Mercurial > repos > xuebing > sharplabtool
diff tools/rgenetics/rgQQ.xml @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tools/rgenetics/rgQQ.xml Fri Mar 09 19:37:19 2012 -0500 @@ -0,0 +1,99 @@ +<tool id="rgQQ1" name="QQ Plots:"> + <code file="rgQQ_code.py"/> + + <description>for p values from an analysis </description> + + <command interpreter="python"> + rgQQ.py "$input1" "$title" "$sample" "$cols" "$allqq" "$height" "$width" "$logtrans" "$allqq.id" "$__new_file_path__" + </command> + + <inputs> + <page> + <param name="input1" type="data" label="Choose the History dataset containing p values to QQ plot" + size="80" format="tabular" help="Dataset missing? See Tip below" /> + <param name="title" type="text" size="80" label = "Descriptive title for QQ plot" value="QQ" /> + + <param name="logtrans" type="boolean" label = "Use a log scale - recommended for p values in range 0-1.0" + truevalue="true" falsevalue="false"/> + <param name="sample" type="float" label="Random sample fraction - set to 1.0 for all data points" value="0.01" + help="If you have a million values, the QQ plots will be huge - a random sample of 1% will be fine" /> + <param name="height" type="integer" label="PDF image height (inches)" value="6" /> + <param name="width" type="integer" label="PDF image width (inches)" value="6" /> + </page> + <page> + <param name="cols" type="select" display="checkboxes" multiple="True" + help="Choose from these numeric columns in the data file to make a quantile-quantile plot against a uniform distribution" + label="Columns (p values 0-1 eg) to make QQ plots" dynamic_options="get_columns( input1 )" /> + </page> + </inputs> + + <outputs> + <data format="pdf" name="allqq" label="${title}.html"/> + </outputs> + +<tests> + <test> + <param name='input1' value='tinywga.pphe' /> + <param name='title' value="rgQQtest1" /> + <param name='logtrans' value="false" /> + <param name='sample' value='1.0' /> + <param name='height' value='8' /> + <param name='width' value='10' /> + <param name='cols' value='3' /> + <output name='allqq' file='rgQQtest1.pdf' ftype='binary' compare="diff" lines_diff="29"/> + </test> +</tests> + +<help> + +.. class:: infomark + +**Explanation** + +A quantile-quantile (QQ) plot is a good way to see systematic departures from the null expectation of uniform p-values +from a genomic analysis. If the QQ plot shows departure from the null (ie a uniform 0-1 distribution), you hope that this will be +in the very smallest p-values suggesting that there might be some interesting results to look at. A log scale will help emphasise departures +from the null at low p values more clear + +----- + +.. class:: infomark + +**Syntax** + +This tool has 2 pages. On the first one you choose the data set and output options, then on the second page, the +column names are shown so you can choose the one containing the p values you wish to plot. + +- **History data** is one of your history tabular data sets +- **Descriptive Title** is the text to appear in the output file names to remind you what the plots are! +- **Use a Log scale** is recommended for p values in the range 0-1 as it highlights departures from the null at small p values +- **Random Sample Fraction** is the fraction of points to randomly sample - highly recommended for >5k or so values +- **Height and Width** will determine the scale of the pdf images + + +----- + +.. class:: infomark + +**Summary** + +Generate a uniform QQ plot for any large number of p values from an analysis. +Essentially a plot of n ranked p values against their rank as a centile - ie rank/n + +Works well where you have a column containing p values from +a statistical test of some sort. These will be plotted against the values expected under the null. Departure +from the diagonal suggests one distribution is more extreme than the other. You hope your p values are +smaller than expected under the null. + +The sampling fraction will help cut down the size of the pdfs. If there are fewer than 5k points on any plot, all will be shown. +Otherwise the sampling fraction will be used or 5k, whichever is larger. + +Note that the use of a log scale is ill-advised if you are plotting log transformed p values because the +uniform distribution chosen for the qq plot is always 0-1 and log transformation is applied if required. +The most useful plots for p values are log QQ plots of untransformed p values in the range 0-1 + +Originally designed and written for family based data from the CAMP Illumina run of 2007 by +ross lazarus (ross.lazarus@gmail.com) + +</help> +</tool>