Mercurial > repos > xuebing > sharplabtool
comparison mytools/sequence.py @ 7:f0dc65e7f6c0
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:59:07 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
6:094f377db4e5 | 7:f0dc65e7f6c0 |
---|---|
1 #!@WHICHPYTHON@ | |
2 | |
3 import copy, string, sys | |
4 | |
5 #------------------ Alphabet ------------------- | |
6 | |
7 class Alphabet(object): | |
8 """Biological alphabet class. | |
9 This defines the set of symbols from which various objects can be built, e.g. sequences and motifs. | |
10 The symbol set is immutable and accessed as a tuple. | |
11 symstr: symbols in alphabet as either a tuple or string | |
12 complement: dictionary defining letters and their complement | |
13 """ | |
14 def __init__(self, symstr, complement = None): | |
15 """Construct an alphabet from a string or tuple of characters. | |
16 Lower case characters will be converted to upper case. | |
17 An optional mapping for complements may be provided. | |
18 Example: | |
19 >>> alpha = sequence.Alphabet('ACGTttga', {'A':'C', 'G':'T'}) | |
20 >>> alpha.getSymbols() | |
21 will construct the DNA alphabet and output: | |
22 ('A', 'C', 'G', 'T') | |
23 """ | |
24 symlst = [] | |
25 for s in [str(sym).upper()[0] for sym in symstr]: | |
26 if not s in symlst: | |
27 symlst.append(s) | |
28 self.symbols = tuple(symlst) | |
29 if complement != None: | |
30 # expand the mapping and check for contradictions | |
31 cmap = {} | |
32 for s in self.symbols: | |
33 c = complement.get(s, None) | |
34 if c != None: | |
35 if s in cmap and cmap[s] != c: | |
36 raise RuntimeError("Alphabet complement map " | |
37 "contains contradictory mapping") | |
38 cmap[s] = c | |
39 cmap[c] = s | |
40 # replace mapping with indicies | |
41 cimap = {} | |
42 for idx in range (len(self.symbols)): | |
43 s = self.symbols[idx] | |
44 if s in cmap: | |
45 cimap[cmap[s]] = idx | |
46 # create tuple | |
47 cidxlst = [] | |
48 for idx in range (len(self.symbols)): | |
49 cidxlst.append(cimap.get(self.symbols[idx], None)) | |
50 self.complements = tuple(cidxlst) | |
51 else: | |
52 self.complements = None | |
53 | |
54 def getSymbols(self): | |
55 """Retrieve a tuple with all symbols, immutable membership and order""" | |
56 return self.symbols | |
57 | |
58 def getComplements(self): | |
59 """Retrieve a tuple with all complement indicies, immutable""" | |
60 return self.complements | |
61 | |
62 def isValidSymbol(self, sym): | |
63 """Check if the symbol is a member of alphabet""" | |
64 return any([s==sym for s in self.symbols]) | |
65 | |
66 def getIndex(self, sym): | |
67 """Retrieve the index of the symbol (immutable)""" | |
68 for idx in range (len(self.symbols)): | |
69 if self.symbols[idx] == sym: | |
70 return idx | |
71 raise RuntimeError("Symbol " + sym + " does not exist in alphabet") | |
72 | |
73 def isComplementable(self): | |
74 return self.complements != None | |
75 | |
76 def getComplement(self, sym): | |
77 """Retrieve the complement of the symbol (immutable)""" | |
78 return self.symbols[self.complements[self.getIndex(sym)]]; | |
79 | |
80 def isValidString(self, symstr): | |
81 """Check if the string contains only symbols that belong to the alphabet""" | |
82 found = True | |
83 for sym in symstr: | |
84 if self.isValidSymbol(sym) == False: | |
85 return False | |
86 return True | |
87 | |
88 def getLen(self): | |
89 """Retrieve the number of symbols in (the length of) the alphabet""" | |
90 return len(self.symbols) | |
91 | |
92 # pre-defined alphabets that can be specified by their name | |
93 predefAlphabets = [ | |
94 ("DNA" , Alphabet('ACGT', {'A':'T', 'G':'C'})), | |
95 ("RNA" , Alphabet('ACGU')), | |
96 ("Extended DNA" , Alphabet('ACGTYRN')), | |
97 ("Protein" , Alphabet('ACDEFGHIKLMNPQRSTVWY')), | |
98 ("Extended Protein" , Alphabet('ACDEFGHIKLMNPQRSTVWYX')), | |
99 ("TM Labels" , Alphabet('MIO')) | |
100 ] | |
101 | |
102 def getAlphabet(name): | |
103 """Retrieve a pre-defined alphabet by name. | |
104 Currently, "Protein", "DNA", "RNA", "Extended DNA", "Extended Protein" and "TM Labels" are available. | |
105 Example: | |
106 >>> alpha = sequence.getAlphabet('Protein') | |
107 >>> alpha.getSymbols() | |
108 will retrieve the 20 amino acid alphabet and output the tuple: | |
109 ('A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y') | |
110 """ | |
111 for (xname, xalpha) in predefAlphabets: | |
112 if xname == name: | |
113 return xalpha | |
114 return None | |
115 | |
116 #------------------ Sequence ------------------- | |
117 | |
118 class Sequence(object): | |
119 """Biological sequence class. Sequence data is immutable. | |
120 | |
121 data: the sequence data as a tuple or string | |
122 alpha: the alphabet from which symbols are taken | |
123 name: the sequence name, if any | |
124 info: can contain additional sequence information apart from the name | |
125 """ | |
126 def __init__(self, sequence, alpha = None, name = "", seqinfo = ""): | |
127 """Create a sequence with sequence data. | |
128 Specifying the alphabet is optional, so is the name and info. | |
129 Example: | |
130 >>> myseq = sequence.Sequence('MVSAKKVPAIAMSFGVSF') | |
131 will create a sequence with name "", and assign one of the predefined alphabets on basis of what symbols were used. | |
132 >>> myseq.getAlphabet().getSymbols() | |
133 will most likely output the standard protein alphabet: | |
134 ('A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y') | |
135 """ | |
136 if type(sequence) is str: | |
137 self.data = tuple(sequence.upper()) | |
138 elif type(sequence) is tuple: | |
139 self.data = sequence | |
140 elif type(sequence) is list: | |
141 self.data = tuple([s.upper() for s in sequence]) | |
142 else: | |
143 raise RuntimeError("Sequence data is not specified correctly: must be string or tuple") | |
144 # Resolve choice of alphabet | |
145 validAlphabet = False | |
146 if alpha == None: # Alphabet is not set, attempt to set it automatically... | |
147 for (xname, xalpha) in predefAlphabets: # Iterate through each predefined alphabet, in order | |
148 if xalpha.isValidString( self.data ): # This alphabet works, go with it | |
149 self.alpha = alpha = xalpha | |
150 validAlphabet = True | |
151 break | |
152 self.name = name | |
153 self.info = seqinfo | |
154 if validAlphabet == False: # we were either unsuccessful above or the alphabet was specified so test it | |
155 if type(alpha) is str: # check if name is a predefined alphabet | |
156 for (xname, xalpha) in predefAlphabets: # Iterate through each predefined alphabet, check for name | |
157 if (xname == alpha): | |
158 alpha = xalpha | |
159 break | |
160 if type(alpha) is Alphabet: # the alphabet is specified | |
161 if alpha.isValidString(self.data) == False: | |
162 raise RuntimeError("Invalid alphabet specified: "+"".join(alpha.getSymbols())+" is not compatible with sequence '"+"".join(self.data)+"'") | |
163 else: | |
164 self.alpha = alpha | |
165 else: | |
166 raise RuntimeError("Could not identify alphabet from sequence") | |
167 | |
168 #basic getters and setters for the class | |
169 def getName(self): | |
170 """Get the name of the sequence""" | |
171 return self.name | |
172 def getInfo(self): | |
173 """Get additional info of the sequence (e.g. from the defline in a FASTA file)""" | |
174 return self.info | |
175 def getAlphabet(self): | |
176 """Retrieve the alphabet that is assigned to this sequence""" | |
177 return self.alpha | |
178 def setName(self, name): | |
179 """Change the name of the sequence""" | |
180 self.name = name | |
181 def setAlphabet(self, alpha): | |
182 """Set the alphabet, throws an exception if it is not compatible with the sequence data""" | |
183 if type(alpha) is Alphabet: | |
184 if alpha.isValid( sequence ) == False: | |
185 raise RuntimeError( "Invalid alphabet specified" ) | |
186 #sequence functions | |
187 def getSequence(self): | |
188 """Retrieve the sequence data (a tuple of symbols)""" | |
189 return self.data | |
190 def getString(self): | |
191 """Retrieve the sequence data as a string (copy of actual data)""" | |
192 return "".join(self.data) | |
193 def getLen(self): | |
194 """Get the length of the sequence (number of symbols)""" | |
195 return len(self.data) | |
196 def getSite(self, position, length = 1): | |
197 """Retrieve a site in the sequence of desired length. | |
198 Note that positions go from 0 to length-1, and that if the requested site | |
199 extends beyond those the method throws an exception. | |
200 """ | |
201 if position >= 0 and position <= self.getLen() - length: | |
202 if length == 1: | |
203 return self.data[position] | |
204 else: | |
205 return self.data[position:position+length] | |
206 else: | |
207 raise RuntimeError( "Attempt to access invalid position in sequence "+self.getName() ) | |
208 | |
209 def nice(self): | |
210 """ A short description of the sequence """ | |
211 print self.getName(), ":", self.getLen() | |
212 | |
213 def readStrings(filename): | |
214 """ Read one or more lines of text from a file--for example an alignment. | |
215 Return as a list of strings. | |
216 filename: name of file | |
217 """ | |
218 txtlist = [] | |
219 f = open(filename) | |
220 for line in f.readlines(): | |
221 txtlist.extend(line.split()) | |
222 return txtlist | |
223 | |
224 def readFASTA(filename, alpha = None): | |
225 """ Read one or more sequences from a file in FASTA format. | |
226 filename: name of file to load sequences from | |
227 alpha: alphabet that is used (if left unspecified, an attempt is made to identify the alphabet for each individual sequence) | |
228 """ | |
229 seqlist = [] | |
230 seqname = None | |
231 seqinfo = None | |
232 seqdata = [] | |
233 fh = open(filename) | |
234 thisline = fh.readline() | |
235 while (thisline): | |
236 if (thisline[0] == '>'): # new sequence | |
237 if (seqname): # take care of the data that is already in the buffer before processing the new sequence | |
238 try: | |
239 seqnew = Sequence(seqdata, alpha, seqname, seqinfo) | |
240 seqlist.append(seqnew) | |
241 except RuntimeError, e: | |
242 print >> sys.stderr, "Warning: "+seqname+" is invalid (ignored): ", e | |
243 seqinfo = thisline[1:-1] # everything on the defline is "info" | |
244 seqname = seqinfo.split()[0] # up to first space | |
245 seqdata = [] | |
246 else: # pull out the sequence data | |
247 cleanline = thisline.split() | |
248 for line in cleanline: | |
249 seqdata.extend(tuple(line.strip('*'))) # sometimes a line ends with an asterisk in FASTA files | |
250 thisline = fh.readline() | |
251 | |
252 if (seqname): | |
253 try: | |
254 seqnew = Sequence(seqdata, alpha, seqname, seqinfo) | |
255 seqlist.append(seqnew) | |
256 except RuntimeError, e: | |
257 print >> sys.stderr, "Warning: " + seqname + " is invalid (ignored): ", e | |
258 else: | |
259 raise RuntimeError("No sequences on FASTA format found in this file") | |
260 fh.close() | |
261 return seqlist | |
262 | |
263 def _writeOneFASTA(sequence, filehandle): | |
264 """Write one sequence in FASTA format to an already open file""" | |
265 filehandle.write(">" + sequence.getName()+"\n") | |
266 data = sequence.getSequence() | |
267 lines = ( sequence.getLen() - 1) / 60 + 1 | |
268 for i in range(lines): | |
269 #note: python lets us get the last line (var length) free | |
270 #lineofseq = data[i*60 : (i+1)*60] + "\n" | |
271 lineofseq = "".join(data[i*60 : (i+1)*60]) + "\n" | |
272 filehandle.write(lineofseq) | |
273 | |
274 def writeFASTA(sequence, filename): | |
275 """Write a list (or a single) of sequences to a file in the FASTA format""" | |
276 fh = open(filename, "w") | |
277 if isinstance(sequence, Sequence): | |
278 _writeOneFASTA(sequence, fh) | |
279 else: | |
280 for seq in sequence: | |
281 if isinstance(seq, Sequence): | |
282 _writeOneFASTA(seq, fh) | |
283 else: | |
284 print >> sys.stderr, "Warning: could not write " + seq.getName() + " (ignored)." | |
285 fh.flush() | |
286 fh.close() | |
287 | |
288 #------------------ Distrib ------------------- | |
289 | |
290 class Distrib(object): | |
291 """Class for storing a multinomial probability distribution over the symbols in an alphabet""" | |
292 def __init__(self, alpha, pseudo_count = 0.0): | |
293 self.alpha = alpha | |
294 self.tot = pseudo_count * self.alpha.getLen() | |
295 self.cnt = [pseudo_count for _ in range( self.alpha.getLen() )] | |
296 | |
297 def __deepcopy__(self, memo): | |
298 dup = Distrib(self.alpha) | |
299 dup.tot = copy.deepcopy(self.tot, memo) | |
300 dup.cnt = copy.deepcopy(self.cnt, memo) | |
301 return dup | |
302 | |
303 def count(self, syms = None ): | |
304 """Count an observation of a symbol""" | |
305 if syms == None: | |
306 syms = self.alpha.getSymbols() | |
307 for sym in syms: | |
308 idx = self.alpha.getIndex( sym ) | |
309 self.cnt[idx] += 1.0 | |
310 self.tot += 1 | |
311 | |
312 def complement(self): | |
313 """Complement the counts, throw an error if this is impossible""" | |
314 if not self.alpha.isComplementable(): | |
315 raise RuntimeError("Attempt to complement a Distrib " | |
316 "based on a non-complementable alphabet.") | |
317 coms = self.alpha.getComplements() | |
318 new_count = [] | |
319 for idx in range(len(coms)): | |
320 cidx = coms[idx] | |
321 if cidx == None: | |
322 cidx = idx | |
323 new_count.append(self.cnt[cidx]) | |
324 self.cnt = new_count | |
325 return self | |
326 | |
327 def reset(self): | |
328 """Reset the distribution, that is, restart counting.""" | |
329 self.tot = 0 | |
330 self.cnt = [0.0 for _ in range( self.alpha.getLen() )] | |
331 | |
332 def getFreq(self, sym = None): | |
333 """Determine the probability distribution from the current counts. | |
334 The order in which probabilities are given follow the order of the symbols in the alphabet.""" | |
335 if self.tot > 0: | |
336 if sym == None: | |
337 freq = tuple([ y / self.tot for y in self.cnt ]) | |
338 return freq | |
339 else: | |
340 idx = self.alpha.getIndex( sym ) | |
341 return self.cnt[idx] / self.tot | |
342 return None | |
343 | |
344 def pretty(self): | |
345 """Retrieve the probabilites for all symbols and return as a pretty table (a list of text strings)""" | |
346 table = ["".join(["%4s " % s for s in self.alpha.getSymbols()])] | |
347 table.append("".join(["%3.2f " % y for y in Distrib.getFreq(self)])) | |
348 return table | |
349 | |
350 def getSymbols(self): | |
351 """Get the symbols in the alphabet in the same order as probabilities are given.""" | |
352 return self.alpha.getSymbols() | |
353 | |
354 def getAlphabet(self): | |
355 """Get the alphabet over which the distribution is defined.""" | |
356 return self.alpha | |
357 | |
358 #------------------ Motif (and subclasses) ------------------- | |
359 | |
360 class Motif(object): | |
361 """ Sequence motif class--defining a pattern that can be searched in sequences. | |
362 This class is not intended for direct use. Instead use and develop sub-classes (see below). | |
363 """ | |
364 def __init__(self, alpha): | |
365 self.len = 0 | |
366 self.alpha = alpha | |
367 | |
368 def getLen(self): | |
369 """Get the length of the motif""" | |
370 return self.len | |
371 | |
372 def getAlphabet(self): | |
373 """Get the alphabet that is used in the motif""" | |
374 return self.alpha | |
375 | |
376 def isAlphabet(self, seqstr): | |
377 """Check if the sequence can be processed by this motif""" | |
378 mystr = seqstr | |
379 if type(seqstr) is Sequence: | |
380 mystr = seqstr.getString() | |
381 return self.getAlphabet().isValidString(mystr) | |
382 | |
383 import re | |
384 | |
385 class RegExp(Motif): | |
386 """A motif class that defines the pattern in terms of a regular expression""" | |
387 def __init__(self, alpha, re_string): | |
388 Motif.__init__(self, alpha) | |
389 self.pattern = re.compile(re_string) | |
390 | |
391 def match(self, seq): | |
392 """Find matches to the motif in a specified sequence. | |
393 The method is a generator, hence subsequent hits can be retrieved using next(). | |
394 The returned result is a tuple (position, match-sequence, score), where score is | |
395 always 1.0 since a regular expression is either true or false (not returned). | |
396 """ | |
397 myseq = seq | |
398 if not type(seq) is Sequence: | |
399 myseq = Sequence(seq, self.alpha) | |
400 mystr = myseq.getString() | |
401 if not Motif.isAlphabet(self, mystr): | |
402 raise RuntimeError("Motif alphabet is not valid for sequence " + myseq.getName()) | |
403 for m in re.finditer(self.pattern, mystr): | |
404 yield (m.start(), m.group(), 1.0) | |
405 | |
406 import math, time | |
407 | |
408 # Variables used by the PWM for creating an EPS file | |
409 _colour_def = ( | |
410 "/black [0 0 0] def\n" | |
411 "/red [0.8 0 0] def\n" | |
412 "/green [0 0.5 0] def\n" | |
413 "/blue [0 0 0.8] def\n" | |
414 "/yellow [1 1 0] def\n" | |
415 "/purple [0.8 0 0.8] def\n" | |
416 "/magenta [1.0 0 1.0] def\n" | |
417 "/cyan [0 1.0 1.0] def\n" | |
418 "/pink [1.0 0.8 0.8] def\n" | |
419 "/turquoise [0.2 0.9 0.8] def\n" | |
420 "/orange [1 0.7 0] def\n" | |
421 "/lightred [0.8 0.56 0.56] def\n" | |
422 "/lightgreen [0.35 0.5 0.35] def\n" | |
423 "/lightblue [0.56 0.56 0.8] def\n" | |
424 "/lightyellow [1 1 0.71] def\n" | |
425 "/lightpurple [0.8 0.56 0.8] def\n" | |
426 "/lightmagenta [1.0 0.7 1.0] def\n" | |
427 "/lightcyan [0.7 1.0 1.0] def\n" | |
428 "/lightpink [1.0 0.9 0.9] def\n" | |
429 "/lightturquoise [0.81 0.9 0.89] def\n" | |
430 "/lightorange [1 0.91 0.7] def\n") | |
431 _colour_dict = ( | |
432 "/fullColourDict <<\n" | |
433 " (G) orange\n" | |
434 " (T) green\n" | |
435 " (C) blue\n" | |
436 " (A) red\n" | |
437 " (U) green\n" | |
438 ">> def\n" | |
439 "/mutedColourDict <<\n" | |
440 " (G) lightorange\n" | |
441 " (T) lightgreen\n" | |
442 " (C) lightblue\n" | |
443 " (A) lightred\n" | |
444 " (U) lightgreen\n" | |
445 ">> def\n" | |
446 "/colorDict fullColourDict def\n") | |
447 | |
448 _eps_defaults = { | |
449 'LOGOTYPE': 'NA', | |
450 'FONTSIZE': '12', | |
451 'TITLEFONTSIZE': '12', | |
452 'SMALLFONTSIZE': '6', | |
453 'TOPMARGIN': '0.9', | |
454 'BOTTOMMARGIN': '0.9', | |
455 'YAXIS': 'true', | |
456 'YAXISLABEL': 'bits', | |
457 'XAXISLABEL': '', | |
458 'TITLE': '', | |
459 'ERRORBARFRACTION': '1.0', | |
460 'SHOWINGBOX': 'false', | |
461 'BARBITS': '2.0', | |
462 'TICBITS': '1', | |
463 'COLORDEF': _colour_def, | |
464 'COLORDICT': _colour_dict, | |
465 'SHOWENDS': 'false', | |
466 'NUMBERING': 'true', | |
467 'OUTLINE': 'false', | |
468 } | |
469 class PWM(Motif): | |
470 """This motif subclass defines a pattern in terms of a position weight matrix. | |
471 An alphabet must be provided. A pseudo-count to be added to each count is | |
472 optional. A uniform background distribution is used by default. | |
473 """ | |
474 def __init__(self, alpha): | |
475 Motif.__init__(self, alpha) # set alphabet of this multinomial distribution | |
476 self.background = Distrib(alpha) # the default background ... | |
477 self.background.count(alpha.getSymbols()) # ... is uniform | |
478 self.nsites = 0 | |
479 | |
480 def setFromAlignment(self, aligned, pseudo_count = 0.0): | |
481 """Set the probabilities in the PWM from an alignment. | |
482 The alignment is a list of equal-length strings (see readStrings), OR | |
483 a list of Sequence. | |
484 """ | |
485 self.cols = -1 | |
486 self.nsites = len(aligned) | |
487 seqs = [] | |
488 # Below we create a list of Sequence from the alignment, | |
489 # while doing some error checking, and figure out the number of columns | |
490 for s in aligned: | |
491 # probably a text string, so we make a nameless sequence from it | |
492 if not type(s) is Sequence: | |
493 s=Sequence(s, Motif.getAlphabet(self)) | |
494 else: | |
495 # it was a sequence, so we check that the alphabet in | |
496 # this motif will be able to process it | |
497 if not Motif.isAlphabet(self, s): | |
498 raise RuntimeError("Motif alphabet is not valid for sequence " + s.getName()) | |
499 if self.cols == -1: | |
500 self.cols = s.getLen() | |
501 elif self.cols != s.getLen(): | |
502 raise RuntimeError("Sequences in alignment are not of equal length") | |
503 seqs.append(s) | |
504 # The line below initializes the list of Distrib (one for each column of the alignment) | |
505 self.counts = [Distrib(Motif.getAlphabet(self), pseudo_count) for _ in range(self.cols)] | |
506 # Next, we do the counting, column by column | |
507 for c in range( self.cols ): # iterate through columns | |
508 for s in seqs: # iterate through rows | |
509 # determine the index of the symbol we find at this position (row, column c) | |
510 self.counts[c].count(s.getSite(c)) | |
511 # Update the length | |
512 self.len = self.cols | |
513 | |
514 def reverseComplement(self): | |
515 """Reverse complement the PWM""" | |
516 i = 0 | |
517 j = len(self.counts)-1 | |
518 while (i < j): | |
519 temp = self.counts[i]; | |
520 self.counts[i] = self.counts[j] | |
521 self.counts[j] = temp | |
522 self.counts[i].complement() | |
523 self.counts[j].complement() | |
524 i += 1; | |
525 j -= 1; | |
526 if i == j: | |
527 self.counts[i].complement() | |
528 return self | |
529 | |
530 def getNSites(self): | |
531 """Get the number of sites that made the PWM""" | |
532 return self.nsites | |
533 | |
534 def setBackground(self, distrib): | |
535 """Set the background distribution""" | |
536 if not distrib.getAlphabet() == Motif.getAlphabet(self): | |
537 raise RuntimeError("Incompatible alphabets") | |
538 self.background = distrib | |
539 | |
540 def getFreq(self, col = None, sym = None): | |
541 """Get the probabilities for all positions in the PWM (a list of Distribs)""" | |
542 if (col == None): | |
543 return [y.getFreq() for y in self.counts] | |
544 else: | |
545 return self.counts[col].getFreq(sym) | |
546 | |
547 def pretty(self): | |
548 """Retrieve the probabilites for all positions in the PWM as a pretty table (a list of text strings)""" | |
549 #table = ["".join(["%8s " % s for s in self.alpha.getSymbols()])] | |
550 table = [] | |
551 for row in PWM.getFreq(self): | |
552 table.append("".join(["%8.6f " % y for y in row])) | |
553 return table | |
554 | |
555 def logoddsPretty(self, bkg): | |
556 """Retrieve the (base-2) log-odds for all positions in the PWM as a pretty table (a list of text strings)""" | |
557 table = [] | |
558 for row in PWM.getFreq(self): | |
559 #table.append("".join(["%8.6f " % (math.log((row[i]+1e-6)/bkg[i])/math.log(2)) for i in range(len(row))])) | |
560 table.append("".join(["%8.6f " % (math.log((row[i])/bkg[i])/math.log(2)) for i in range(len(row))])) | |
561 #table.append("".join(["%8.6f " % row[i] for i in range(len(row))])) | |
562 return table | |
563 | |
564 | |
565 def consensus_sequence(self): | |
566 """ | |
567 Get the consensus sequence corresponding to a PWM. | |
568 Consensus sequence is the letter in each column | |
569 with the highest probability. | |
570 """ | |
571 consensus = "" | |
572 alphabet = Motif.getAlphabet(self).getSymbols() | |
573 for pos in range(self.cols): | |
574 best_letter = alphabet[0] | |
575 best_p = self.counts[pos].getFreq(best_letter) | |
576 for letter in alphabet[1:]: | |
577 p = self.counts[pos].getFreq(letter) | |
578 if p > best_p: | |
579 best_p = p | |
580 best_letter = letter | |
581 consensus += best_letter | |
582 return consensus | |
583 | |
584 | |
585 def consensus(self): | |
586 """ | |
587 Get the consensus corresponding to a PWM. | |
588 Consensus at each column of motif is a list of | |
589 characters with non-zero probabilities. | |
590 """ | |
591 consensus = [] | |
592 for pos in range(self.cols): | |
593 matches = [] | |
594 for letter in Motif.getAlphabet(self).getSymbols(): | |
595 p = self.counts[pos].getFreq(letter) | |
596 if p > 0: | |
597 matches += letter | |
598 consensus.append(matches) | |
599 return consensus | |
600 | |
601 | |
602 def getScore(self, seq, start): | |
603 """Score this particular list of symbols using the PFM (background needs to be set separately)""" | |
604 sum = 0.0 | |
605 seqdata = seq.getSequence()[start : start+self.cols] | |
606 for pos in range(len(seqdata)): | |
607 q = self.counts[pos].getFreq(seqdata[pos]) | |
608 if q == 0: | |
609 q = 0.0001 # to avoid log(0) == -Infinity | |
610 logodds = math.log(q / self.background.getFreq(seqdata[pos])) | |
611 sum += logodds | |
612 return sum | |
613 | |
614 def match(self, seq, _LOG0 = -10): | |
615 """Find matches to the motif in a specified sequence. | |
616 The method is a generator, hence subsequent hits can be retrieved using next(). | |
617 The returned result is a tuple (position, match-sequence, score). | |
618 The optional parameter _LOG0 specifies a lower bound on reported logodds scores. | |
619 """ | |
620 myseq = seq | |
621 if not type(seq) is Sequence: | |
622 myseq = Sequence(seq, self.alpha) | |
623 if not Motif.isAlphabet(self, myseq): | |
624 raise RuntimeError("Motif alphabet is not valid for sequence " + myseq.getName()) | |
625 for pos in range(myseq.getLen() - self.cols): | |
626 score = PWM.getScore(self, myseq, pos) | |
627 if score > _LOG0: | |
628 yield (pos, "".join(myseq.getSite(pos, self.cols)), score) | |
629 | |
630 def writeEPS(self, program, template_file, eps_fh, | |
631 timestamp = time.localtime()): | |
632 """Write out a DNA motif to EPS format.""" | |
633 small_dfmt = "%d.%m.%Y %H:%M" | |
634 full_dfmt = "%d.%m.%Y %H:%M:%S %Z" | |
635 small_date = time.strftime(small_dfmt, timestamp) | |
636 full_date = time.strftime(full_dfmt, timestamp) | |
637 points_per_cm = 72.0 / 2.54 | |
638 height = 4.5 | |
639 width = self.getLen() * 0.8 + 2 | |
640 width = min(30, width) | |
641 points_height = int(height * points_per_cm) | |
642 points_width = int(width * points_per_cm) | |
643 defaults = _eps_defaults.copy() | |
644 defaults['CREATOR'] = program | |
645 defaults['CREATIONDATE'] = full_date | |
646 defaults['LOGOHEIGHT'] = str(height) | |
647 defaults['LOGOWIDTH'] = str(width) | |
648 defaults['FINEPRINT'] = program + ' ' + small_date | |
649 defaults['CHARSPERLINE'] = str(self.getLen()) | |
650 defaults['BOUNDINGHEIGHT'] = str(points_height) | |
651 defaults['BOUNDINGWIDTH'] = str(points_width) | |
652 defaults['LOGOLINEHEIGHT'] = str(height) | |
653 with open(template_file, 'r') as template_fh: | |
654 m_var = re.compile("\{\$([A-Z]+)\}") | |
655 for line in template_fh: | |
656 last = 0 | |
657 match = m_var.search(line) | |
658 while (match): | |
659 if (last < match.start()): | |
660 prev = line[last:match.start()] | |
661 eps_fh.write(prev) | |
662 key = match.group(1) | |
663 if (key == "DATA"): | |
664 eps_fh.write("\nStartLine\n") | |
665 for pos in range(self.getLen()): | |
666 eps_fh.write("({0:d}) startstack\n".format(pos+1)) | |
667 stack = [] | |
668 # calculate the stack information content | |
669 alpha_ic = 2 | |
670 h = 0 | |
671 for sym in self.getAlphabet().getSymbols(): | |
672 freq = self.getFreq(pos, sym) | |
673 if (freq == 0): | |
674 continue | |
675 h -= (freq * math.log(freq, 2)) | |
676 stack_ic = alpha_ic - h | |
677 # calculate the heights of each symbol | |
678 for sym in self.getAlphabet().getSymbols(): | |
679 freq = self.getFreq(pos, sym) | |
680 if (freq == 0): | |
681 continue | |
682 stack.append((freq * stack_ic, sym)) | |
683 stack.sort(); | |
684 # output the symbols | |
685 for symh, sym in stack: | |
686 eps_fh.write(" {0:f} ({1:s}) numchar\n".format( | |
687 symh, sym)) | |
688 eps_fh.write("endstack\n\n") | |
689 eps_fh.write("EndLine\n") | |
690 elif (key in defaults): | |
691 eps_fh.write(defaults[key]) | |
692 else: | |
693 raise RuntimeError('Unknown variable "' + key + | |
694 '" in EPS template') | |
695 last = match.end(); | |
696 match = m_var.search(line, last) | |
697 if (last < len(line)): | |
698 eps_fh.write(line[last:]) | |
699 | |
700 | |
701 #------------------ Main method ------------------- | |
702 # Executed if you run this file from the operating system prompt, e.g. | |
703 # > python sequence.py | |
704 | |
705 if __name__=='__main__': | |
706 alpha = getAlphabet('Extended DNA') | |
707 #seqs = readFASTA('pos.fasta') | |
708 seqs = [] | |
709 aln = readStrings('tmp0') | |
710 #regexp = RegExp(alpha, '[AG]G.[DE]TT[AS].') | |
711 pwm = PWM(alpha) | |
712 pwm.setFromAlignment(aln) | |
713 for row in pwm.pretty(): | |
714 print row | |
715 for s in seqs: | |
716 print s.getName(), s.getLen(), s.getAlphabet().getSymbols() | |
717 for m in regexp.match( s ): | |
718 print "pos: %d pat: %s %4.2f" % (m[0], m[1], m[2]) | |
719 for m in pwm.match( s ): | |
720 print "pos: %d pat: %s %4.2f" % (m[0], m[1], m[2]) |