Mercurial > repos > xuebing > sharplabtool
comparison tools/rgenetics/rgQQ.py @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9071e359b9a3 |
---|---|
1 """ | |
2 oct 2009 - multiple output files | |
3 Dear Matthias, | |
4 | |
5 Yes, you can define number of outputs dynamically in Galaxy. For doing | |
6 this, you'll have to declare one output dataset in your xml and pass | |
7 its ID ($out_file.id) to your python script. Also, set | |
8 force_history_refresh="True" in your tool tag in xml, like this: | |
9 <tool id="split1" name="Split" force_history_refresh="True"> | |
10 In your script, if your outputs are named in the following format, | |
11 primary_associatedWithDatasetID_designation_visibility_extension | |
12 (_DBKEY), all your datasets will show up in the history pane. | |
13 associatedWithDatasetID is the $out_file.ID passed from xml, | |
14 designation will be a unique identifier for each output (set in your | |
15 script), | |
16 visibility can be set to visible if you want the dataset visible in | |
17 your history, or notvisible otherwise | |
18 extension is the required format for your dataset (bed, tabular, fasta | |
19 etc) | |
20 DBKEY is optional, and can be set if required (e.g. hg18, mm9 etc) | |
21 | |
22 One of our tools "MAF to Interval converter" (tools/maf/ | |
23 maf_to_interval.xml) already uses this feature. You can use it as a | |
24 reference. | |
25 | |
26 qq.chisq Quantile-quantile plot for chi-squared tests | |
27 Description | |
28 This function plots ranked observed chi-squared test statistics against the corresponding expected | |
29 order statistics. It also estimates an inflation (or deflation) factor, lambda, by the ratio of the trimmed | |
30 means of observed and expected values. This is useful for inspecting the results of whole-genome | |
31 association studies for overdispersion due to population substructure and other sources of bias or | |
32 confounding. | |
33 Usage | |
34 qq.chisq(x, df=1, x.max, main="QQ plot", | |
35 sub=paste("Expected distribution: chi-squared (",df," df)", sep=""), | |
36 xlab="Expected", ylab="Observed", | |
37 conc=c(0.025, 0.975), overdisp=FALSE, trim=0.5, | |
38 slope.one=FALSE, slope.lambda=FALSE, | |
39 thin=c(0.25,50), oor.pch=24, col.shade="gray", ...) | |
40 Arguments | |
41 x A vector of observed chi-squared test values | |
42 df The degreees of freedom for the tests | |
43 x.max If present, truncate the observed value (Y) axis here | |
44 main The main heading | |
45 sub The subheading | |
46 xlab x-axis label (default "Expected") | |
47 ylab y-axis label (default "Observed") | |
48 conc Lower and upper probability bounds for concentration band for the plot. Set this | |
49 to NA to suppress this | |
50 overdisp If TRUE, an overdispersion factor, lambda, will be estimated and used in calculating | |
51 concentration band | |
52 trim Quantile point for trimmed mean calculations for estimation of lambda. Default | |
53 is to trim at the median | |
54 slope.one Is a line of slope one to be superimpsed? | |
55 slope.lambda Is a line of slope lambda to be superimposed? | |
56 thin A pair of numbers indicating how points will be thinned before plotting (see | |
57 Details). If NA, no thinning will be carried out | |
58 oor.pch Observed values greater than x.max are plotted at x.max. This argument sets | |
59 the plotting symbol to be used for out-of-range observations | |
60 col.shade The colour with which the concentration band will be filled | |
61 ... Further graphical parameter settings to be passed to points() | |
62 | |
63 Details | |
64 To reduce plotting time and the size of plot files, the smallest observed and expected points are | |
65 thinned so that only a reduced number of (approximately equally spaced) points are plotted. The | |
66 precise behaviour is controlled by the parameter thin, whose value should be a pair of numbers. | |
67 The first number must lie between 0 and 1 and sets the proportion of the X axis over which thinning | |
68 is to be applied. The second number should be an integer and sets the maximum number of points | |
69 to be plotted in this section. | |
70 The "concentration band" for the plot is shown in grey. This region is defined by upper and lower | |
71 probability bounds for each order statistic. The default is to use the 2.5 Note that this is not a | |
72 simultaneous confidence region; the probability that the plot will stray outside the band at some | |
73 point exceeds 95 | |
74 When required, he dispersion factor is estimated by the ratio of the observed trimmed mean to its | |
75 expected value under the chi-squared assumption. | |
76 Value | |
77 The function returns the number of tests, the number of values omitted from the plot (greater than | |
78 x.max), and the estimated dispersion factor, lambda. | |
79 Note | |
80 All tests must have the same number of degrees of freedom. If this is not the case, I suggest | |
81 transforming to p-values and then plotting -2log(p) as chi-squared on 2 df. | |
82 Author(s) | |
83 David Clayton hdavid.clayton@cimr.cam.ac.uki | |
84 References | |
85 Devlin, B. and Roeder, K. (1999) Genomic control for association studies. Biometrics, 55:997-1004 | |
86 """ | |
87 | |
88 import sys, random, math, copy,os, subprocess, tempfile | |
89 from rgutils import RRun, rexe | |
90 | |
91 rqq = """ | |
92 # modified by ross lazarus for the rgenetics project may 2000 | |
93 # makes a pdf for galaxy from an x vector of chisquare values | |
94 # from snpMatrix | |
95 # http://www.bioconductor.org/packages/bioc/html/snpMatrix.html | |
96 qq.chisq <- | |
97 function(x, df=1, x.max, | |
98 main="QQ plot", | |
99 sub=paste("Expected distribution: chi-squared (",df," df)", sep=""), | |
100 xlab="Expected", ylab="Observed", | |
101 conc=c(0.025, 0.975), overdisp=FALSE, trim=0.5, | |
102 slope.one=T, slope.lambda=FALSE, | |
103 thin=c(0.5,200), oor.pch=24, col.shade="gray", ofname="qqchi.pdf", | |
104 h=6,w=6,printpdf=F,...) { | |
105 | |
106 # Function to shade concentration band | |
107 | |
108 shade <- function(x1, y1, x2, y2, color=col.shade) { | |
109 n <- length(x2) | |
110 polygon(c(x1, x2[n:1]), c(y1, y2[n:1]), border=NA, col=color) | |
111 } | |
112 | |
113 # Sort values and see how many out of range | |
114 | |
115 obsvd <- sort(x, na.last=NA) | |
116 N <- length(obsvd) | |
117 if (missing(x.max)) { | |
118 Np <- N | |
119 } | |
120 else { | |
121 Np <- sum(obsvd<=x.max) | |
122 } | |
123 if(Np==0) | |
124 stop("Nothing to plot") | |
125 | |
126 # Expected values | |
127 | |
128 if (df==2) { | |
129 expctd <- 2*cumsum(1/(N:1)) | |
130 } | |
131 else { | |
132 expctd <- qchisq(p=(1:N)/(N+1), df=df) | |
133 } | |
134 | |
135 # Concentration bands | |
136 | |
137 if (!is.null(conc)) { | |
138 if(conc[1]>0) { | |
139 e.low <- qchisq(p=qbeta(conc[1], 1:N, N:1), df=df) | |
140 } | |
141 else { | |
142 e.low <- rep(0, N) | |
143 } | |
144 if (conc[2]<1) { | |
145 e.high <- qchisq(p=qbeta(conc[2], 1:N, N:1), df=df) | |
146 } | |
147 else { | |
148 e.high <- 1.1*rep(max(x),N) | |
149 } | |
150 } | |
151 | |
152 # Plot outline | |
153 | |
154 if (Np < N) | |
155 top <- x.max | |
156 else | |
157 top <- obsvd[N] | |
158 right <- expctd[N] | |
159 if (printpdf) {pdf(ofname,h,w)} | |
160 plot(c(0, right), c(0, top), type="n", xlab=xlab, ylab=ylab, | |
161 main=main, sub=sub) | |
162 | |
163 # Thinning | |
164 | |
165 if (is.na(thin[1])) { | |
166 show <- 1:Np | |
167 } | |
168 else if (length(thin)!=2 || thin[1]<0 || thin[1]>1 || thin[2]<1) { | |
169 warning("invalid thin parameter; no thinning carried out") | |
170 show <- 1:Np | |
171 } | |
172 else { | |
173 space <- right*thin[1]/floor(thin[2]) | |
174 iat <- round((N+1)*pchisq(q=(1:floor(thin[2]))*space, df=df)) | |
175 if (max(iat)>thin[2]) | |
176 show <- unique(c(iat, (1+max(iat)):Np)) | |
177 else | |
178 show <- 1:Np | |
179 } | |
180 Nu <- floor(trim*N) | |
181 if (Nu>0) | |
182 lambda <- mean(obsvd[1:Nu])/mean(expctd[1:Nu]) | |
183 if (!is.null(conc)) { | |
184 if (Np<N) | |
185 vert <- c(show, (Np+1):N) | |
186 else | |
187 vert <- show | |
188 if (overdisp) | |
189 shade(expctd[vert], lambda*e.low[vert], | |
190 expctd[vert], lambda*e.high[vert]) | |
191 else | |
192 shade(expctd[vert], e.low[vert], expctd[vert], e.high[vert]) | |
193 } | |
194 points(expctd[show], obsvd[show], ...) | |
195 # Overflow | |
196 if (Np<N) { | |
197 over <- (Np+1):N | |
198 points(expctd[over], rep(x.max, N-Np), pch=oor.pch) | |
199 } | |
200 # Lines | |
201 line.types <- c("solid", "dashed", "dotted") | |
202 key <- NULL | |
203 txt <- NULL | |
204 if (slope.one) { | |
205 key <- c(key, line.types[1]) | |
206 txt <- c(txt, "y = x") | |
207 abline(a=0, b=1, lty=line.types[1]) | |
208 } | |
209 if (slope.lambda && Nu>0) { | |
210 key <- c(key, line.types[2]) | |
211 txt <- c(txt, paste("y = ", format(lambda, digits=4), "x", sep="")) | |
212 if (!is.null(conc)) { | |
213 if (Np<N) | |
214 vert <- c(show, (Np+1):N) | |
215 else | |
216 vert <- show | |
217 } | |
218 abline(a=0, b=lambda, lty=line.types[2]) | |
219 } | |
220 if (printpdf) {dev.off()} | |
221 # Returned value | |
222 | |
223 if (!is.null(key)) | |
224 legend(0, top, legend=txt, lty=key) | |
225 c(N=N, omitted=N-Np, lambda=lambda) | |
226 | |
227 } | |
228 | |
229 """ | |
230 | |
231 | |
232 | |
233 | |
234 def makeQQ(dat=[], sample=1.0, maxveclen=4000, fname='fname',title='title', | |
235 xvar='Sample',h=8,w=8,logscale=True,outdir=None): | |
236 """ | |
237 y is data for a qq plot and ends up on the x axis go figure | |
238 if sampling, oversample low values - all the top 1% ? | |
239 assume we have 0-1 p values | |
240 """ | |
241 R = [] | |
242 colour="maroon" | |
243 nrows = len(dat) | |
244 dat.sort() # small to large | |
245 fn = float(nrows) | |
246 unifx = [x/fn for x in range(1,(nrows+1))] | |
247 if logscale: | |
248 unifx = [-math.log10(x) for x in unifx] # uniform distribution | |
249 if sample < 1.0 and len(dat) > maxveclen: | |
250 # now have half a million markers eg - too many to plot all for a pdf - sample to get 10k or so points | |
251 # oversample part of the distribution | |
252 always = min(1000,nrows/20) # oversample smaller of lowest few hundred items or 5% | |
253 skip = int(nrows/float(maxveclen)) # take 1 in skip to get about maxveclen points | |
254 if skip <= 1: | |
255 skip = 2 | |
256 samplei = [i for i in range(nrows) if (i < always) or (i % skip == 0)] | |
257 # always oversample first sorted (here lowest) values | |
258 yvec = [dat[i] for i in samplei] # always get first and last | |
259 xvec = [unifx[i] for i in samplei] # and sample xvec same way | |
260 maint='QQ %s (random %d of %d)' % (title,len(yvec),nrows) | |
261 else: | |
262 yvec = [x for x in dat] | |
263 maint='QQ %s (n=%d)' % (title,nrows) | |
264 xvec = unifx | |
265 if logscale: | |
266 maint = 'Log%s' % maint | |
267 mx = [0,math.log10(nrows)] # if 1000, becomes 3 for the null line | |
268 ylab = '-log10(%s) Quantiles' % title | |
269 xlab = '-log10(Uniform 0-1) Quantiles' | |
270 yvec = [-math.log10(x) for x in yvec if x > 0.0] | |
271 else: | |
272 mx = [0,1] | |
273 ylab = '%s Quantiles' % title | |
274 xlab = 'Uniform 0-1 Quantiles' | |
275 | |
276 xv = ['%f' % x for x in xvec] | |
277 R.append('xvec = c(%s)' % ','.join(xv)) | |
278 yv = ['%f' % x for x in yvec] | |
279 R.append('yvec = c(%s)' % ','.join(yv)) | |
280 R.append('mx = c(0,%f)' % (math.log10(fn))) | |
281 R.append('pdf("%s",h=%d,w=%d)' % (fname,h,w)) | |
282 R.append("par(lab=c(10,10,10))") | |
283 R.append('qqplot(xvec,yvec,xlab="%s",ylab="%s",main="%s",sub="%s",pch=19,col="%s",cex=0.8)' % (xlab,ylab,maint,title,colour)) | |
284 R.append('points(mx,mx,type="l")') | |
285 R.append('grid(col="lightgray",lty="dotted")') | |
286 R.append('dev.off()') | |
287 RRun(rcmd=R,title='makeQQplot',outdir=outdir) | |
288 | |
289 | |
290 | |
291 def main(): | |
292 u = """ | |
293 """ | |
294 u = """<command interpreter="python"> | |
295 rgQQ.py "$input1" "$name" $sample "$cols" $allqq $height $width $logtrans $allqq.id $__new_file_path__ | |
296 </command> | |
297 | |
298 </command> | |
299 """ | |
300 print >> sys.stdout,'## rgQQ.py. cl=',sys.argv | |
301 npar = 11 | |
302 if len(sys.argv) < npar: | |
303 print >> sys.stdout, '## error - too few command line parameters - wanting %d' % npar | |
304 print >> sys.stdout, u | |
305 sys.exit(1) | |
306 in_fname = sys.argv[1] | |
307 name = sys.argv[2] | |
308 sample = float(sys.argv[3]) | |
309 head = None | |
310 columns = [int(x) for x in sys.argv[4].strip().split(',')] # work with python columns! | |
311 allout = sys.argv[5] | |
312 height = int(sys.argv[6]) | |
313 width = int(sys.argv[7]) | |
314 logscale = (sys.argv[8].lower() == 'true') | |
315 outid = sys.argv[9] # this is used to allow multiple output files | |
316 outdir = sys.argv[10] | |
317 nan_row = False | |
318 rows = [] | |
319 for i, line in enumerate( file( sys.argv[1] ) ): | |
320 # Skip comments | |
321 if line.startswith( '#' ) or ( i == 0 ): | |
322 if i == 0: | |
323 head = line.strip().split("\t") | |
324 continue | |
325 if len(line.strip()) == 0: | |
326 continue | |
327 # Extract values and convert to floats | |
328 fields = line.strip().split( "\t" ) | |
329 row = [] | |
330 nan_row = False | |
331 for column in columns: | |
332 if len( fields ) <= column: | |
333 return fail( "No column %d on line %d: %s" % ( column, i, fields ) ) | |
334 val = fields[column] | |
335 if val.lower() == "na": | |
336 nan_row = True | |
337 else: | |
338 try: | |
339 row.append( float( fields[column] ) ) | |
340 except ValueError: | |
341 return fail( "Value '%s' in column %d on line %d is not numeric" % ( fields[column], column+1, i ) ) | |
342 if not nan_row: | |
343 rows.append( row ) | |
344 if i > 1: | |
345 i = i-1 # remove header row from count | |
346 if head == None: | |
347 head = ['Col%d' % (x+1) for x in columns] | |
348 R = [] | |
349 for c,column in enumerate(columns): # we appended each column in turn | |
350 outname = allout | |
351 if c > 0: # after first time | |
352 outname = 'primary_%s_col%s_visible_pdf' % (outid,column) | |
353 outname = os.path.join(outdir,outname) | |
354 dat = [] | |
355 nrows = len(rows) # sometimes lots of NA's!! | |
356 for arow in rows: | |
357 dat.append(arow[c]) # remember, we appended each col in turn! | |
358 cname = head[column] | |
359 makeQQ(dat=dat,sample=sample,fname=outname,title='%s_%s' % (name,cname), | |
360 xvar=cname,h=height,w=width,logscale=logscale,outdir=outdir) | |
361 | |
362 | |
363 | |
364 if __name__ == "__main__": | |
365 main() |