Mercurial > repos > xuebing > sharplabtool
comparison tools/rgenetics/rgQC.py @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9071e359b9a3 |
---|---|
1 # oct 15 rpy replaced - temp fix until we get gnuplot working | |
2 # rpy deprecated - replace with RRun | |
3 # fixes to run functional test! oct1 2009 | |
4 # needed to expand our path with os.path.realpath to get newpath working with | |
5 # all the fancy pdfnup stuff | |
6 # and a fix to pruneld to write output to where it should be | |
7 # smallish data in test-data/smallwga in various forms | |
8 # python ../tools/rgenetics/rgQC.py -i smallwga -o smallwga -s smallwga/smallwga.html -p smallwga | |
9 # child files are deprecated and broken as at july 19 2009 | |
10 # need to move them to the html file extrafiles path | |
11 # found lots of corner cases with some illumina data where cnv markers were | |
12 # included | |
13 # and where affection status was all missing ! | |
14 # added links to tab files showing worst 1/keepfrac markers and subjects | |
15 # ross lazarus january 2008 | |
16 # | |
17 # added named parameters | |
18 # to ensure no silly slippages if non required parameter in the most general case | |
19 # some potentially useful things here reusable in complex scripts | |
20 # with lots'o'html (TM) | |
21 # aug 17 2007 rml | |
22 # | |
23 # added marker and subject and parenting april 14 rml | |
24 # took a while to get the absolute paths right for all the file munging | |
25 # as of april 16 seems to work.. | |
26 # getting galaxy to serve images in html reports is a little tricky | |
27 # we don't want QC reports to be dozens of individual files, so need | |
28 # to use the url /static/rg/... since galaxy's web server will happily serve images | |
29 # from there | |
30 # galaxy passes output files as relative paths | |
31 # these have to be munged by rgQC.py before calling this | |
32 # galaxy will pass in 2 file names - one for the log | |
33 # and one for the final html report | |
34 # of the form './database/files/dataset_66.dat' | |
35 # we need to be working in that directory so our plink output files are there | |
36 # so these have to be munged by rgQC.py before calling this | |
37 # note no ped file passed so had to remove the -l option | |
38 # for plinkParse.py that makes a heterozygosity report from the ped | |
39 # file - needs fixing... | |
40 # new: importing manhattan/qqplot plotter | |
41 # def doManQQ(input_fname,chrom_col,offset_col,pval_cols,title,grey,ctitle,outdir): | |
42 # """ draw a qq for pvals and a manhattan plot if chrom/offset <> 0 | |
43 # contains some R scripts as text strings - we substitute defaults into the calls | |
44 # to make them do our bidding - and save the resulting code for posterity | |
45 # this can be called externally, I guess...for QC eg? | |
46 # """ | |
47 # | |
48 # rcmd = '%s%s' % (rcode,rcode2 % (input_fname,chrom_col,offset_col,pval_cols,title,grey)) | |
49 # rlog,flist = RRun(rcmd=rcmd,title=ctitle,outdir=outdir) | |
50 # return rlog,flist | |
51 | |
52 | |
53 from optparse import OptionParser | |
54 | |
55 import sys,os,shutil, glob, math, subprocess, time, operator, random, tempfile, copy, string | |
56 from os.path import abspath | |
57 from rgutils import galhtmlprefix, galhtmlpostfix, RRun, timenow, plinke, rexe, runPlink, pruneLD | |
58 import rgManQQ | |
59 | |
60 prog = os.path.split(sys.argv[0])[1] | |
61 vers = '0.4 april 2009 rml' | |
62 idjoiner = '_~_~_' # need something improbable.. | |
63 # many of these may need fixing for a new install | |
64 | |
65 myversion = vers | |
66 keepfrac = 20 # fraction to keep after sorting by each interesting value | |
67 | |
68 missvals = {'0':'0','N':'N','-9':'-9','-':'-'} # fix me if these change! | |
69 | |
70 mogresize = "x300" # this controls the width for jpeg thumbnails | |
71 | |
72 | |
73 | |
74 | |
75 def makePlots(markers=[],subjects=[],newfpath='.',basename='test',nbreaks='20',nup=3,height=10,width=8,rgbin=''): | |
76 """ | |
77 marker rhead = ['snp','chrom','maf','a1','a2','missfrac', | |
78 'p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel'] | |
79 subject rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','Fest'] | |
80 """ | |
81 | |
82 | |
83 def rHist(plotme=[],outfname='',xlabname='',title='',basename='',nbreaks=50): | |
84 """ rHist <- function(plotme,froot,plotname,title,mfname,nbreaks=50) | |
85 # generic histogram and vertical boxplot in a 3:1 layout | |
86 # returns the graphic file name for inclusion in the web page | |
87 # broken out here for reuse | |
88 # ross lazarus march 2007 | |
89 """ | |
90 screenmat = (1,2,1,2) # create a 2x2 cabvas | |
91 widthlist = (80,20) # change to 4:1 ratio for histo and boxplot | |
92 rpy.r.pdf( outfname, height , width ) | |
93 #rpy.r.layout(rpy.r.matrix(rpy.r.c(1,1,1,2), 1, 4, byrow = True)) # 3 to 1 vertical plot | |
94 m = rpy.r.matrix((1,1,1,2),nrow=1,ncol=4,byrow=True) | |
95 # in R, m = matrix(c(1,2),nrow=1,ncol=2,byrow=T) | |
96 rpy.r("layout(matrix(c(1,1,1,2),nrow=1,ncol=4,byrow=T))") # 4 to 1 vertical plot | |
97 maint = 'QC for %s - %s' % (basename,title) | |
98 rpy.r.hist(plotme,main=maint, xlab=xlabname,breaks=nbreaks,col="maroon",cex=0.8) | |
99 rpy.r.boxplot(plotme,main='',col="maroon",outline=False) | |
100 rpy.r.dev_off() | |
101 | |
102 def rCum(plotme=[],outfname='',xlabname='',title='',basename='',nbreaks=100): | |
103 """ | |
104 Useful to see what various cutoffs yield - plot percentiles | |
105 """ | |
106 n = len(plotme) | |
107 maxveclen = 1000.0 # for reasonable pdf sizes! | |
108 yvec = copy.copy(plotme) | |
109 # arrives already in decending order of importance missingness or mendel count by subj or marker | |
110 xvec = range(n) | |
111 xvec = [100.0*(n-x)/n for x in xvec] # convert to centile | |
112 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
113 if n > maxveclen: # oversample part of the distribution | |
114 always = min(1000,n/20) # oversample smaller of lowest few hundred items or 5% | |
115 skip = int(n/maxveclen) # take 1 in skip to get about maxveclen points | |
116 samplei = [i for i in range(n) if (i % skip == 0) or (i < always)] # always oversample first sorted values | |
117 yvec = [yvec[i] for i in samplei] # always get first and last | |
118 xvec = [xvec[i] for i in samplei] # always get first and last | |
119 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure | |
120 rpy.r.pdf( outfname, height , width ) | |
121 maint = 'QC for %s - %s' % (basename,title) | |
122 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5 | |
123 rpy.r.plot(xvec,yvec,type='p',main=maint, ylab=xlabname, xlab='Sample Percentile',col="maroon",cex=0.8) | |
124 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted") | |
125 rpy.r.dev_off() | |
126 | |
127 def rQQ(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''): | |
128 """ | |
129 y is data for a qq plot and ends up on the x axis go figure | |
130 if sampling, oversample low values - all the top 1% ? | |
131 this version called with -log10 transformed hwe | |
132 """ | |
133 nrows = len(plotme) | |
134 fn = float(nrows) | |
135 xvec = [-math.log10(x/fn) for x in range(1,(nrows+1))] | |
136 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line | |
137 maxveclen = 3000 | |
138 yvec = copy.copy(plotme) | |
139 if nrows > maxveclen: | |
140 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
141 # oversample part of the distribution | |
142 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5% | |
143 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points | |
144 samplei = [i for i in range(nrows) if (i < always) or (i % skip == 0)] | |
145 # always oversample first sorted (here lowest) values | |
146 yvec = [yvec[i] for i in samplei] # always get first and last | |
147 xvec = [xvec[i] for i in samplei] # and sample xvec same way | |
148 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows) | |
149 else: | |
150 maint='Log QQ Plot(n=%d)' % (nrows) | |
151 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line | |
152 ylab = '%s' % xlabname | |
153 xlab = '-log10(Uniform 0-1)' | |
154 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure | |
155 rpy.r.pdf( outfname, height , width ) | |
156 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5 | |
157 rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8) | |
158 rpy.r.points(mx,mx,type='l') | |
159 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted") | |
160 rpy.r.dev_off() | |
161 | |
162 def rMultiQQ(plotme = [],nsplits=5, outfname='fname',title='title',xlabname='Sample',basename=''): | |
163 """ | |
164 data must contain p,x,y as data for a qq plot, quantiles of x and y axis used to create a | |
165 grid of qq plots to show departure from null at extremes of data quality | |
166 Need to plot qqplot(p,unif) where the p's come from one x and one y quantile | |
167 and ends up on the x axis go figure | |
168 if sampling, oversample low values - all the top 1% ? | |
169 """ | |
170 data = copy.copy(plotme) | |
171 nvals = len(data) | |
172 stepsize = nvals/nsplits | |
173 logstep = math.log10(stepsize) # so is 3 for steps of 1000 | |
174 quints = range(0,nvals,stepsize) # quintile cutpoints for each layer | |
175 data.sort(key=itertools.itemgetter(1)) # into x order | |
176 rpy.r.pdf( outfname, height , width ) | |
177 rpy.r("par(mfrow = c(%d,%d))" % (nsplits,nsplits)) | |
178 yvec = [-math.log10(random.random()) for x in range(stepsize)] | |
179 yvec.sort() # size of each step is expected range for xvec under null?! | |
180 for rowstart in quints: | |
181 rowend = rowstart + stepsize | |
182 if nvals - rowend < stepsize: # finish last split | |
183 rowend = nvals | |
184 row = data[rowstart:rowend] | |
185 row.sort(key=itertools.itemgetter(2)) # into y order | |
186 for colstart in quints: | |
187 colend = colstart + stepsize | |
188 if nvals - colend < stepsize: # finish last split | |
189 colend = nvals | |
190 cell = row[colstart:colend] | |
191 xvec = [-math.log10(x[0]) for x in cell] # all the pvalues for this cell | |
192 rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,pch=19,col="maroon",cex=0.8) | |
193 rpy.r.points(c(0,logstep),c(0,logstep),type='l') | |
194 rpy.r.dev_off() | |
195 | |
196 | |
197 def rQQNorm(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''): | |
198 """ | |
199 y is data for a qqnorm plot | |
200 if sampling, oversample low values - all the top 1% ? | |
201 """ | |
202 rangeunif = len(plotme) | |
203 nunif = 1000 | |
204 maxveclen = 3000 | |
205 nrows = len(plotme) | |
206 data = copy.copy(plotme) | |
207 if nrows > maxveclen: | |
208 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
209 # oversample part of the distribution | |
210 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5% | |
211 skip = int((nrows-always)/float(maxveclen)) # take 1 in skip to get about maxveclen points | |
212 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)] | |
213 # always oversample first sorted (here lowest) values | |
214 yvec = [data[i] for i in samplei] # always get first and last | |
215 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows) | |
216 else: | |
217 yvec = data | |
218 maint='Log QQ Plot(n=%d)' % (nrows) | |
219 n = 1000 | |
220 ylab = '%s' % xlabname | |
221 xlab = 'Normal' | |
222 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure | |
223 rpy.r.pdf( outfname, height , width ) | |
224 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5 | |
225 rpy.r.qqnorm(yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8) | |
226 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted") | |
227 rpy.r.dev_off() | |
228 | |
229 def rMAFMissqq(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''): | |
230 """ | |
231 layout qq plots for pvalues within rows of increasing MAF and columns of increasing missingness | |
232 like the GAIN qc tools | |
233 y is data for a qq plot and ends up on the x axis go figure | |
234 if sampling, oversample low values - all the top 1% ? | |
235 """ | |
236 rangeunif = len(plotme) | |
237 nunif = 1000 | |
238 fn = float(rangeunif) | |
239 xvec = [-math.log10(x/fn) for x in range(1,(rangeunif+1))] | |
240 skip = max(int(rangeunif/fn),1) | |
241 # force include last points | |
242 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line | |
243 maxveclen = 2000 | |
244 nrows = len(plotme) | |
245 data = copy.copy(plotme) | |
246 data.sort() # low to high - oversample low values | |
247 if nrows > maxveclen: | |
248 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
249 # oversample part of the distribution | |
250 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5% | |
251 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points | |
252 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)] | |
253 # always oversample first sorted (here lowest) values | |
254 yvec = [data[i] for i in samplei] # always get first and last | |
255 xvec = [xvec[i] for i in samplei] # and sample xvec same way | |
256 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows) | |
257 else: | |
258 yvec = data | |
259 maint='Log QQ Plot(n=%d)' % (nrows) | |
260 n = 1000 | |
261 mx = [0,log10(fn)] # if 1000, becomes 3 for the null line | |
262 ylab = '%s' % xlabname | |
263 xlab = '-log10(Uniform 0-1)' | |
264 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure | |
265 rpy.r.pdf( outfname, height , width ) | |
266 rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5 | |
267 rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8) | |
268 rpy.r.points(mx,mx,type='l') | |
269 rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted") | |
270 rpy.r.dev_off() | |
271 | |
272 | |
273 fdsto,stofile = tempfile.mkstemp() | |
274 sto = open(stofile,'w') | |
275 import rpy # delay to avoid rpy stdout chatter replacing galaxy file blurb | |
276 mog = 'mogrify' | |
277 pdfnup = 'pdfnup' | |
278 pdfjoin = 'pdfjoin' | |
279 shead = subjects.pop(0) # get rid of head | |
280 mhead = markers.pop(0) | |
281 maf = mhead.index('maf') | |
282 missfrac = mhead.index('missfrac') | |
283 logphweall = mhead.index('logp_hwe_all') | |
284 logphweunaff = mhead.index('logp_hwe_unaff') | |
285 # check for at least some unaffected rml june 2009 | |
286 m_mendel = mhead.index('N_Mendel') | |
287 fracmiss = shead.index('FracMiss') | |
288 s_mendel = shead.index('Mendel_errors') | |
289 s_het = shead.index('F_Stat') | |
290 params = {} | |
291 hweres = [float(x[logphweunaff]) for x in markers if len(x[logphweunaff]) >= logphweunaff | |
292 and x[logphweunaff].upper() <> 'NA'] | |
293 if len(hweres) <> 0: | |
294 xs = [logphweunaff, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het] | |
295 # plot for each of these cols | |
296 else: # try hwe all instead - maybe no affection status available | |
297 xs = [logphweall, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het] | |
298 ordplotme = [1,1,1,1,1,1,1] # ordered plots for everything! | |
299 oreverseme = [1,1,0,1,1,1,0] # so larger values are oversampled | |
300 qqplotme = [1,0,0,0,0,0,0] # | |
301 qnplotme = [0,0,0,0,0,0,1] # | |
302 nplots = len(xs) | |
303 xlabnames = ['log(p) HWE (unaff)', 'Missing Rate: Markers', 'Minor Allele Frequency', | |
304 'Marker Mendel Error Count', 'Missing Rate: Subjects', | |
305 'Subject Mendel Error Count','Subject Inbreeding (het) F Statistic'] | |
306 plotnames = ['logphweunaff', 'missfrac', 'maf', 'm_mendel', 'fracmiss', 's_mendel','s_het'] | |
307 ploturls = ['%s_%s.pdf' % (basename,x) for x in plotnames] # real plotnames | |
308 ordplotnames = ['%s_cum' % x for x in plotnames] | |
309 ordploturls = ['%s_%s.pdf' % (basename,x) for x in ordplotnames] # real plotnames | |
310 outfnames = [os.path.join(newfpath,ploturls[x]) for x in range(nplots)] | |
311 ordoutfnames = [os.path.join(newfpath,ordploturls[x]) for x in range(nplots)] | |
312 datasources = [markers,markers,markers,markers,subjects,subjects,subjects] # use this table | |
313 titles = ["Marker HWE","Marker Missing Genotype", "Marker MAF","Marker Mendel", | |
314 "Subject Missing Genotype","Subject Mendel",'Subject F Statistic'] | |
315 html = [] | |
316 pdflist = [] | |
317 for n,column in enumerate(xs): | |
318 dat = [float(x[column]) for x in datasources[n] if len(x) >= column | |
319 and x[column][:2].upper() <> 'NA'] # plink gives both! | |
320 if sum(dat) <> 0: # eg nada for mendel if case control? | |
321 rHist(plotme=dat,outfname=outfnames[n],xlabname=xlabnames[n], | |
322 title=titles[n],basename=basename,nbreaks=nbreaks) | |
323 row = [titles[n],ploturls[n],outfnames[n] ] | |
324 html.append(row) | |
325 pdflist.append(outfnames[n]) | |
326 if ordplotme[n]: # for missingness, hwe - plots to see where cutoffs will end up | |
327 otitle = 'Ranked %s' % titles[n] | |
328 dat.sort() | |
329 if oreverseme[n]: | |
330 dat.reverse() | |
331 rCum(plotme=dat,outfname=ordoutfnames[n],xlabname='Ordered %s' % xlabnames[n], | |
332 title=otitle,basename=basename,nbreaks=1000) | |
333 row = [otitle,ordploturls[n],ordoutfnames[n]] | |
334 html.append(row) | |
335 pdflist.append(ordoutfnames[n]) | |
336 if qqplotme[n]: # | |
337 otitle = 'LogQQ plot %s' % titles[n] | |
338 dat.sort() | |
339 dat.reverse() | |
340 ofn = os.path.split(ordoutfnames[n]) | |
341 ofn = os.path.join(ofn[0],'QQ%s' % ofn[1]) | |
342 ofu = os.path.split(ordploturls[n]) | |
343 ofu = os.path.join(ofu[0],'QQ%s' % ofu[1]) | |
344 rQQ(plotme=dat,outfname=ofn,xlabname='QQ %s' % xlabnames[n], | |
345 title=otitle,basename=basename) | |
346 row = [otitle,ofu,ofn] | |
347 html.append(row) | |
348 pdflist.append(ofn) | |
349 elif qnplotme[n]: | |
350 otitle = 'F Statistic %s' % titles[n] | |
351 dat.sort() | |
352 dat.reverse() | |
353 ofn = os.path.split(ordoutfnames[n]) | |
354 ofn = os.path.join(ofn[0],'FQNorm%s' % ofn[1]) | |
355 ofu = os.path.split(ordploturls[n]) | |
356 ofu = os.path.join(ofu[0],'FQNorm%s' % ofu[1]) | |
357 rQQNorm(plotme=dat,outfname=ofn,xlabname='F QNorm %s' % xlabnames[n], | |
358 title=otitle,basename=basename) | |
359 row = [otitle,ofu,ofn] | |
360 html.append(row) | |
361 pdflist.append(ofn) | |
362 else: | |
363 print '#$# no data for # %d - %s, data[:10]=%s' % (n,titles[n],dat[:10]) | |
364 if nup>0: | |
365 # pdfjoin --outfile chr1test.pdf `ls database/files/dataset_396_files/*.pdf` | |
366 # pdfnup chr1test.pdf --nup 3x3 --frame true --outfile chr1test3.pdf | |
367 filestojoin = ' '.join(pdflist) # all the file names so far | |
368 afname = '%s_All_Paged.pdf' % (basename) | |
369 fullafname = os.path.join(newfpath,afname) | |
370 expl = 'All %s QC Plots joined into a single pdf' % basename | |
371 vcl = '%s %s --outfile %s ' % (pdfjoin,filestojoin, fullafname) | |
372 # make single page pdf | |
373 x=subprocess.Popen(vcl,shell=True,cwd=newfpath,stderr=sto,stdout=sto) | |
374 retval = x.wait() | |
375 row = [expl,afname,fullafname] | |
376 html.insert(0,row) # last rather than second | |
377 nfname = '%s_All_%dx%d.pdf' % (basename,nup,nup) | |
378 fullnfname = os.path.join(newfpath,nfname) | |
379 expl = 'All %s QC Plots %d by %d to a page' % (basename,nup,nup) | |
380 vcl = '%s %s --nup %dx%d --frame true --outfile %s' % (pdfnup,afname,nup,nup,fullnfname) | |
381 # make thumbnail images | |
382 x=subprocess.Popen(vcl,shell=True,cwd=newfpath,stderr=sto,stdout=sto) | |
383 retval = x.wait() | |
384 row = [expl,nfname,fullnfname] | |
385 html.insert(1,row) # this goes second | |
386 vcl = '%s -format jpg -resize %s %s' % (mog, mogresize, os.path.join(newfpath,'*.pdf')) | |
387 # make thumbnail images | |
388 x=subprocess.Popen(vcl,shell=True,cwd=newfpath,stderr=sto,stdout=sto) | |
389 retval = x.wait() | |
390 sto.close() | |
391 cruft = open(stofile,'r').readlines() | |
392 return html,cruft # elements for an ordered list of urls or whatever.. | |
393 | |
394 | |
395 def RmakePlots(markers=[],subjects=[],newfpath='.',basename='test',nbreaks='100',nup=3,height=8,width=10,rexe=''): | |
396 """ | |
397 nice try but the R scripts are huge and take forever to run if there's a lot of data | |
398 marker rhead = ['snp','chrom','maf','a1','a2','missfrac', | |
399 'p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel'] | |
400 subject rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','Fest'] | |
401 """ | |
402 colour = "maroon" | |
403 | |
404 def rHist(plotme='',outfname='',xlabname='',title='',basename='',nbreaks=nbreaks): | |
405 """ rHist <- function(plotme,froot,plotname,title,mfname,nbreaks=50) | |
406 # generic histogram and vertical boxplot in a 3:1 layout | |
407 # returns the graphic file name for inclusion in the web page | |
408 # broken out here for reuse | |
409 # ross lazarus march 2007 | |
410 """ | |
411 R = [] | |
412 maint = 'QC for %s - %s' % (basename,title) | |
413 screenmat = (1,2,1,2) # create a 2x2 canvas | |
414 widthlist = (80,20) # change to 4:1 ratio for histo and boxplot | |
415 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width)) | |
416 R.append("layout(matrix(c(1,1,1,2),nrow=1,ncol=4,byrow=T))") | |
417 R.append("plotme = read.table(file='%s',head=F,sep='\t')" % plotme) | |
418 R.append('hist(plotme, main="%s",xlab="%s",breaks=%d,col="%s")' % (maint,xlabname,nbreaks,colour)) | |
419 R.append('boxplot(plotme,main="",col="%s",outline=F)' % (colour) ) | |
420 R.append('dev.off()') | |
421 return R | |
422 | |
423 def rCum(plotme='',outfname='',xlabname='',title='',basename='',nbreaks=100): | |
424 """ | |
425 Useful to see what various cutoffs yield - plot percentiles | |
426 """ | |
427 R = [] | |
428 n = len(plotme) | |
429 R.append("plotme = read.table(file='%s',head=T,sep='\t')" % plotme) | |
430 # arrives already in decending order of importance missingness or mendel count by subj or marker | |
431 maint = 'QC for %s - %s' % (basename,title) | |
432 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width)) | |
433 R.append("par(lab=c(10,10,10))") | |
434 R.append('plot(plotme$xvec,plotme$yvec,type="p",main="%s",ylab="%s",xlab="Sample Percentile",col="%s")' % (maint,xlabname,colour)) | |
435 R.append('dev.off()') | |
436 return R | |
437 | |
438 def rQQ(plotme='', outfname='fname',title='title',xlabname='Sample',basename=''): | |
439 """ | |
440 y is data for a qq plot and ends up on the x axis go figure | |
441 if sampling, oversample low values - all the top 1% ? | |
442 this version called with -log10 transformed hwe | |
443 """ | |
444 R = [] | |
445 nrows = len(plotme) | |
446 fn = float(nrows) | |
447 xvec = [-math.log10(x/fn) for x in range(1,(nrows+1))] | |
448 #mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line | |
449 maxveclen = 3000 | |
450 yvec = copy.copy(plotme) | |
451 if nrows > maxveclen: | |
452 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
453 # oversample part of the distribution | |
454 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5% | |
455 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points | |
456 if skip < 2: | |
457 skip = 2 | |
458 samplei = [i for i in range(nrows) if (i < always) or (i % skip == 0)] | |
459 # always oversample first sorted (here lowest) values | |
460 yvec = [yvec[i] for i in samplei] # always get first and last | |
461 xvec = [xvec[i] for i in samplei] # and sample xvec same way | |
462 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows) | |
463 else: | |
464 maint='Log QQ Plot(n=%d)' % (nrows) | |
465 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line | |
466 ylab = '%s' % xlabname | |
467 xlab = '-log10(Uniform 0-1)' | |
468 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure | |
469 x = ['%f' % x for x in xvec] | |
470 R.append('xvec = c(%s)' % ','.join(x)) | |
471 y = ['%f' % x for x in yvec] | |
472 R.append('yvec = c(%s)' % ','.join(y)) | |
473 R.append('mx = c(0,%f)' % (math.log10(fn))) | |
474 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width)) | |
475 R.append("par(lab=c(10,10,10))") | |
476 R.append('qqplot(xvec,yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour)) | |
477 R.append('points(mx,mx,type="l")') | |
478 R.append('grid(col="lightgray",lty="dotted")') | |
479 R.append('dev.off()') | |
480 return R | |
481 | |
482 def rMultiQQ(plotme = '',nsplits=5, outfname='fname',title='title',xlabname='Sample',basename=''): | |
483 """ | |
484 data must contain p,x,y as data for a qq plot, quantiles of x and y axis used to create a | |
485 grid of qq plots to show departure from null at extremes of data quality | |
486 Need to plot qqplot(p,unif) where the p's come from one x and one y quantile | |
487 and ends up on the x axis go figure | |
488 if sampling, oversample low values - all the top 1% ? | |
489 """ | |
490 data = copy.copy(plotme) | |
491 nvals = len(data) | |
492 stepsize = nvals/nsplits | |
493 logstep = math.log10(stepsize) # so is 3 for steps of 1000 | |
494 R.append('mx = c(0,%f)' % logstep) | |
495 quints = range(0,nvals,stepsize) # quintile cutpoints for each layer | |
496 data.sort(key=itertools.itemgetter(1)) # into x order | |
497 #rpy.r.pdf( outfname, h , w ) | |
498 #rpy.r("par(mfrow = c(%d,%d))" % (nsplits,nsplits)) | |
499 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width)) | |
500 yvec = [-math.log10(random.random()) for x in range(stepsize)] | |
501 yvec.sort() # size of each step is expected range for xvec under null?! | |
502 y = ['%f' % x for x in yvec] | |
503 R.append('yvec = c(%s)' % ','.join(y)) | |
504 for rowstart in quints: | |
505 rowend = rowstart + stepsize | |
506 if nvals - rowend < stepsize: # finish last split | |
507 rowend = nvals | |
508 row = data[rowstart:rowend] | |
509 row.sort(key=itertools.itemgetter(2)) # into y order | |
510 for colstart in quints: | |
511 colend = colstart + stepsize | |
512 if nvals - colend < stepsize: # finish last split | |
513 colend = nvals | |
514 cell = row[colstart:colend] | |
515 xvec = [-math.log10(x[0]) for x in cell] # all the pvalues for this cell | |
516 x = ['%f' % x for x in xvec] | |
517 R.append('xvec = c(%s)' % ','.join(x)) | |
518 R.append('qqplot(xvec,yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour)) | |
519 R.append('points(mx,mx,type="l")') | |
520 R.append('grid(col="lightgray",lty="dotted")') | |
521 #rpy.r.qqplot(xvec,yvec,xlab=xlab,ylab=ylab,pch=19,col="maroon",cex=0.8) | |
522 #rpy.r.points(c(0,logstep),c(0,logstep),type='l') | |
523 R.append('dev.off()') | |
524 #rpy.r.dev_off() | |
525 return R | |
526 | |
527 | |
528 def rQQNorm(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''): | |
529 """ | |
530 y is data for a qqnorm plot | |
531 if sampling, oversample low values - all the top 1% ? | |
532 """ | |
533 rangeunif = len(plotme) | |
534 nunif = 1000 | |
535 maxveclen = 3000 | |
536 nrows = len(plotme) | |
537 data = copy.copy(plotme) | |
538 if nrows > maxveclen: | |
539 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
540 # oversample part of the distribution | |
541 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5% | |
542 skip = int((nrows-always)/float(maxveclen)) # take 1 in skip to get about maxveclen points | |
543 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)] | |
544 # always oversample first sorted (here lowest) values | |
545 yvec = [data[i] for i in samplei] # always get first and last | |
546 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows) | |
547 else: | |
548 yvec = data | |
549 maint='Log QQ Plot(n=%d)' % (nrows) | |
550 n = 1000 | |
551 ylab = '%s' % xlabname | |
552 xlab = 'Normal' | |
553 # need to supply the x axis or else rpy prints the freaking vector on the pdf - go figure | |
554 #rpy.r.pdf( outfname, h , w ) | |
555 #rpy.r("par(lab=c(10,10,10))") # so our grid is denser than the default 5 | |
556 #rpy.r.qqnorm(yvec,xlab=xlab,ylab=ylab,main=maint,sub=title,pch=19,col="maroon",cex=0.8) | |
557 #rpy.r.grid(nx = None, ny = None, col = "lightgray", lty = "dotted") | |
558 #rpy.r.dev_off() | |
559 y = ['%f' % x for x in yvec] | |
560 R.append('yvec = c(%s)' % ','.join(y)) | |
561 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width)) | |
562 R.append("par(lab=c(10,10,10))") | |
563 R.append('qqnorm(yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour)) | |
564 R.append('grid(col="lightgray",lty="dotted")') | |
565 R.append('dev.off()') | |
566 return R | |
567 | |
568 def rMAFMissqq(plotme=[], outfname='fname',title='title',xlabname='Sample',basename=''): | |
569 """ | |
570 layout qq plots for pvalues within rows of increasing MAF and columns of increasing missingness | |
571 like the GAIN qc tools | |
572 y is data for a qq plot and ends up on the x axis go figure | |
573 if sampling, oversample low values - all the top 1% ? | |
574 """ | |
575 rangeunif = len(plotme) | |
576 nunif = 1000 | |
577 fn = float(rangeunif) | |
578 xvec = [-math.log10(x/fn) for x in range(1,(rangeunif+1))] | |
579 skip = max(int(rangeunif/fn),1) | |
580 # force include last points | |
581 mx = [0,math.log10(fn)] # if 1000, becomes 3 for the null line | |
582 maxveclen = 2000 | |
583 nrows = len(plotme) | |
584 data = copy.copy(plotme) | |
585 data.sort() # low to high - oversample low values | |
586 if nrows > maxveclen: | |
587 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
588 # oversample part of the distribution | |
589 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5% | |
590 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points | |
591 samplei = [i for i in range(nrows) if (i % skip == 0) or (i < always)] | |
592 # always oversample first sorted (here lowest) values | |
593 yvec = [data[i] for i in samplei] # always get first and last | |
594 xvec = [xvec[i] for i in samplei] # and sample xvec same way | |
595 maint='Log QQ Plot (random %d of %d)' % (len(yvec),nrows) | |
596 else: | |
597 yvec = data | |
598 maint='Log QQ Plot(n=%d)' % (nrows) | |
599 n = 1000 | |
600 mx = [0,log10(fn)] # if 1000, becomes 3 for the null line | |
601 ylab = '%s' % xlabname | |
602 xlab = '-log10(Uniform 0-1)' | |
603 R.append('mx = c(0,%f)' % (math.log10(fn))) | |
604 x = ['%f' % x for x in xvec] | |
605 R.append('xvec = c(%s)' % ','.join(x)) | |
606 y = ['%f' % x for x in yvec] | |
607 R.append('yvec = c(%s)' % ','.join(y)) | |
608 R.append('pdf("%s",h=%d,w=%d)' % (outfname,height,width)) | |
609 R.append("par(lab=c(10,10,10))") | |
610 R.append('qqplot(xvec,yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour)) | |
611 R.append('points(mx,mx,type="l")') | |
612 R.append('grid(col="lightgray",lty="dotted")') | |
613 R.append('dev.off()') | |
614 | |
615 | |
616 shead = subjects.pop(0) # get rid of head | |
617 mhead = markers.pop(0) | |
618 maf = mhead.index('maf') | |
619 missfrac = mhead.index('missfrac') | |
620 logphweall = mhead.index('logp_hwe_all') | |
621 logphweunaff = mhead.index('logp_hwe_unaff') | |
622 # check for at least some unaffected rml june 2009 | |
623 m_mendel = mhead.index('N_Mendel') | |
624 fracmiss = shead.index('FracMiss') | |
625 s_mendel = shead.index('Mendel_errors') | |
626 s_het = shead.index('F_Stat') | |
627 params = {} | |
628 h = [float(x[logphweunaff]) for x in markers if len(x[logphweunaff]) >= logphweunaff | |
629 and x[logphweunaff].upper() <> 'NA'] | |
630 if len(h) <> 0: | |
631 xs = [logphweunaff, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het] | |
632 # plot for each of these cols | |
633 else: # try hwe all instead - maybe no affection status available | |
634 xs = [logphweall, missfrac, maf, m_mendel, fracmiss, s_mendel, s_het] | |
635 ordplotme = [1,1,1,1,1,1,1] # ordered plots for everything! | |
636 oreverseme = [1,1,0,1,1,1,0] # so larger values are oversampled | |
637 qqplotme = [1,0,0,0,0,0,0] # | |
638 qnplotme = [0,0,0,0,0,0,1] # | |
639 nplots = len(xs) | |
640 xlabnames = ['log(p) HWE (unaff)', 'Missing Rate: Markers', 'Minor Allele Frequency', | |
641 'Marker Mendel Error Count', 'Missing Rate: Subjects', | |
642 'Subject Mendel Error Count','Subject Inbreeding (het) F Statistic'] | |
643 plotnames = ['logphweunaff', 'missfrac', 'maf', 'm_mendel', 'fracmiss', 's_mendel','s_het'] | |
644 ploturls = ['%s_%s.pdf' % (basename,x) for x in plotnames] # real plotnames | |
645 ordplotnames = ['%s_cum' % x for x in plotnames] | |
646 ordploturls = ['%s_%s.pdf' % (basename,x) for x in ordplotnames] # real plotnames | |
647 outfnames = [os.path.join(newfpath,ploturls[x]) for x in range(nplots)] | |
648 ordoutfnames = [os.path.join(newfpath,ordploturls[x]) for x in range(nplots)] | |
649 datasources = [markers,markers,markers,markers,subjects,subjects,subjects] # use this table | |
650 titles = ["Marker HWE","Marker Missing Genotype", "Marker MAF","Marker Mendel", | |
651 "Subject Missing Genotype","Subject Mendel",'Subject F Statistic'] | |
652 html = [] | |
653 pdflist = [] | |
654 R = [] | |
655 for n,column in enumerate(xs): | |
656 dfn = '%d_%s.txt' % (n,titles[n]) | |
657 dfilepath = os.path.join(newfpath,dfn) | |
658 dat = [float(x[column]) for x in datasources[n] if len(x) >= column | |
659 and x[column][:2].upper() <> 'NA'] # plink gives both! | |
660 if sum(dat) <> 0: # eg nada for mendel if case control? | |
661 plotme = file(dfilepath,'w') | |
662 plotme.write('\n'.join(['%f' % x for x in dat])) # pass as a file - copout! | |
663 tR = rHist(plotme=dfilepath,outfname=outfnames[n],xlabname=xlabnames[n], | |
664 title=titles[n],basename=basename,nbreaks=nbreaks) | |
665 R += tR | |
666 row = [titles[n],ploturls[n],outfnames[n] ] | |
667 html.append(row) | |
668 pdflist.append(outfnames[n]) | |
669 if ordplotme[n]: # for missingness, hwe - plots to see where cutoffs will end up | |
670 otitle = 'Ranked %s' % titles[n] | |
671 dat.sort() | |
672 if oreverseme[n]: | |
673 dat.reverse() | |
674 ndat = len(dat) | |
675 xvec = range(ndat) | |
676 xvec = [100.0*(n-x)/n for x in xvec] # convert to centile | |
677 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
678 maxveclen = 1000.0 # for reasonable pdf sizes! | |
679 if ndat > maxveclen: # oversample part of the distribution | |
680 always = min(1000,ndat/20) # oversample smaller of lowest few hundred items or 5% | |
681 skip = int(ndat/maxveclen) # take 1 in skip to get about maxveclen points | |
682 samplei = [i for i in range(ndat) if (i % skip == 0) or (i < always)] # always oversample first sorted values | |
683 yvec = [yvec[i] for i in samplei] # always get first and last | |
684 xvec = [xvec[i] for i in samplei] # always get first and last | |
685 plotme = file(dfilepath,'w') | |
686 plotme.write('xvec\tyvec\n') | |
687 plotme.write('\n'.join(['%f\t%f' % (xvec[i],y) for y in yvec])) # pass as a file - copout! | |
688 tR = rCum(plotme=dat,outfname=ordoutfnames[n],xlabname='Ordered %s' % xlabnames[n], | |
689 title=otitle,basename=basename,nbreaks=nbreaks) | |
690 R += tR | |
691 row = [otitle,ordploturls[n],ordoutfnames[n]] | |
692 html.append(row) | |
693 pdflist.append(ordoutfnames[n]) | |
694 if qqplotme[n]: # | |
695 otitle = 'LogQQ plot %s' % titles[n] | |
696 dat.sort() | |
697 dat.reverse() | |
698 ofn = os.path.split(ordoutfnames[n]) | |
699 ofn = os.path.join(ofn[0],'QQ%s' % ofn[1]) | |
700 ofu = os.path.split(ordploturls[n]) | |
701 ofu = os.path.join(ofu[0],'QQ%s' % ofu[1]) | |
702 tR = rQQ(plotme=dat,outfname=ofn,xlabname='QQ %s' % xlabnames[n], | |
703 title=otitle,basename=basename) | |
704 R += tR | |
705 row = [otitle,ofu,ofn] | |
706 html.append(row) | |
707 pdflist.append(ofn) | |
708 elif qnplotme[n]: | |
709 otitle = 'F Statistic %s' % titles[n] | |
710 dat.sort() | |
711 dat.reverse() | |
712 ofn = os.path.split(ordoutfnames[n]) | |
713 ofn = os.path.join(ofn[0],'FQNorm%s' % ofn[1]) | |
714 ofu = os.path.split(ordploturls[n]) | |
715 ofu = os.path.join(ofu[0],'FQNorm%s' % ofu[1]) | |
716 tR = rQQNorm(plotme=dat,outfname=ofn,xlabname='F QNorm %s' % xlabnames[n], | |
717 title=otitle,basename=basename) | |
718 R += tR | |
719 row = [otitle,ofu,ofn] | |
720 html.append(row) | |
721 pdflist.append(ofn) | |
722 else: | |
723 print '#$# no data for # %d - %s, data[:10]=%s' % (n,titles[n],dat[:10]) | |
724 rlog,flist = RRun(rcmd=R,title='makeQCplots',outdir=newfpath) | |
725 if nup>0: | |
726 # pdfjoin --outfile chr1test.pdf `ls database/files/dataset_396_files/*.pdf` | |
727 # pdfnup chr1test.pdf --nup 3x3 --frame true --outfile chr1test3.pdf | |
728 filestojoin = ' '.join(pdflist) # all the file names so far | |
729 afname = '%s_All_Paged.pdf' % (basename) | |
730 fullafname = os.path.join(newfpath,afname) | |
731 expl = 'All %s QC Plots joined into a single pdf' % basename | |
732 vcl = 'pdfjoin %s --outfile %s ' % (filestojoin, fullafname) | |
733 # make single page pdf | |
734 x=subprocess.Popen(vcl,shell=True,cwd=newfpath) | |
735 retval = x.wait() | |
736 row = [expl,afname,fullafname] | |
737 html.insert(0,row) # last rather than second | |
738 nfname = '%s_All_%dx%d.pdf' % (basename,nup,nup) | |
739 fullnfname = os.path.join(newfpath,nfname) | |
740 expl = 'All %s QC Plots %d by %d to a page' % (basename,nup,nup) | |
741 vcl = 'pdfnup %s --nup %dx%d --frame true --outfile %s' % (afname,nup,nup,fullnfname) | |
742 # make thumbnail images | |
743 x=subprocess.Popen(vcl,shell=True,cwd=newfpath) | |
744 retval = x.wait() | |
745 row = [expl,nfname,fullnfname] | |
746 html.insert(1,row) # this goes second | |
747 vcl = 'mogrify -format jpg -resize %s %s' % (mogresize, os.path.join(newfpath,'*.pdf')) | |
748 # make thumbnail images | |
749 x=subprocess.Popen(vcl,shell=True,cwd=newfpath) | |
750 retval = x.wait() | |
751 return html # elements for an ordered list of urls or whatever.. | |
752 | |
753 def countHet(bedf='fakeped_500000',linkageped=True,froot='fake500k',outfname="ahetf",logf='rgQC.log'): | |
754 """ | |
755 NO LONGER USED - historical interest | |
756 count het loci for each subject to look for outliers = ? contamination | |
757 assume ped file is linkage format | |
758 need to make a ped file from the bed file we were passed | |
759 """ | |
760 vcl = [plinke,'--bfile',bedf,'--recode','--out','%s_recode' % froot] # write a recoded ped file from the real .bed file | |
761 p=subprocess.Popen(' '.join(vcl),shell=True) | |
762 retval = p.wait() | |
763 f = open('%s_recode.recode.ped' % froot,'r') | |
764 if not linkageped: | |
765 head = f.next() # throw away header | |
766 hets = [] # simple count of het loci per subject. Expect poisson? | |
767 n = 1 | |
768 for l in f: | |
769 n += 1 | |
770 ll = l.strip().split() | |
771 if len(ll) > 6: | |
772 iid = idjoiner.join(ll[:2]) # fam_iid | |
773 gender = ll[4] | |
774 alleles = ll[6:] | |
775 nallele = len(alleles) | |
776 nhet = 0 | |
777 for i in range(nallele/2): | |
778 a1=alleles[2*i] | |
779 a2=alleles[2*i+1] | |
780 if alleles[2*i] <> alleles[2*i+1]: # must be het | |
781 if not missvals.get(a1,None) and not missvals.get(a2,None): | |
782 nhet += 1 | |
783 hets.append((nhet,iid,gender)) # for sorting later | |
784 f.close() | |
785 hets.sort() | |
786 hets.reverse() # biggest nhet now on top | |
787 f = open(outfname ,'w') | |
788 res = ['%d\t%s\t%s' % (x) for x in hets] # I love list comprehensions | |
789 res.insert(0,'nhetloci\tfamid_iid\tgender') | |
790 res.append('') | |
791 f.write('\n'.join(res)) | |
792 f.close() | |
793 | |
794 | |
795 | |
796 def subjectRep(froot='cleantest',outfname="srep",newfpath='.',logf = None): | |
797 """by subject (missingness = .imiss, mendel = .imendel) | |
798 assume replicates have an underscore in family id for | |
799 hapmap testing | |
800 For sorting, we need floats and integers | |
801 """ | |
802 isexfile = '%s.sexcheck' % froot | |
803 imissfile = '%s.imiss' % froot | |
804 imendfile = '%s.imendel' % froot | |
805 ihetfile = '%s.het' % froot | |
806 logf.write('## subject reports starting at %s\n' % timenow()) | |
807 outfile = os.path.join(newfpath,outfname) | |
808 idlist = [] | |
809 imissdict = {} | |
810 imenddict = {} | |
811 isexdict = {} | |
812 ihetdict = {} | |
813 Tops = {} | |
814 Tnames = ['Ranked Subject Missing Genotype', 'Ranked Subject Mendel', | |
815 'Ranked Sex check', 'Ranked Inbreeding (het) F statistic'] | |
816 Tsorts = [2,3,6,8] | |
817 Treverse = [True,True,True,False] # so first values are worser | |
818 #rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','Fest'] | |
819 ## FID IID MISS_PHENO N_MISS N_GENO F_MISS | |
820 ## 1552042370_A 1552042370_A N 5480 549883 0.009966 | |
821 ## 1552042410_A 1552042410_A N 1638 549883 0.002979 | |
822 | |
823 # ------------------missing-------------------- | |
824 # imiss has FID IID MISS_PHENO N_MISS F_MISS | |
825 # we want F_MISS | |
826 try: | |
827 f = open(imissfile,'r') | |
828 except: | |
829 logf.write('# file %s is missing - talk about irony\n' % imissfile) | |
830 f = None | |
831 if f: | |
832 for n,line in enumerate(f): | |
833 ll = line.strip().split() | |
834 if n == 0: | |
835 head = [x.upper() for x in ll] # expect above | |
836 fidpos = head.index('FID') | |
837 iidpos = head.index('IID') | |
838 fpos = head.index('F_MISS') | |
839 elif len(ll) >= fpos: # full line | |
840 fid = ll[fidpos] | |
841 #if fid.find('_') == -1: # not replicate! - icondb ids have these... | |
842 iid = ll[iidpos] | |
843 fmiss = ll[fpos] | |
844 id = '%s%s%s' % (fid,idjoiner,iid) | |
845 imissdict[id] = fmiss | |
846 idlist.append(id) | |
847 f.close() | |
848 logf.write('## imissfile %s contained %d ids\n' % (imissfile,len(idlist))) | |
849 # ------------------mend------------------- | |
850 # *.imendel has FID IID N | |
851 # we want N | |
852 gotmend = True | |
853 try: | |
854 f = open(imendfile,'r') | |
855 except: | |
856 gotmend = False | |
857 for id in idlist: | |
858 imenddict[id] = '0' | |
859 if gotmend: | |
860 for n,line in enumerate(f): | |
861 ll = line.strip().split() | |
862 if n == 0: | |
863 head = [x.upper() for x in ll] # expect above | |
864 npos = head.index('N') | |
865 fidpos = head.index('FID') | |
866 iidpos = head.index('IID') | |
867 elif len(ll) >= npos: # full line | |
868 fid = ll[fidpos] | |
869 iid = ll[iidpos] | |
870 id = '%s%s%s' % (fid,idjoiner,iid) | |
871 nmend = ll[npos] | |
872 imenddict[id] = nmend | |
873 f.close() | |
874 else: | |
875 logf.write('## error No %s file - assuming not family data\n' % imendfile) | |
876 # ------------------sex check------------------ | |
877 #[rerla@hg fresh]$ head /home/rerla/fresh/database/files/dataset_978_files/CAMP2007Dirty.sexcheck | |
878 # sexcheck has FID IID PEDSEX SNPSEX STATUS F | |
879 ## | |
880 ## FID Family ID | |
881 ## IID Individual ID | |
882 ## PEDSEX Sex as determined in pedigree file (1=male, 2=female) | |
883 ## SNPSEX Sex as determined by X chromosome | |
884 ## STATUS Displays "PROBLEM" or "OK" for each individual | |
885 ## F The actual X chromosome inbreeding (homozygosity) estimate | |
886 ## | |
887 ## A PROBLEM arises if the two sexes do not match, or if the SNP data or pedigree data are | |
888 ## ambiguous with regard to sex. | |
889 ## A male call is made if F is more than 0.8; a femle call is made if F is less than 0.2. | |
890 try: | |
891 f = open(isexfile,'r') | |
892 got_sexcheck = 1 | |
893 except: | |
894 got_sexcheck = 0 | |
895 if got_sexcheck: | |
896 for n,line in enumerate(f): | |
897 ll = line.strip().split() | |
898 if n == 0: | |
899 head = [x.upper() for x in ll] # expect above | |
900 fidpos = head.index('FID') | |
901 iidpos = head.index('IID') | |
902 pedsexpos = head.index('PEDSEX') | |
903 snpsexpos = head.index('SNPSEX') | |
904 statuspos = head.index('STATUS') | |
905 fpos = head.index('F') | |
906 elif len(ll) >= fpos: # full line | |
907 fid = ll[fidpos] | |
908 iid = ll[iidpos] | |
909 fest = ll[fpos] | |
910 pedsex = ll[pedsexpos] | |
911 snpsex = ll[snpsexpos] | |
912 stat = ll[statuspos] | |
913 id = '%s%s%s' % (fid,idjoiner,iid) | |
914 isexdict[id] = (pedsex,snpsex,stat,fest) | |
915 f.close() | |
916 else: | |
917 # this only happens if there are no subjects! | |
918 logf.write('No %s file - assuming no sex errors' % isexfile) | |
919 ## | |
920 ## FID IID O(HOM) E(HOM) N(NM) F | |
921 ## 457 2 490665 4.928e+05 722154 -0.009096 | |
922 ## 457 3 464519 4.85e+05 710986 -0.0908 | |
923 ## 1037 2 461632 4.856e+05 712025 -0.106 | |
924 ## 1037 1 491845 4.906e+05 719353 0.005577 | |
925 try: | |
926 f = open(ihetfile,'r') | |
927 except: | |
928 f = None | |
929 logf.write('## No %s file - did we run --het in plink?\n' % ihetfile) | |
930 if f: | |
931 for i,line in enumerate(f): | |
932 ll = line.strip().split() | |
933 if i == 0: | |
934 head = [x.upper() for x in ll] # expect above | |
935 fidpos = head.index('FID') | |
936 iidpos = head.index('IID') | |
937 fpos = head.index('F') | |
938 n = 0 | |
939 elif len(ll) >= fpos: # full line | |
940 fid = ll[fidpos] | |
941 iid = ll[iidpos] | |
942 fhet = ll[fpos] | |
943 id = '%s%s%s' % (fid,idjoiner,iid) | |
944 ihetdict[id] = fhet | |
945 f.close() # now assemble and output result list | |
946 rhead = ['famId','iId','FracMiss','Mendel_errors','Ped_sex','SNP_sex','Status','XHomEst','F_Stat'] | |
947 res = [] | |
948 fres = [] # floats for sorting | |
949 for id in idlist: # for each snp in found order | |
950 fid,iid = id.split(idjoiner) # recover keys | |
951 f_missing = imissdict.get(id,'0.0') | |
952 nmend = imenddict.get(id,'0') | |
953 (pedsex,snpsex,status,fest) = isexdict.get(id,('0','0','0','0.0')) | |
954 fhet = ihetdict.get(id,'0.0') | |
955 res.append([fid,iid,f_missing,nmend,pedsex,snpsex,status,fest,fhet]) | |
956 try: | |
957 ff_missing = float(f_missing) | |
958 except: | |
959 ff_missing = 0.0 | |
960 try: | |
961 inmend = int(nmend) | |
962 except: | |
963 inmend = 0 | |
964 try: | |
965 ffest = float(fest) | |
966 except: | |
967 fest = 0.0 | |
968 try: | |
969 ffhet = float(fhet) | |
970 except: | |
971 ffhet = 0.0 | |
972 fres.append([fid,iid,ff_missing,inmend,pedsex,snpsex,status,ffest,ffhet]) | |
973 ntokeep = max(20,len(res)/keepfrac) | |
974 for i,col in enumerate(Tsorts): | |
975 fres.sort(key=operator.itemgetter(col)) | |
976 if Treverse[i]: | |
977 fres.reverse() | |
978 repname = Tnames[i] | |
979 Tops[repname] = fres[0:ntokeep] | |
980 Tops[repname] = [map(str,x) for x in Tops[repname]] | |
981 Tops[repname].insert(0,rhead) | |
982 res.sort() | |
983 res.insert(0,rhead) | |
984 logf.write('### writing %s report with %s' % ( outfile,res[0])) | |
985 f = open(outfile,'w') | |
986 f.write('\n'.join(['\t'.join(x) for x in res])) | |
987 f.write('\n') | |
988 f.close() | |
989 return res,Tops | |
990 | |
991 def markerRep(froot='cleantest',outfname="mrep",newfpath='.',logf=None,maplist=None ): | |
992 """by marker (hwe = .hwe, missingness=.lmiss, freq = .frq) | |
993 keep a list of marker order but keep all stats in dicts | |
994 write out a fake xls file for R or SAS etc | |
995 kinda clunky, but.. | |
996 TODO: ensure stable if any file not found? | |
997 """ | |
998 mapdict = {} | |
999 if maplist <> None: | |
1000 rslist = [x[1] for x in maplist] | |
1001 offset = [(x[0],x[3]) for x in maplist] | |
1002 mapdict = dict(zip(rslist,offset)) | |
1003 hwefile = '%s.hwe' % froot | |
1004 lmissfile = '%s.lmiss' % froot | |
1005 freqfile = '%s.frq' % froot | |
1006 lmendfile = '%s.lmendel' % froot | |
1007 outfile = os.path.join(newfpath,outfname) | |
1008 markerlist = [] | |
1009 chromlist = [] | |
1010 hwedict = {} | |
1011 lmissdict = {} | |
1012 freqdict = {} | |
1013 lmenddict = {} | |
1014 Tops = {} | |
1015 Tnames = ['Ranked Marker MAF', 'Ranked Marker Missing Genotype', 'Ranked Marker HWE', 'Ranked Marker Mendel'] | |
1016 Tsorts = [3,6,10,11] | |
1017 Treverse = [False,True,True,True] # so first values are worse(r) | |
1018 #res.append([rs,chrom,offset,maf,a1,a2,f_missing,hwe_all[0],hwe_all[1],hwe_unaff[0],hwe_unaff[1],nmend]) | |
1019 #rhead = ['snp','chrom','maf','a1','a2','missfrac','p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel'] | |
1020 # -------------------hwe-------------------------- | |
1021 # hwe has SNP TEST GENO O(HET) E(HET) P_HWD | |
1022 # we want all hwe where P_HWD <> NA | |
1023 # ah changed in 1.04 to | |
1024 ## CHR SNP TEST A1 A2 GENO O(HET) E(HET) P | |
1025 ## 1 rs6671164 ALL 2 3 34/276/613 0.299 0.3032 0.6644 | |
1026 ## 1 rs6671164 AFF 2 3 0/0/0 nan nan NA | |
1027 ## 1 rs6671164 UNAFF 2 3 34/276/613 0.299 0.3032 0.6644 | |
1028 ## 1 rs4448553 ALL 2 3 8/176/748 0.1888 0.1848 0.5975 | |
1029 ## 1 rs4448553 AFF 2 3 0/0/0 nan nan NA | |
1030 ## 1 rs4448553 UNAFF 2 3 8/176/748 0.1888 0.1848 0.5975 | |
1031 ## 1 rs1990150 ALL 1 3 54/303/569 0.3272 0.3453 0.1067 | |
1032 ## 1 rs1990150 AFF 1 3 0/0/0 nan nan NA | |
1033 ## 1 rs1990150 UNAFF 1 3 54/303/569 0.3272 0.3453 0.1067 | |
1034 logf.write('## marker reports starting at %s\n' % timenow()) | |
1035 try: | |
1036 f = open(hwefile,'r') | |
1037 except: | |
1038 f = None | |
1039 logf.write('## error - no hwefile %s found\n' % hwefile) | |
1040 if f: | |
1041 for i,line in enumerate(f): | |
1042 ll = line.strip().split() | |
1043 if i == 0: # head | |
1044 head = [x.upper() for x in ll] # expect above | |
1045 try: | |
1046 testpos = head.index('TEST') | |
1047 except: | |
1048 testpos = 2 # patch for 1.04 which has b0rken headers - otherwise use head.index('TEST') | |
1049 try: | |
1050 ppos = head.index('P') | |
1051 except: | |
1052 ppos = 8 # patch - for head.index('P') | |
1053 snppos = head.index('SNP') | |
1054 chrpos = head.index('CHR') | |
1055 logf.write('hwe header testpos=%d,ppos=%d,snppos=%d\n' % (testpos,ppos,snppos)) | |
1056 elif len(ll) >= ppos: # full line | |
1057 ps = ll[ppos].upper() | |
1058 rs = ll[snppos] | |
1059 chrom = ll[chrpos] | |
1060 test = ll[testpos] | |
1061 if not hwedict.get(rs,None): | |
1062 hwedict[rs] = {} | |
1063 markerlist.append(rs) | |
1064 chromlist.append(chrom) # one place to find it? | |
1065 lpvals = 0 | |
1066 if ps.upper() <> 'NA' and ps.upper() <> 'NAN': # worth keeping | |
1067 lpvals = '0' | |
1068 if ps <> '1': | |
1069 try: | |
1070 pval = float(ps) | |
1071 lpvals = '%f' % -math.log10(pval) | |
1072 except: | |
1073 pass | |
1074 hwedict[rs][test] = (ps,lpvals) | |
1075 else: | |
1076 logf.write('short line #%d = %s\n' % (i,ll)) | |
1077 f.close() | |
1078 # ------------------missing-------------------- | |
1079 """lmiss has | |
1080 CHR SNP N_MISS N_GENO F_MISS | |
1081 1 rs12354060 0 73 0 | |
1082 1 rs4345758 1 73 0.0137 | |
1083 1 rs2691310 73 73 1 | |
1084 1 rs2531266 73 73 1 | |
1085 # we want F_MISS""" | |
1086 try: | |
1087 f = open(lmissfile,'r') | |
1088 except: | |
1089 f = None | |
1090 if f: | |
1091 for i,line in enumerate(f): | |
1092 ll = line.strip().split() | |
1093 if i == 0: | |
1094 head = [x.upper() for x in ll] # expect above | |
1095 fracpos = head.index('F_MISS') | |
1096 npos = head.index('N_MISS') | |
1097 snppos = head.index('SNP') | |
1098 elif len(ll) >= fracpos: # full line | |
1099 rs = ll[snppos] | |
1100 fracval = ll[fracpos] | |
1101 lmissdict[rs] = fracval # for now, just that? | |
1102 else: | |
1103 lmissdict[rs] = 'NA' | |
1104 f.close() | |
1105 # ------------------freq------------------- | |
1106 # frq has CHR SNP A1 A2 MAF NM | |
1107 # we want maf | |
1108 try: | |
1109 f = open(freqfile,'r') | |
1110 except: | |
1111 f = None | |
1112 if f: | |
1113 for i,line in enumerate(f): | |
1114 ll = line.strip().split() | |
1115 if i == 0: | |
1116 head = [x.upper() for x in ll] # expect above | |
1117 mafpos = head.index('MAF') | |
1118 a1pos = head.index('A1') | |
1119 a2pos = head.index('A2') | |
1120 snppos = head.index('SNP') | |
1121 elif len(ll) >= mafpos: # full line | |
1122 rs = ll[snppos] | |
1123 a1 = ll[a1pos] | |
1124 a2 = ll[a2pos] | |
1125 maf = ll[mafpos] | |
1126 freqdict[rs] = (maf,a1,a2) | |
1127 f.close() | |
1128 # ------------------mend------------------- | |
1129 # lmend has CHR SNP N | |
1130 # we want N | |
1131 gotmend = True | |
1132 try: | |
1133 f = open(lmendfile,'r') | |
1134 except: | |
1135 gotmend = False | |
1136 for rs in markerlist: | |
1137 lmenddict[rs] = '0' | |
1138 if gotmend: | |
1139 for i,line in enumerate(f): | |
1140 ll = line.strip().split() | |
1141 if i == 0: | |
1142 head = [x.upper() for x in ll] # expect above | |
1143 npos = head.index('N') | |
1144 snppos = head.index('SNP') | |
1145 elif len(ll) >= npos: # full line | |
1146 rs = ll[snppos] | |
1147 nmend = ll[npos] | |
1148 lmenddict[rs] = nmend | |
1149 f.close() | |
1150 else: | |
1151 logf.write('No %s file - assuming not family data\n' % lmendfile) | |
1152 # now assemble result list | |
1153 rhead = ['snp','chromosome','offset','maf','a1','a2','missfrac','p_hwe_all','logp_hwe_all','p_hwe_unaff','logp_hwe_unaff','N_Mendel'] | |
1154 res = [] | |
1155 fres = [] | |
1156 for rs in markerlist: # for each snp in found order | |
1157 f_missing = lmissdict.get(rs,'NA') | |
1158 maf,a1,a2 = freqdict.get(rs,('NA','NA','NA')) | |
1159 hwe_all = hwedict[rs].get('ALL',('NA','NA')) # hope this doesn't change... | |
1160 hwe_unaff = hwedict[rs].get('UNAFF',('NA','NA')) | |
1161 nmend = lmenddict.get(rs,'NA') | |
1162 (chrom,offset)=mapdict.get(rs,('?','0')) | |
1163 res.append([rs,chrom,offset,maf,a1,a2,f_missing,hwe_all[0],hwe_all[1],hwe_unaff[0],hwe_unaff[1],nmend]) | |
1164 ntokeep = max(10,len(res)/keepfrac) | |
1165 | |
1166 def msortk(item=None): | |
1167 """ | |
1168 deal with non numeric sorting | |
1169 """ | |
1170 try: | |
1171 return float(item) | |
1172 except: | |
1173 return item | |
1174 | |
1175 for i,col in enumerate(Tsorts): | |
1176 res.sort(key=msortk(lambda x:x[col])) | |
1177 if Treverse[i]: | |
1178 res.reverse() | |
1179 repname = Tnames[i] | |
1180 Tops[repname] = res[0:ntokeep] | |
1181 Tops[repname].insert(0,rhead) | |
1182 res.sort(key=lambda x: '%s_%10d' % (x[1].ljust(4,'0'),int(x[2]))) # in chrom offset order | |
1183 res.insert(0,rhead) | |
1184 f = open(outfile,'w') | |
1185 f.write('\n'.join(['\t'.join(x) for x in res])) | |
1186 f.close() | |
1187 return res,Tops | |
1188 | |
1189 | |
1190 | |
1191 | |
1192 def getfSize(fpath,outpath): | |
1193 """ | |
1194 format a nice file size string | |
1195 """ | |
1196 size = '' | |
1197 fp = os.path.join(outpath,fpath) | |
1198 if os.path.isfile(fp): | |
1199 n = float(os.path.getsize(fp)) | |
1200 if n > 2**20: | |
1201 size = ' (%1.1f MB)' % (n/2**20) | |
1202 elif n > 2**10: | |
1203 size = ' (%1.1f KB)' % (n/2**10) | |
1204 elif n > 0: | |
1205 size = ' (%d B)' % (int(n)) | |
1206 return size | |
1207 | |
1208 | |
1209 if __name__ == "__main__": | |
1210 u = """ called in xml as | |
1211 <command interpreter="python"> | |
1212 rgQC.py -i '$input_file.extra_files_path/$input_file.metadata.base_name' -o "$out_prefix" | |
1213 -s '$html_file' -p '$html_file.files_path' -l '${GALAXY_DATA_INDEX_DIR}/rg/bin/plink' | |
1214 -r '${GALAXY_DATA_INDEX_DIR}/rg/bin/R' | |
1215 </command> | |
1216 | |
1217 Prepare a qc report - eg: | |
1218 print "%s %s -i birdlped -o birdlped -l qc.log -s htmlf -m marker.xls -s sub.xls -p ./" % (sys.executable,prog) | |
1219 | |
1220 """ | |
1221 progname = os.path.basename(sys.argv[0]) | |
1222 if len(sys.argv) < 9: | |
1223 print '%s requires 6 parameters - got %d = %s' % (progname,len(sys.argv),sys.argv) | |
1224 sys.exit(1) | |
1225 parser = OptionParser(usage=u, version="%prog 0.01") | |
1226 a = parser.add_option | |
1227 a("-i","--infile",dest="infile") | |
1228 a("-o","--oprefix",dest="opref") | |
1229 a("-l","--plinkexe",dest="plinke", default=plinke) | |
1230 a("-r","--rexe",dest="rexe", default=rexe) | |
1231 a("-s","--snps",dest="htmlf") | |
1232 #a("-m","--markerRaw",dest="markf") | |
1233 #a("-r","--rawsubject",dest="subjf") | |
1234 a("-p","--patho",dest="newfpath") | |
1235 (options,args) = parser.parse_args() | |
1236 basename = os.path.split(options.infile)[-1] # just want the file prefix to find the .xls files below | |
1237 killme = string.punctuation + string.whitespace | |
1238 trantab = string.maketrans(killme,'_'*len(killme)) | |
1239 opref = options.opref.translate(trantab) | |
1240 alogh,alog = tempfile.mkstemp(suffix='.txt') | |
1241 plogh,plog = tempfile.mkstemp(suffix='.txt') | |
1242 alogf = open(alog,'w') | |
1243 plogf = open(plog,'w') | |
1244 ahtmlf = options.htmlf | |
1245 amarkf = 'MarkerDetails_%s.xls' % opref | |
1246 asubjf = 'SubjectDetails_%s.xls' % opref | |
1247 newfpath = options.newfpath | |
1248 newfpath = os.path.realpath(newfpath) | |
1249 try: | |
1250 os.makedirs(newfpath) | |
1251 except: | |
1252 pass | |
1253 ofn = basename | |
1254 bfn = options.infile | |
1255 try: | |
1256 mapf = '%s.bim' % bfn | |
1257 maplist = file(mapf,'r').readlines() | |
1258 maplist = [x.split() for x in maplist] | |
1259 except: | |
1260 maplist = None | |
1261 alogf.write('## error - cannot open %s to read map - no offsets will be available for output files') | |
1262 #rerla@beast galaxy]$ head test-data/tinywga.bim | |
1263 #22 rs2283802 0 21784722 4 2 | |
1264 #22 rs2267000 0 21785366 4 2 | |
1265 rgbin = os.path.split(rexe)[0] # get our rg bin path | |
1266 #plinktasks = [' --freq',' --missing',' --mendel',' --hardy',' --check-sex'] # plink v1 fixes that bug! | |
1267 # if we could, do all at once? Nope. Probably never. | |
1268 plinktasks = [['--freq',],['--hwe 0.0', '--missing','--hardy'], | |
1269 ['--mendel',],['--check-sex',]] | |
1270 vclbase = [options.plinke,'--noweb','--out',basename,'--bfile',bfn,'--mind','1.0','--geno','1.0','--maf','0.0'] | |
1271 runPlink(logf=plogf,plinktasks=plinktasks,cd=newfpath, vclbase=vclbase) | |
1272 plinktasks = [['--bfile',bfn,'--indep-pairwise 40 20 0.5','--out %s' % basename], | |
1273 ['--bfile',bfn,'--extract %s.prune.in --make-bed --out ldp_%s' % (basename, basename)], | |
1274 ['--bfile ldp_%s --het --out %s' % (basename,basename)]] | |
1275 # subset of ld independent markers for eigenstrat and other requirements | |
1276 vclbase = [options.plinke,'--noweb'] | |
1277 plogout = pruneLD(plinktasks=plinktasks,cd=newfpath,vclbase = vclbase) | |
1278 plogf.write('\n'.join(plogout)) | |
1279 plogf.write('\n') | |
1280 repout = os.path.join(newfpath,basename) | |
1281 subjects,subjectTops = subjectRep(froot=repout,outfname=asubjf,newfpath=newfpath, | |
1282 logf=alogf) # writes the subject_froot.xls file | |
1283 markers,markerTops = markerRep(froot=repout,outfname=amarkf,newfpath=newfpath, | |
1284 logf=alogf,maplist=maplist) # marker_froot.xls | |
1285 nbreaks = 100 | |
1286 s = '## starting plotpage, newfpath=%s,m=%s,s=%s/n' % (newfpath,markers[:2],subjects[:2]) | |
1287 alogf.write(s) | |
1288 print s | |
1289 plotpage,cruft = makePlots(markers=markers,subjects=subjects,newfpath=newfpath, | |
1290 basename=basename,nbreaks=nbreaks,height=10,width=8,rgbin=rgbin) | |
1291 #plotpage = RmakePlots(markers=markers,subjects=subjects,newfpath=newfpath,basename=basename,nbreaks=nbreaks,rexe=rexe) | |
1292 | |
1293 # [titles[n],plotnames[n],outfnames[n] ] | |
1294 html = [] | |
1295 html.append('<table cellpadding="5" border="0">') | |
1296 size = getfSize(amarkf,newfpath) | |
1297 html.append('<tr><td colspan="3"><a href="%s" type="application/vnd.ms-excel">%s</a>%s tab delimited</td></tr>' % \ | |
1298 (amarkf,'Click here to download the Marker QC Detail report file',size)) | |
1299 size = getfSize(asubjf,newfpath) | |
1300 html.append('<tr><td colspan="3"><a href="%s" type="application/vnd.ms-excel">%s</a>%s tab delimited</td></tr>' % \ | |
1301 (asubjf,'Click here to download the Subject QC Detail report file',size)) | |
1302 for (title,url,ofname) in plotpage: | |
1303 ttitle = 'Ranked %s' % title | |
1304 dat = subjectTops.get(ttitle,None) | |
1305 if not dat: | |
1306 dat = markerTops.get(ttitle,None) | |
1307 imghref = '%s.jpg' % os.path.splitext(url)[0] # removes .pdf | |
1308 thumbnail = os.path.join(newfpath,imghref) | |
1309 if not os.path.exists(thumbnail): # for multipage pdfs, mogrify makes multiple jpgs - fugly hack | |
1310 imghref = '%s-0.jpg' % os.path.splitext(url)[0] # try the first jpg | |
1311 thumbnail = os.path.join(newfpath,imghref) | |
1312 if not os.path.exists(thumbnail): | |
1313 html.append('<tr><td colspan="3"><a href="%s">%s</a></td></tr>' % (url,title)) | |
1314 else: | |
1315 html.append('<tr><td><a href="%s"><img src="%s" alt="%s" hspace="10" align="middle">' \ | |
1316 % (url,imghref,title)) | |
1317 if dat: # one or the other - write as an extra file and make a link here | |
1318 t = '%s.xls' % (ttitle.replace(' ','_')) | |
1319 fname = os.path.join(newfpath,t) | |
1320 f = file(fname,'w') | |
1321 f.write('\n'.join(['\t'.join(x) for x in dat])) # the report | |
1322 size = getfSize(t,newfpath) | |
1323 html.append('</a></td><td>%s</td><td><a href="%s">Worst data</a>%s</td></tr>' % (title,t,size)) | |
1324 else: | |
1325 html.append('</a></td><td>%s</td><td> </td></tr>' % (title)) | |
1326 html.append('</table><hr><h3>All output files from the QC run are available below</h3>') | |
1327 html.append('<table cellpadding="5" border="0">\n') | |
1328 flist = os.listdir(newfpath) # we want to catch 'em all | |
1329 flist.sort() | |
1330 for f in flist: | |
1331 fname = os.path.split(f)[-1] | |
1332 size = getfSize(fname,newfpath) | |
1333 html.append('<tr><td><a href="%s">%s</a>%s</td></tr>' % (fname,fname,size)) | |
1334 html.append('</table>') | |
1335 alogf.close() | |
1336 plogf.close() | |
1337 llog = open(alog,'r').readlines() | |
1338 plogfile = open(plog,'r').readlines() | |
1339 os.unlink(alog) | |
1340 os.unlink(plog) | |
1341 llog += plogfile # add lines from pruneld log | |
1342 lf = file(ahtmlf,'w') # galaxy will show this as the default view | |
1343 lf.write(galhtmlprefix % progname) | |
1344 s = '\n<div>Output from Rgenetics QC report tool run at %s<br>\n' % (timenow()) | |
1345 lf.write('<h4>%s</h4>\n' % s) | |
1346 lf.write('</div><div><h4>(Click any preview image to download a full sized PDF version)</h4><br><ol>\n') | |
1347 lf.write('\n'.join(html)) | |
1348 lf.write('<h4>QC run log contents</h4>') | |
1349 lf.write('<pre>%s</pre>' % (''.join(llog))) # plink logs | |
1350 if len(cruft) > 0: | |
1351 lf.write('<h2>Blather from pdfnup follows:</h2><pre>%s</pre>' % (''.join(cruft))) # pdfnup | |
1352 lf.write('%s\n<hr>\n' % galhtmlpostfix) | |
1353 lf.close() | |
1354 |