Mercurial > repos > xuebing > sharplabtool
view tools/stats/plot_from_lda.xml @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
line wrap: on
line source
<tool id="plot_for_lda_output1" name="Draw ROC plot" version="1.0.1"> <description>on "Perform LDA" output</description> <command interpreter="sh">r_wrapper.sh $script_file</command> <inputs> <param format="txt" name="input" type="data" label="Source file"> </param> <param name="my_title" size="30" type="text" value="My Figure" label="Title of your plot" help="See syntax below"> </param> <param name="X_axis" size="30" type="text" value="Text for X axis" label="Legend of X axis in your plot" help="See syntax below"> </param> <param name="Y_axis" size="30" type="text" value="Text for Y axis" label="Legend of Y axis in your plot" help="See syntax below"> </param> </inputs> <outputs> <data format="pdf" name="pdf_output" /> </outputs> <tests> <test> <param name="input" value="lda_analy_output.txt"/> <param name="my_title" value="Test Plot1"/> <param name="X_axis" value="Test Plot2"/> <param name="Y_axis" value="Test Plot3"/> <output name="pdf_output" file="plot_for_lda_output.pdf"/> </test> </tests> <configfiles> <configfile name="script_file"> rm(list = objects() ) ############# FORMAT X DATA ######################### format<-function(data) { ind=NULL for(i in 1 : ncol(data)){ if (is.na(data[nrow(data),i])) { ind<-c(ind,i) } } #print(is.null(ind)) if (!is.null(ind)) { data<-data[,-c(ind)] } data } ########GET RESPONSES ############################### get_resp<- function(data) { resp1<-as.vector(data[,ncol(data)]) resp=numeric(length(resp1)) for (i in 1:length(resp1)) { if (resp1[i]=="Control ") { resp[i] = 0 } if (resp1[i]=="XLMR ") { resp[i] = 1 } } return(resp) } ######## CHARS TO NUMBERS ########################### f_to_numbers<- function(F) { ind<-NULL G<-matrix(0,nrow(F), ncol(F)) for (i in 1:nrow(F)) { for (j in 1:ncol(F)) { G[i,j]<-as.integer(F[i,j]) } } return(G) } ###################NORMALIZING######################### norm <- function(M, a=NULL, b=NULL) { C<-NULL ind<-NULL for (i in 1: ncol(M)) { if (sd(M[,i])!=0) { M[,i]<-(M[,i]-mean(M[,i]))/sd(M[,i]) } # else {print(mean(M[,i]))} } return(M) } ##### LDA DIRECTIONS ################################# lda_dec <- function(data, k){ priors=numeric(k) grandmean<-numeric(ncol(data)-1) means=matrix(0,k,ncol(data)-1) B = matrix(0, ncol(data)-1, ncol(data)-1) N=nrow(data) for (i in 1:k){ priors[i]=sum(data[,1]==i)/N grp=subset(data,data\$group==i) means[i,]=mean(grp[,2:ncol(data)]) #print(means[i,]) #print(priors[i]) #print(priors[i]*means[i,]) grandmean = priors[i]*means[i,] + grandmean } for (i in 1:k) { B= B + priors[i]*((means[i,]-grandmean)%*%t(means[i,]-grandmean)) } W = var(data[,2:ncol(data)]) svdW = svd(W) inv_sqrtW =solve(svdW\$v %*% diag(sqrt(svdW\$d)) %*% t(svdW\$v)) B_star= t(inv_sqrtW)%*%B%*%inv_sqrtW B_star_decomp = svd(B_star) directions = inv_sqrtW%*%B_star_decomp\$v return( list(directions, B_star_decomp\$d) ) } ################ NAIVE BAYES FOR 1D SIR OR LDA ############## naive_bayes_classifier <- function(resp, tr_data, test_data, k=2, tau) { tr_data=data.frame(resp=resp, dir=tr_data) means=numeric(k) #print(k) cl=numeric(k) predclass=numeric(length(test_data)) for (i in 1:k) { grp = subset(tr_data, resp==i) means[i] = mean(grp\$dir) #print(i, means[i]) } cutoff = tau*means[1]+(1-tau)*means[2] #print(tau) #print(means) #print(cutoff) if (cutoff>means[1]) { cl[1]=1 cl[2]=2 } else { cl[1]=2 cl[2]=1 } for (i in 1:length(test_data)) { if (test_data[i] <= cutoff) { predclass[i] = cl[1] } else { predclass[i] = cl[2] } } #print(means) #print(mean(means)) #X11() #plot(test_data,pch=predclass, col=resp) predclass } ################# EXTENDED ERROR RATES ################# ext_error_rate <- function(predclass, actualclass,msg=c("you forgot the message"), pr=1) { er=sum(predclass != actualclass)/length(predclass) matr<-data.frame(predclass=predclass,actualclass=actualclass) escapes = subset(matr, actualclass==1) subjects = subset(matr, actualclass==2) er_esc=sum(escapes\$predclass != escapes\$actualclass)/length(escapes\$predclass) er_subj=sum(subjects\$predclass != subjects\$actualclass)/length(subjects\$predclass) if (pr==1) { # print(paste(c(msg, 'overall : ', (1-er)*100, "%."),collapse=" ")) # print(paste(c(msg, 'within escapes : ', (1-er_esc)*100, "%."),collapse=" ")) # print(paste(c(msg, 'within subjects: ', (1-er_subj)*100, "%."),collapse=" ")) } return(c((1-er)*100, (1-er_esc)*100, (1-er_subj)*100)) } ## Main Function ## files_alias<-c("${my_title}") tau=seq(0,1,by=0.005) nfiles=1 f = c("${input}") rez_ext<-list() for (i in 1:nfiles) { rez_ext[[i]]<-dget(paste(f[i], sep="",collapse="")) } tau<-tau[1:(length(tau)-1)] for (i in 1:nfiles) { rez_ext[[i]]<-rez_ext[[i]][,1:(length(tau)-1)] } ######## OPTIMAIL TAU ########################### #rez_ext rate<-c("Optimal tau","Tr total", "Tr Y", "Tr X") m_tr<-numeric(nfiles) m_xp22<-numeric(nfiles) m_x<-numeric(nfiles) for (i in 1:nfiles) { r<-rez_ext[[i]] #tr # rate<-rbind(rate, c(files_alias[i]," "," "," ") ) mm<-which((r[3,])==max(r[3,])) m_tr[i]<-mm[1] rate<-rbind(rate,c(tau[m_tr[i]],r[,m_tr[i]])) } print(rate) pdf(file= paste("${pdf_output}")) plot(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlim=c(0,100), ylim=c(0,100), xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col="blue", xaxt='n', yaxt='n') for (i in 1:nfiles) { lines(rez_ext[[i]][2,]~rez_ext[[i]][3,], xlab="${X_axis} [1-FP(False Positive)]", ylab="${Y_axis} [1-FP(False Positive)]", type="l", lty=1, col=i) # pt=c(r,) points(x=rez_ext[[i]][3,m_tr[i]],y=rez_ext[[i]][2,m_tr[i]], pch=16, col=i) } title(main="${my_title}", adj=0, cex.main=1.1) axis(2, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%')) axis(1, at=c(0,20,40,60,80,100), labels=c('0','20','40','60','80','100%')) #leg=c("10 kb","50 kb","100 kb") #legend("bottomleft",legend=leg , col=c(1,2,3), lty=c(1,1,1)) #dev.off() </configfile> </configfiles> <help> .. class:: infomark **What it does** This tool generates a Receiver Operating Characteristic (ROC) plot that shows LDA classification success rates for different values of the tuning parameter tau as Figure 3 in Carrel et al., 2006 (PMID: 17009873). *Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, et al. (2006) Genomic Environment Predicts Expression Patterns on the Human Inactive X Chromosome. PLoS Genet 2(9): e151. doi:10.1371/journal.pgen.0020151* ----- .. class:: warningmark **Note** - Output from "Perform LDA" tool is used as input file for this tool. </help> </tool>