Mercurial > repos > xuebing > sharplabtool
diff tools/regVariation/rcve.py @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tools/regVariation/rcve.py Fri Mar 09 19:37:19 2012 -0500 @@ -0,0 +1,143 @@ +#!/usr/bin/env python + +from galaxy import eggs + +import sys, string +from rpy import * +import numpy + +def stop_err(msg): + sys.stderr.write(msg) + sys.exit() + +def sscombs(s): + if len(s) == 1: + return [s] + else: + ssc = sscombs(s[1:]) + return [s[0]] + [s[0]+comb for comb in ssc] + ssc + + +infile = sys.argv[1] +y_col = int(sys.argv[2])-1 +x_cols = sys.argv[3].split(',') +outfile = sys.argv[4] + +print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) +fout = open(outfile,'w') + +for i, line in enumerate( file ( infile )): + line = line.rstrip('\r\n') + if len( line )>0 and not line.startswith( '#' ): + elems = line.split( '\t' ) + break + if i == 30: + break # Hopefully we'll never get here... + +if len( elems )<1: + stop_err( "The data in your input dataset is either missing or not formatted properly." ) + +y_vals = [] +x_vals = [] + +for k,col in enumerate(x_cols): + x_cols[k] = int(col)-1 + x_vals.append([]) + """ + try: + float( elems[x_cols[k]] ) + except: + try: + msg = "This operation cannot be performed on non-numeric column %d containing value '%s'." %( col, elems[x_cols[k]] ) + except: + msg = "This operation cannot be performed on non-numeric data." + stop_err( msg ) + """ +NA = 'NA' +for ind,line in enumerate( file( infile )): + if line and not line.startswith( '#' ): + try: + fields = line.split("\t") + try: + yval = float(fields[y_col]) + except Exception, ey: + yval = r('NA') + #print >>sys.stderr, "ey = %s" %ey + y_vals.append(yval) + for k,col in enumerate(x_cols): + try: + xval = float(fields[col]) + except Exception, ex: + xval = r('NA') + #print >>sys.stderr, "ex = %s" %ex + x_vals[k].append(xval) + except: + pass + +x_vals1 = numpy.asarray(x_vals).transpose() +dat= r.list(x=array(x_vals1), y=y_vals) + +set_default_mode(NO_CONVERSION) +try: + full = r.lm(r("y ~ x"), data= r.na_exclude(dat)) #full model includes all the predictor variables specified by the user +except RException, rex: + stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") +set_default_mode(BASIC_CONVERSION) + +summary = r.summary(full) +fullr2 = summary.get('r.squared','NA') + +if fullr2 == 'NA': + stop_error("Error in linear regression") + +if len(x_vals) < 10: + s = "" + for ch in range(len(x_vals)): + s += str(ch) +else: + stop_err("This tool only works with less than 10 predictors.") + +print >>fout, "#Model\tR-sq\tRCVE_Terms\tRCVE_Value" +all_combos = sorted(sscombs(s), key=len) +all_combos.reverse() +for j,cols in enumerate(all_combos): + #if len(cols) == len(s): #Same as the full model above + # continue + if len(cols) == 1: + x_vals1 = x_vals[int(cols)] + else: + x_v = [] + for col in cols: + x_v.append(x_vals[int(col)]) + x_vals1 = numpy.asarray(x_v).transpose() + dat= r.list(x=array(x_vals1), y=y_vals) + set_default_mode(NO_CONVERSION) + red = r.lm(r("y ~ x"), data= dat) #Reduced model + set_default_mode(BASIC_CONVERSION) + summary = r.summary(red) + redr2 = summary.get('r.squared','NA') + try: + rcve = (float(fullr2)-float(redr2))/float(fullr2) + except: + rcve = 'NA' + col_str = "" + for col in cols: + col_str = col_str + str(int(x_cols[int(col)]) + 1) + " " + col_str.strip() + rcve_col_str = "" + for col in s: + if col not in cols: + rcve_col_str = rcve_col_str + str(int(x_cols[int(col)]) + 1) + " " + rcve_col_str.strip() + if len(cols) == len(s): #full model + rcve_col_str = "-" + rcve = "-" + try: + redr2 = "%.4f" %(float(redr2)) + except: + pass + try: + rcve = "%.4f" %(float(rcve)) + except: + pass + print >>fout, "%s\t%s\t%s\t%s" %(col_str,redr2,rcve_col_str,rcve)