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] ) | |
52 except: | |
53 msg = "This operation cannot be performed on non-numeric data." | |
54 stop_err( msg ) | |
55 """ | |
56 NA = 'NA' | |
57 for ind,line in enumerate( file( infile )): | |
58 if line and not line.startswith( '#' ): | |
59 try: | |
60 fields = line.split("\t") | |
61 try: | |
62 yval = float(fields[y_col]) | |
63 except Exception, ey: | |
64 yval = r('NA') | |
65 #print >>sys.stderr, "ey = %s" %ey | |
66 y_vals.append(yval) | |
67 for k,col in enumerate(x_cols): | |
68 try: | |
69 xval = float(fields[col]) | |
70 except Exception, ex: | |
71 xval = r('NA') | |
72 #print >>sys.stderr, "ex = %s" %ex | |
73 x_vals[k].append(xval) | |
74 except: | |
75 pass | |
76 | |
77 x_vals1 = numpy.asarray(x_vals).transpose() | |
78 dat= r.list(x=array(x_vals1), y=y_vals) | |
79 | |
80 set_default_mode(NO_CONVERSION) | |
81 try: | |
82 full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user | |
83 except RException, rex: | |
84 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") | |
85 set_default_mode(BASIC_CONVERSION) | |
86 | |
87 summary = r.summary(full) | |
88 fullr2 = summary.get('r.squared','NA') | |
89 | |
90 if fullr2 == 'NA': | |
91 stop_error("Error in linear regression") | |
92 | |
93 if len(x_vals) < 10: | |
94 s = "" | |
95 for ch in range(len(x_vals)): | |
96 s += str(ch) | |
97 else: | |
98 stop_err("This tool only works with less than 10 predictors.") | |
99 | |
100 print >>fout, "#Model\tR-sq\tRCVE_Terms\tRCVE_Value" | |
101 all_combos = sorted(sscombs(s), key=len) | |
102 all_combos.reverse() | |
103 for j,cols in enumerate(all_combos): | |
104 #if len(cols) == len(s): #Same as the full model above | |
105 # continue | |
106 if len(cols) == 1: | |
107 x_vals1 = x_vals[int(cols)] | |
108 else: | |
109 x_v = [] | |
110 for col in cols: | |
111 x_v.append(x_vals[int(col)]) | |
112 x_vals1 = numpy.asarray(x_v).transpose() | |
113 dat= r.list(x=array(x_vals1), y=y_vals) | |
114 set_default_mode(NO_CONVERSION) | |
115 red = r.lm(r("y ~ x"), data= dat) #Reduced model | |
116 set_default_mode(BASIC_CONVERSION) | |
117 summary = r.summary(red) | |
118 redr2 = summary.get('r.squared','NA') | |
119 try: | |
120 rcve = (float(fullr2)-float(redr2))/float(fullr2) | |
121 except: | |
122 rcve = 'NA' | |
123 col_str = "" | |
124 for col in cols: | |
125 col_str = col_str + str(int(x_cols[int(col)]) + 1) + " " | |
126 col_str.strip() | |
127 rcve_col_str = "" | |
128 for col in s: | |
129 if col not in cols: | |
130 rcve_col_str = rcve_col_str + str(int(x_cols[int(col)]) + 1) + " " | |
131 rcve_col_str.strip() | |
132 if len(cols) == len(s): #full model | |
133 rcve_col_str = "-" | |
134 rcve = "-" | |
135 try: | |
136 redr2 = "%.4f" %(float(redr2)) | |
137 except: | |
138 pass | |
139 try: | |
140 rcve = "%.4f" %(float(rcve)) | |
141 except: | |
142 pass | |
143 print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,rcve_col_str,rcve) |